
M A N N I N G

Tariq Ahmed
Dan Orlando

WITH John C. Bland II
AND Joel Hooks

Revised edition of Flex 3 in Action

IN ACTION

Dottie
Text Box
SAMPLE CHAPTER

Flex 4 in Action
by Tariq Ahmed

and Dan Orlando

with John C. Bland II and Joel Hooks

Chapter 11

Copyright 2011 Manning Publications

brief contents
PART 1 APPLICATION BASICS ...1

1 ■ Making the case 3

2 ■ Getting started 21

3 ■ Working with ActionScript 44

4 ■ Layout and containers 70

5 ■ Displaying forms and capturing user input 96

6 ■ Validating user input 117

7 ■ Formatting data 138

8 ■ MX DataGrids, Lists, and Trees 155

9 ■ Using the Spark List controls 178

10 ■ List customization 192

PART 2 APPLICATION FLOW AND STRUCTURE219

11 ■ Events 221

12 ■ Application navigation 244

13 ■ Introduction to pop-ups 273

14 ■ Implementing view states 294

15 ■ Working with data services 316
i

BRIEF CONTENTSii
16 ■ Objects and classes 341

17 ■ Custom components 358

18 ■ Creating reusable components 388

19 ■ Architectural design patterns 405

PART 3 THE FINISHING TOUCHES...441

20 ■ Customizing the experience 443

21 ■ Working with effects 469

22 ■ Drag-and-drop 502

23 ■ Exploring Flex charting 530

24 ■ Debugging and testing 557

25 ■ Wrapping up a project 579

221

Events

Events are central to understanding how to work with Flex and how to create com-
pelling, well-designed applications. Events are a powerful tool and one of the main
features of the Flash Player.

 Events are deceptively simple, but at the same time, they’re an extremely power-
ful communication mechanism for your applications. We’ve mentioned several
times that Flex is built around an event-driven framework. Events are the central
nervous system within your applications, with information flowing in and out of
them, up and down, and side to side. We don’t mean to be melodramatic, but if you
don’t understand events, Flex becomes a terrible chore and ActionScript 2.0 begins
to look sexy again.

 Let’s begin by introducing the event system and describing its all-important role
in a Flex application. Next we explore integrating native and custom events in an
application while gaining an understanding of event nuances.

This chapter covers
 Working with events

 Listening for events

 Dispatching events

 Creating custom events

222 CHAPTER 11 Events

11.1 The event system
When working with web technologies such as ColdFusion, .NET, ASP, PHP, PERL, and
Python, information is transmitted on a request and response basis, or what is called syn-
chronous requests. In this model, remote servers wait for requests from clients (users)
and then gather and process information relevant to the request. They build the
appropriate response and send the data back to the client, at which point the transac-
tion is over—until the client requests the next transaction. Figure 11.1 shows a request
from your laptop, over the internet, to the web server (where the site is held), and
back to your computer. Between steps 1 and 2 there is latency, or a delay, because of
the time it takes to travel from your location to the location of the server. The same
goes for step 3 to step 4.

 Flash Player employs a different paradigm. Instead of sending out requests and
receiving responses, Flash Player makes requests and then listeners patiently wait and
listen for asynchronous events. When a listener hears an event, it performs the task it
was designed to do and then waits again for the next event to occur.

 Figure 11.2 shows an example of a profile manager with a form and the resulting
information as two separate components. In phase 1, the top graphic, the “Your infor-
mation” pod registers as a listener for update events from the “Update your informa-
tion” component. At this point nothing happens until the update event is dispatched,
and the rest of the application is still available for interaction. Once the user enters
some information and clicks the Update button, an event is dispatched and anything
listening for this event will be notified, as
shown in phase 2, the bottom graphic.
Notice that all of this interaction happens
within the application and without return-
ing to the server.

 In Flash Player, events are constantly
fired in response to a variety of user
inputs and system notifications. The main
instigator for these events is the user. By
clicking a mouse button, moving the
mouse, or selecting an item from a drop-
down menu, the user is unwittingly set-
ting off events, which trigger the applica-
tion to respond accordingly.

 With Flash Player applications, the dif-
ference is in the user-transparent opera-
tions that take place in the background.
This gives you the ability to fire off tasks
asynchronously, in parallel, none of which
are dependent on each other, allowing for
transparent activities to go on behind the

Your
laptop

Web
server

Internet

1) Request mysite.com

3) mysite.com response

4) Show mysite.com

2) mysite.com request

Figure 11.1 Example of a synchronous request

223The event system

scenes while your application interacts with and provides feedback to the user in real
time (versus having code execute synchronously, or sequentially, while the user waits
for it to complete).

 In addition, when requests for new information are made, they’re sent to the tar-
get server, and the application carries on with other tasks or patiently waits. The
response will be processed whenever the result comes back, whether that happens to
be in five seconds or five minutes.

 In contrast, when making a request to a web server, an HTML page viewed using a
web browser shows the page in a vertical manner from the top of the page to the bot-
tom of the page, unless JavaScript is used to asynchronously update the page after the
page has loaded.

 We’ll get into how this works in a moment; before we do, let’s look at how the Flash
Player event system is similar to another system you already know well: “I’ll call you.
Don’t call me.”

11.1.1 Event system—the Hollywood Principle

Components and classes, also known as dispatchers or targets, need to communicate
and pass data to each other through the event system. To illustrate this more clearly,
we can draw a parallel between the event system and the Hollywood Principle, which
states, “Don’t call me. I’ll call you.”

Your information

Username

Email

johncblandii

iam@johncblandii.com

Profile Manager

Username

Email

Update your information

UpdateListen for update events

Dispatch update event

Profile Manager

Your information

No information; please update.

johncblandiiUsername

iam@johncblandii.comEmail

Update your information

Updatee

Figure 11.2 Example of event listening

224 CHAPTER 11 Events

 Think of a person calling you asking to borrow money. You tell them you’ll contact
them with an answer after checking your bank account. This is the Hollywood Princi-
ple, which is nothing more than an asynchronous request, in tech terms. Consider the
following example.

 Your Flex application is supposed to load data from the server, but while the data
loads you want to show some cute, animated message to the user. The data-loading
component would be you on the phone, the application would be the person in need,
and the cute, animated message would be you dancing to “Footloose” in your mirror
while checking your bank balance.

 The request has been made. The amount of time between the request and the
resulting call back is undetermined, so you could be dancing for a while, but once
you’ve checked your account and have an answer, you’re ready to inform the caller of
your answer.

 This is exactly how Flex applications are developed and why events are critical:
Dispatchers receive requests and dispatch events accordingly but not necessarily
immediately.

11.1.2 Event-delivery system

It’s important to know the pathway events take within a Flex application, because this
pathway determines which components receive the events and which don’t.

 Events originate from the dispatcher, traverse the display tree vertically to the
application root and then to the stage, and are sent back down to the dispatcher, as
shown in figure 11.3.

 The event goes through the parent tree (and any components that are specifically
listening to it), which has implications for which components receive notifications
about events. For example, as shown in figure 11.3, a component’s parent typically
receives event notifications; children and siblings don’t receive notifications.

 From an application perspective, when a component dispatches an event, that
event can either bubble or not bubble. If the event bubbles, it traverses up the parent

Parent component

Sibling component
(no event)

Component dispatching
the event

Application root

Child component
(no event)

Bubble
phase

Capture
phase

Figure 11.3 The event flow
from component to root and
back to component

225Sending and receiving events

chain to the application root, passing by every parent in the chain. Each parent can
listen for application events at its own level and rebroadcast those events as needed,
stop the propagation, or call methods to take specific action.

 This is the real power behind the Flash Player event system: the ability to create
custom events and pass them around. Tying into the event system allows for maximum
decoupling of logic and maximizes the components that can use that logic, which in
turn affords maximum code reuse.

 Now that you’ve learned a bit about how the application passes events around, let’s
break down the event’s journey from start to finish by exploring sending and receiving
events.

11.2 Sending and receiving events
A Flash Player event is made up of the following core properties (see table 11.1).

NOTE In the Target phase currentTarget has the same value as target,
the dispatcher, but in the Capturing and Bubbling phases currentTarget is
different.

Each portion of the event journey—from dispatcher to parents to stage and back
again—can be divided into phases. Events have only three phases, depending on
where they are in the process, as shown in table 11.2.

NOTE The Bubbling and Capturing phases travel through parents but never
through the children of the dispatcher.

Table 11.1 Core event properties

Property Description

Event.target Event dispatcher.

Event.currentTarget Component currently containing and inspecting the event or the dispatcher.

Event.type A string name that identifies the type of event, such as a click event (click-
ing a button), a mouse event (moving the mouse), or a select event
(selecting an item). Events come in many types, and each type includes
unique items, but each event has the generic types mentioned here.

Event.eventPhase Current phase of the event.

Table 11.2 The different event phases

Phase Description

Capturing Event travels from the stage through the parents to the dispatcher.

Bubbling Event travels from the dispatcher through the parents to the stage.

Target Occurs only when the event has reached its target object or the dispatcher and
relates only to the one object, target, or dispatcher.

226 CHAPTER 11 Events

You can determine which phase you’re in by using the event object’s eventPhase
property. This property contains an integer that represents one of the following Event
constants:

 Event.CAPTURING_PHASE:uint = 1

 Event.AT_TARGET:uint = 2

 Event.BUBBLING_PHASE:uint = 3

Other events and custom classes can contain other properties as well, as you’ll see in
section 11.3, but at minimum they include these properties.

 Let’s examine what happens with a simple click event generated by pressing a
mouse button, as shown in listing 11.1. Copy and paste listing 11.1 into a new file
named mxmlAndScriptBlock.mxml and then run it.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 protected function onClick(event:Event):void{
 Alert.show(event.target.label + " clicked", "Event Test");
 }
]]>
 </fx:Script>
 <s:Button label="Button 1" click="onClick(event)" />
</s:Application>

When you click the button, a click event is generated and the onClick listener is
called. In the onClick listener, you show an alert. The alert’s message is the target
item’s label, event.target.label, with " clicked" appended.

NOTE Remember, event.target references the dispatcher, so label is a
property of the target, which in this case is a Button component.

Listing 11.1 uses a script block to manage the click event. This can also be done with-
out a script block. Listing 11.2 uses inline MXML to show the same alert.

 <s:Button label="Button 1">
 <s:click>
 <![CDATA[

Listing 11.1 Event listening with MXML and an ActionScript event listener

Listing 11.2 Event listening with inline MXML

Best practice
When you’re referring to or monitoring these phases, you can use either the number
or the constant, although it’s considered best practice to use constants wherever
possible to make your code easier to read and manage.

227Sending and receiving events

 Alert.show(event.target.label + " clicked", "Event Test");
]]>
 </s:click>
 </s:Button>

Listing 11.2 uses the same button but makes the event listening occur inline. This has
advantages and disadvantages. Ultimately, it boils down to your preference, but keep
in mind that an inline event listener can’t be used by multiple dispatchers. In the case
where multiple Button components need to call the same method, this approach
would fail miserably.

 Although these examples do the event adding in MXML, you aren’t restricted to
working in that environment. You can do the same thing in ActionScript by using the
addEventListener() function.

11.2.1 Adding event listeners in ActionScript

Using the addEventListener() function provides more fine-grained control over the
events and is the only way in ActionScript to listen for dispatched events. One huge
reason for adding event listeners in ActionScript is that event listeners added in
MXML can’t be removed. We cover this in more detail later, but keep it in mind for
now as a big win in the ActionScript-approach column.

 If you need to listen for an event in the capture phase, rather than the bubbling
and target phases, you must add the listener using the ActionScript method. As a
handy reference guide, we’ve included the main attributes of an event listener in
table 11.3.

 Let’s take the previous MXML application from listing 11.1 and use ActionScript to
register the listener. Listing 11.3 shows how you add an event listener on a previously
instantiated display object using ActionScript.

Table 11.3 Event listener properties and method arguments

Property Type Description

type String (Required) The type of event for which to listen. You can define the
event type as a String or use best practices and use the event
type constant defined on every event object.

listener Function (Required) The function to call when the event is dispatched.

useCapture Boolean (Optional) The phase in which to listen. If true, the listener listens
for the event during the capture phase. The default value is false
(uses the bubbling or target phase).

priority Integer (Optional) When the listener is called. The higher the number, the
sooner it’s called. The value can be negative; the default value is 1.

weakReference Boolean (Optional) How quickly the event listener object is picked up and
destroyed by the garbage collector. true means it’s discarded
sooner. The default value is false, which prevents garbage
collection from destroying the listener (performance at the cost of
memory).

228 CHAPTER 11 Events

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="init()">
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;

 protected function init():void{
 button1.addEventListener(MouseEvent.CLICK, onClick);

 protected function onClick(event:Event):void{
 Alert.show(event.target.label + " clicked", "Event Test");
 }
]]>
 </fx:Script>
 <s:Button id="button1" label="Button 1" />
</s:Application>

As demonstrated in listings 11.1 and 11.3, the main difference between the MXML
and ActionScript methods for adding a simple event listener involves the use of
addEventListener.

 When the button is clicked, it dispatches a click event, which activates and passes
the click event to onClick(). With the ActionScript method, you need an intermedi-
ary function to add the event listener to the button.

 In listing 11.3, this is handled by init(), which is called when the Application
issues the applicationComplete event. This event is the last event dispatched in the
Application startup and is called when the Application is fully initialized and added
to the display list.

Listing 11.3 Click event example using ActionScript

Details on using weakReference
weakReference is a hot topic in the ActionScript community pertaining to the proper
way of managing application performance and memory. Many developers rely heavily
on using weakReference, whereas others rely on removing all listeners. The argu-
ments on both sides are solid, and it all boils down to personal preference. Find out
what works best for you and your applications.

Relying on weakReference isn’t always ideal. This waits for the garbage collector to
pick up the “trash” for you. In most cases, this is fine, but your objects may not dis-
appear instantly as you desire.

Ideally, every event listener you add should be removed before destroying the object.
This provides a clean entry and exit for the object without having to play roulette with
your memory.

The best practice is to use both.

Sets onClick
to run when
click event
occurs

229Sending and receiving events

NOTE If you add an event listener for the capture phase, passing true as the
third parameter of addEventListener, of a button’s click event, it listens only
during the capture phase. Remember, the capture phase is the way down
from the top-level application, as shown in figure 11.3. If you need to listen to
both the capture phase and the bubbling phase, you must add a second event
listener, omitting or passing false as the third addEventListener parameter.

You’ve probably already gathered this, but most actions in Flex have corresponding
events for which you can listen by using the event listeners; you can then respond as
needed. This is the communication and nervous system of your Flex application. Even
setting variables can cause events to be broadcast. This type of event dispatch is called
binding.

NOTE When adding listeners, a serious consideration for weakReference is
required. If you think the object will ever need garbage collection and you
aren’t going to explicitly remove all event listeners from the object, use
weakReference. Don’t use weakReference on local objects (objects created in
a method and then destroyed) because the garbage collection occurs auto-
matically, which could cause your listeners not to fire if they’re garbage col-
lected before your expected event.

11.2.2 Binding events

Binding in Flex is carried out in the event system. When you bind a variable, you’re
establishing a dedicated listener that picks up on change events issued from the vari-
able or object to which it’s bound (for more about binding, refer to chapter 3).

 Whenever you create a binding to a variable, you register an event listener to
respond to any changes that occur in that variable. When binding in MXML, the
updating takes place behind the scenes, as demonstrated in the following listing.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <s:layout>
 <s:HorizontalLayout />
 </s:layout>
 <fx:Script>
 <![CDATA[
 [Bindable]
 protected var _labelText:String = "Label before event";
]]>
 </fx:Script>

 <s:Button id="myButton" label="Change Label!">
 <s:click>
 <![CDATA[
 _labelText = "Label " + Math.round(Math.random()*10);
]]>
 </s:click>

Listing 11.4 MXML binding

[Bindable] means
watch this variable

230 CHAPTER 11 Events

 </s:Button>
 <s:Label id="myLabel" text="{_labelText}"/>
</s:Application>

Compare the code in listing 11.4 to what’s required to accomplish the same thing in
ActionScript (listing 11.5). This ActionScript version relies on a class called Change-
Watcher, which monitors any changes in the value of a property to which you have it
bound. If a change occurs, ChangeWatcher triggers the necessary events to watch that
value. It’s much like an event listener object in that it listens for specific events from a
property.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="init()">
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <fx:Script>
 <![CDATA[
 import mx.events.PropertyChangeEvent;
 import mx.binding.utils.ChangeWatcher;

 protected var _watcher:ChangeWatcher;

 protected function init():void{
 toggleWatch();
 }
 protected function toggleWatch():void{
 if(_watcher && _watcher.isWatching()){
 _watcher.unwatch();
 toggleButton.label = "Watch";
 }else{
 _watcher = ChangeWatcher.watch(inputField,"text",onTextChange);
 toggleButton.label = "Stop Watching";
 }
 }
 protected function onTextChange(event:Event):void{
 myLabel.text = inputField.text;
 }
]]>
 </fx:Script>
 <s:Button id="toggleButton" label="Watch Text" click="toggleWatch()"/>
 <s:TextInput id="inputField" text="start text"/>
 <s:Label id="myLabel" />
</s:Application>

This method isn’t as easy as other ActionScript approaches or even the shortest
ActionScript approach, but it’s more flexible. Upon receipt of the application-
Complete event from the application, you toggle the watcher. Because _watcher is
null at startup, the first if statement in toggleWatch fails, causing the else block to
run. The else block binds to changes on the inputField’s text property by calling

Listing 11.5 ActionScript binding using ChangeWatcher

Necessary imports to
dynamically bind variables

Verifies the
watcher is active

Removes
watched variable

Tells ChangeWatcher
to detect changes

231Sending and receiving events

the ChangeWatcher.watch() method, which acts as the factory method for Change-
Watcher; an instantiated ChangeWatcher object is returned when you call the watch()
method.

 This method takes inputs for the object you want to watch and a property of the
watched object that’s listened to (in this case, you’re watching the text property of
inputField). The third property specifies which function to call when this event is
triggered—in this case, onTextChange().

 If you look back at the addEventListener() method, you’ll see that this approach
acts in a similar manner. With the addEventListener() method, you’re listening to
the entire object; with the method presented in listing 11.5, you’re watching a specific
object property. Changes made to the object property trigger the event listener.

 When you type anything in the text input, ChangeWatcher automatically listens for
those updates and executes the listening method. Each time you press a key, you send
out an event that’s monitored by ChangeWatcher. As demonstrated in listing 11.5, your
binding event can be as simple as copying the user input value into the myLabel com-
ponent, or it can be as complex as you need it to be.

 Another benefit of this implementation is the ability to remove a binding from an
object. You can’t remove the binding in MXML. As shown in listing 11.5, using Action-
Script, when the toggleWatch is called and _watcher.isWatching() is true, the bind
event is removed using _watcher.unwatch(), causing future property changes to not
call the event listener.

 If you look at the toggle method, the toggleButton’s label is changed to reflect the
current watch state of _watcher. This could be done using multiple buttons or by lis-
tening to other types of events as well. This approach is for user interface simplicity.

NOTE ChangeWatcher.watch() also has a weakReference argument. Use this
argument in the same instances and for the same reasons as you would add-
EventListener().

The BindingUtils class also allows binding through ActionScript, but it’s only a wrap-
per around ChangeWatcher. Using BindingUtils.bindProperty or BindingUtils.
bindSetter, you can set up a ChangeWatcher binding. It’s a helper class to condense
the lines of code necessary to bind objects in ActionScript. The following line of code
is similar to calling ChangeWatcher.watch():

BindingUtils.bindProperty(myLabel, "text", inputField, "text");

Table 11.4 lists a few of the benefits of the different approaches to data binding.

Table 11.4 Benefits of using each binding approach

MXML Binding* ChangeWatcher BindingUtils

Ability to toggle on/off No Yes Yes

Call methods on change No Yes Yes

Two-way binding Yes No No

* This includes the simple {} and @{} syntax as well as using <fx:Binding />.

232 CHAPTER 11 Events

11.2.3 Removing event listeners

You’ve just seen the unwatch() method in action, which lets you stop monitoring a
variable for changes. When using event listeners, you have the same type of capability.
If an event listener was added at runtime in ActionScript, you’d be able to remove it
using the removeEventListener() method. unwatch() merely uses removeEvent-
Listener to stop the events from dispatching. If you look at the underlying code for
the ChangeWatcher class, you’ll notice on roughly line 500 the following statement:

host.removeEventListener(p, wrapHandler);

Take a look at listing 11.6 (testingForListeners.mxml) to see how to remove event
listeners.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <fx:Script>
 <![CDATA[
 protected function toggleListeners():void{
 if(box.hasEventListener(MouseEvent.CLICK)){
 log("Listeners removed");
 box.removeEventListener(MouseEvent.MOUSE_OVER, onEvent);
 box.removeEventListener(MouseEvent.MOUSE_OUT, onEvent);
 box.removeEventListener(MouseEvent.MOUSE_MOVE, onEvent);
 box.removeEventListener(MouseEvent.CLICK, onEvent);
 }else{
 log("Listeners added");
 box.addEventListener(MouseEvent.MOUSE_OVER, onEvent);
 box.addEventListener(MouseEvent.MOUSE_OUT, onEvent);
 box.addEventListener(MouseEvent.MOUSE_MOVE, onEvent);
 box.addEventListener(MouseEvent.CLICK, onEvent);
 }
 }

 protected function onEvent(event:Event):void{
 log("Event triggered: " + event.type);
 }

 protected function log(text:String):void{
 logField.text = text + "\n" + logField.text;
 }
]]>
 </fx:Script>
 <s:Button label="Toggle Listeners" click="toggleListeners()" />
 <s:Group id="box">
 <s:Rect width="200" height="50">
 <s:fill>
 <s:SolidColor color="0x979797" />
 </s:fill>
 </s:Rect>

Listing 11.6 Example of adding and removing events

Removes
event
listeners

Adds
event
listeners

Event
handler

233Sending and receiving events

 </s:Group>
 <s:TextArea id="logField" width="400" height="400" />
</s:Application>

Listing 11.6 shows how to test an object to determine if a particular event listener was
added and then remove the listeners or add them back accordingly so the same lis-
tener isn’t added multiple times. Run the code and you’ll see output similar to
figure 11.4.

NOTE removeEventListener(), in listing 11.6, uses only two arguments, but
it’s important to note the third parameter. The third argument is use-
Capture, which is false by default. When an event listener is added for the
capture phase, to remove it you must pass true as the third argument.

toggleListeners() introduces a new method: hasEventListener(type:String):
Boolean. This method checks the target object for existence of the passed-in event
type. If the listener hasn’t been added to the target object, the event listener is added;
otherwise, it’s removed, toggling the existence of the listeners.

 For logging purposes, you can add and remove four different types of events. This
allows you to see the different events trigger accordingly.

 Knowing how to add and remove event listeners is the starting point to building a
great application. Adobe didn’t stop with allowing internal events. In the next section,
we cover dispatching and creating custom events. This will give you ultimate control
over events and enable you to dynamically determine when events are sent out and
what data these events should carry.

Figure 11.4 Output from listing 11.6

234 CHAPTER 11 Events

11.3 Custom events
Part of what makes events so powerful is the ability to create your own custom events
and use them to communicate within your application. By sending out events when
data changes or when the user initiates some action, like clicking a button, you decou-
ple an application’s logic from the objects that use it. This is critical because it creates
a more modular structure, allowing changes to a component without affecting other
parts of your application.

 Imagine dispatching an event from two separate unrelated classes. Each class has a
property containing the data we need, but both classes have different property names.
ClassA has a property named someData and ClassB has a property named content.
When the event is dispatched, calling event.target.someData throws an error if the
dispatcher is ClassB. By passing the data in the event, the listener no longer cares
which target dispatched it as long as the event contains the proper data. This eliminates
the listener from having to determine which class is the dispatcher, only to determine
the name of the class. Also keep in mind that if the listener does use the dispatcher’s
property to access the data, the listener now is tightly coupled to the dispatcher, so
changes to the expected property name means changes to the listener as well.

 This is where and why custom events shine.

11.3.1 Dispatching custom event types

All objects implementing the flash.events.IEventDispatcher interface can dis-
patch events, which include all display objects as well as other nondisplay classes. Typi-
cally, you achieve this in your custom nondisplay classes by extending
flash.events.EventDispatcher. You’ll see this in section 11.3.2. For now, let’s focus
on the basics of dispatching a custom event type.

 Consider the following snippet:

dispatchEvent(new Event("complete"));

It performs two distinct operations:

 A new event class is instantiated to handle and hold the information.
 The event of type "complete" is dispatched using the dispatchEvent() func-

tion call.

Removing MXML event listeners
It’s important to remember that removing event listeners works only on events added
using the ActionScript method of defining an event listener; listener functions added
using the MXML format are permanently attached to the object. For example, you
can’t remove an event listener added using the MXML script shown in the following
snippet:

<s:Button label="Toggle Listeners" click="toggleListeners()" />

If you think you might need to remove the event listener at some point, use the add-
EventListener() method.

235Custom events

When dispatching events with custom types, try your best to utilize an already available
event constant (Event.COMPLETE, Event.CHANGE, and so on) or create your own static
constants. You won’t get beat up in a dark alley if you don’t, but we’re aiming to write
solid, reusable code, right? To do so you can create static constants on the dispatcher
or, if you want to be in the cool crowd, create a custom event class with constants.
Doing so will allow you to write code capable of being used in multiple applications or
even in multiple places within the same application. This also allows you to pass cus-
tom data with the events.

11.3.2 Creating custom events

Dispatching a custom event type is easy, but, as noted earlier, it won’t get you any
closer to stardom with other skilled developers or, more importantly, help reduce your
application maintenance. Custom events give you full control over what data is sent
with an event, the event types, default values, and so on.

 To demonstrate, let’s create a simple real-world example of adding event dispatch-
ing to a custom nondisplay class. Our application will load an XML file and display the
results in a list. The focus is on the event dispatching though, not the user interface.

 Start by creating a new ActionScript class named DataLoader in a packaged named
net (see figure 11.5). This class will handle all of the data loading and parsing. Copy
the code from listing 11.7 into the new class.

package net{
 import events.ContentEvent;

 import flash.events.ErrorEvent;
 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.events.IOErrorEvent;
 import flash.events.SecurityErrorEvent;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 import mx.collections.ArrayCollection;

 public class DataLoader extends EventDispatcher{
 protected var _loader:URLLoader;

 public function DataLoader(){
 super();

 _loader = new URLLoader();
 _loader.addEventListener(Event.COMPLETE, onComplete);
 _loader.addEventListener(IOErrorEvent.IO_ERROR, onError);
 _loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR, onError);
 }

 public function load(url:String):void{
 _loader.load(new URLRequest(url));
 }

Listing 11.7 net.DataLoader class

Extend
EventDispatcher
class

236 CHAPTER 11 Events

 protected function onComplete(event:Event):void{
 var users:ArrayCollection = new ArrayCollection();
 for each(var user:XML in XML(_loader.data).user){
 users.addItem(user.@name + " - " + user.@site);
 }

 var ev:ContentEvent = new ContentEvent(ContentEvent.DATA_BACK);
 ev.users = users;
 dispatchEvent(ev);
 }

 protected function onError(event:ErrorEvent):void{
 var ev:ContentEvent = new ContentEvent(ContentEvent.DATA_ERROR);
 ev.error = event.text;
 dispatchEvent(ev);
 }
 }
}

Figure 11.5 Use the New ActionScript Class Wizard to create the
DataLoader class.

Create and dispatch
complete custom event

Create and dispatch
error custom event

237Custom events

The DataLoader is simple. In the constructor an instance of the URLLoader is cre-
ated with events tied to the instance to monitor the Event.COMPLETE, IOError-
Event. IO_ERROR, and SecurityErrorEvent.SECURITY_ERROR events. From here the
class does nothing until the load() method is called, which uses the loader to load
the content.

 Once the content is loaded, the onComplete() method handles the data parsing;
then you get into dispatching the custom event:

var ev:ContentEvent = new ContentEvent(ContentEvent.DATA_BACK);
ev.users = users;
dispatchEvent(ev);

Notice that the only difference from dispatching the events as you have before is the
assignment of the users property. The event type is referenced from a static constant
of the custom event, and you’re still passing the event object to dispatchEvent().

 The onError() method dispatches an event in the same way. You create the event,
passing in the custom type, in this case ContentEvent.DATA_ERROR, set the error
property, and dispatch the event. Typically you want the onError method to redis-
patch the ErrorEvent using the clone() method. We discuss ways of improving this
class at the end of this section.

 Create a new ActionScript class named ContentEvent in the events package, and
copy listing 11.8 into the class.

package events{
 import flash.events.Event;

 import mx.collections.ArrayCollection;

 public class ContentEvent extends Event{
 public static const DATA_BACK:String = "dataBack";
 public static const DATA_ERROR:String = "dataError";

 public var users:ArrayCollection;
 public var error:String;

 public function ContentEvent(type:String, bubbles:Boolean=false,
cancelable:Boolean=false){

 super(type, bubbles, cancelable);
 }
 }
}

This is a bare-minimum custom event class. It’s important to note the constants. These
are the event types, and the names are completely up to you. Normally better names
would be chosen, like COMPLETE and ERROR, but it’s a great way to introduce event-
naming constructs.

 The format of event names should be in all caps with an underscore (_) between
words. The values of the constants are also completely up to you, but camel case is sug-
gested. We’ll cover why in the metadata section.

Listing 11.8 events.ContentEvent–The custom event for content

Event constants used
for event references

Custom data
properties

238 CHAPTER 11 Events

 Event name conflicts can and do occur. If ContentEvent had an event named
COMPLETE (versus DATA_BACK) and the DataLoader dispatched the event, the listener
could also be triggered by dispatching Event.COMPLETE. In these cases some develop-
ers choose to name their events with full names, for example, events.Content-
Event.DATA_BACK. This breaks the metadata constructs and disables MXML event
access in some cases, but when done right, it completely ensures the listeners are
called only for the specific event and no other events. This is especially important
when listening to the Bubbling and Capture phases or when using Flex frameworks
like Mate (http://mate.asfusion.com) or Swiz (http://swizframework.org).

One thing the ContentEvent class is missing is the clone() method. We previously
noted that the class is the bare minimum, and it is. All of your custom events should
always override the Event.clone() method. If the method isn’t overridden and the
event is cloned, the custom data won’t make it into the clone, which means the clone
won’t match the original event.

 All the method does is create a new instance of itself and set the new instance
properties to match the current properties, essentially a clean copy of the event.
Here’s the clone() method as it would be implemented in the ContentEvent class:

 override public function clone():Event{
 var event:ContentEvent = new ContentEvent(type, bubbles, cancelable);
 event.users = users;
 event.error = error;
 return event;
 }

At this point the DataLoader class is complete. For now the class does exactly what you
need: load data and dispatch complete and error events. The next step is to build the
application.

 Create a new MXML application in the (default package) named Users-
View.mxml and copy listing 11.9 into the file.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 width="300" height="200"
 applicationComplete="init()">
 <s:layout>
 <s:BasicLayout/>

Listing 11.9 UsersView application

Best practice
When building custom events, it’s best to leave the constructor alone. Some devel-
opers like to change the constructor arguments to include type but leave out
bubbles and cancelable. This will only confuse other developers new to your code.

239Custom events

 </s:layout>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import events.ContentEvent;
 import net.DataLoader;
 protected function init():void{
 var dataLoader:DataLoader = new DataLoader();
 dataLoader.addEventListener(ContentEvent.DATA_BACK, onData);
 dataLoader.addEventListener(ContentEvent.DATA_ERROR, onError);
 dataLoader.load("data/content.xml");
 }

 protected function onData(event:ContentEvent):void{
 userList.dataProvider = event.users;
 }

 protected function onError(event:ContentEvent):void{
 Alert.show(event.error, "Error!");
 }
]]>
 </fx:Script>
 <s:List id="userList" width="100%" height="100%" />
</s:Application>

The application starts with the applicationComplete event, as shown previously, to
call the init() method. This is where you instantiate a local instance of the Data-
Loader class, add event listeners for the ContentEvent.DATA_BACK and Content-
Event.DATA_ERROR events, and then tell it to load the data/content.xml file, which is
shown in the following snippet:

<?xml version="1.0" encoding="UTF-8"?>
<users>
 <user name="John C. Bland II" site="http://www.johncblandii.com" />
 <user name="Tariq Ahmed" site="http://www.dopejam.com" />
 <user name="Dan Orlando" site="http://www.danorlando.com" />
 <user name="Joel Hooks" site="http://www.joelhooks.com" />
</users>

Once the data load is complete, the onData method is called, and you update the
userList component to display the results. That’s it. Your display is super simple, and
all of the underpinnings are handled in separate classes. The beauty here is the Data-
Loader can change to loading content via internal dummy data, Flash Remoting
(AMF), SQLite (via Adobe AIR), and so on, and your UserView application won’t have
to be touched beyond the URL to load the content.

 You can’t leave out the onError method. Even though the DataLoader listened for
two events (IOErrorEvent.IO_ERROR and SecurityErrorEvent.SECURITY_ERROR),
your application had to worry about only one: ContentEvent.DATA_ERROR. When an
error occurs, the onError method shows a simple alert displaying the event.error
property as the message of the alert. Again, the underlying code can change to display
any type of message, but your application stays the same. DataLoader could choose to
use localized text, display a generic message, or display an error from the server. The
possibilities are endless, but the changes to your application are nil.

Initiate load
request

Create
listeners for

DataLoader

Set list data
to result

Show alert
on errors

240 CHAPTER 11 Events

 Now that you’ve seen how to dispatch custom events, let’s look at how to improve
our events with metadata.

11.3.3 Adding event metadata to custom dispatchers

An important part of completing the dispatch of events—particularly when using cus-
tom components and classes—is adding metadata to dispatchers, to take advantage of
code hinting in Flash Builder.

 It’s not necessary to add metadata, but doing so adds convenience by giving you
the ability to see events as properties in MXML or to get code hints in ActionScript.
Listing 11.10 shows how to add metadata to the DataLoader class from listing 11.7.

package net{
 ...
 [Event(name="dataBack", type="events.ContentEvent")]
 [Event(name="dataError", type="events.ContentEvent")]
 public class DataLoader extends EventDispatcher{
 ...
 }
}

The name attribute is required and refers to the property value, not the static constant
of the class. Don’t use DATA_BACK as the name. Instead, use the value of DATA_BACK,
which is dataBack. This is where constant values are critical for code hinting. If the
constant’s value isn’t in CamelCase, Flash Builder won’t properly interpret which
static constants are available from the event class referenced in the type attribute.

 The type attribute references the event class. If the event class is
flash.events.Event, the type attribute isn’t required.

 Why is this important? We’re glad you asked! Figure 11.6 shows the before and
after screenshots for code hinting in ActionScript.

 To demonstrate the effectiveness for an MXML implementation, create a new
MXML application named UserView2.mxml and copy listing 11.11 into the file.

Listing 11.10 Event metadata DataLoader class

Event metadata for all
errors dispatched by

the DataLoader

Figure 11.6 Before (left) and after (right) the custom metadata

241Custom events

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:net="net.*"
 width="300" height="200"
 applicationComplete="init()">
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import events.ContentEvent;
 protected function init():void{
 dataLoader.load("data/content.xml");
 }

 protected function onData(event:ContentEvent):void{
 userList.dataProvider = event.users;
 }

 protected function onError(event:ContentEvent):void{
 Alert.show(event.error, "Error!");
 }
]]>
 </fx:Script>
 <fx:Declarations>
 <net:DataLoader id="dataLoader" dataBack="onData(event)"
 dataError="onError(event)" />
 </fx:Declarations>
 <s:List id="userList" width="100%" height="100%" />
</s:Application>

The main change is that DataLoader is now instantiated in MXML with the dataBack
and dataError events shown as MXML properties. This isn’t possible without metadata
on the DataLoader class.

 It’s important to note how to add metadata in an MXML component. The exact
same event metadata is used with a slight change, as shown in the following code:

 <fx:Metadata>
 [Event(name="eventName", type="EventClass")]
 </fx:Metadata>

NOTE Adding class-level metadata also improves your documentation when
using ASDoc.

Using events with custom dispatchers as we’ve presented in this chapter lets you retain
loose coupling. Your components don’t need to know about each other, and the par-
ent windows can control their behavior and manage interactions. You’ll find out more
about custom components in chapters 17 and 18.

 Our last stop on the event train is how to stop the event, pun intended.

Listing 11.11 UserView implementing DataLoader in MXML

DataLoader
implemented in MXML

242 CHAPTER 11 Events

11.3.4 Stopping event propagation

During any event phase (capture, target, or bubbling), you can use the event’s stop-
Propagation() and stopImmediatePropagation() methods to discontinue the event
from broadcasting to any other components. The two methods are virtually identical,
differing only in whether other event listeners on the same component are allowed to
receive the event.

 For example, if the event.stopPropagation() method is used on an event, it dis-
continues propagation after all other event listeners on a given component have fin-
ished responding to the event. If you were to use the event.stopImmediate-
Propagation() method, event propagation would be terminated before it was deliv-
ered to any other events, even if they were listening on the same component.

 When used in conjunction with the priority attribute of the event listener (set
when adding the event listener), you can create a function to be the first responder to
the event. This can be an effective gating mechanism to evaluate an event and cease
propagation if necessary to any other event listener on a given component (see the
following listing).

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="init()">
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 public function init():void{
 button.addEventListener(MouseEvent.CLICK, onClick);
 box.addEventListener(MouseEvent.CLICK, onParentClick);
 }
 public function onClick(e:Event):void{
 Alert.show("AS event. Calling stopPropogation.","First Event");
 e.stopPropagation();
 }
 public function onButtonClick(e:Event):void{
 Alert.show("MXML Click Event.", "Second Event Listener");
 }
 public function onParentClick(e:Event):void{
 Alert.show("You should never see this alert.", "Parent Event");
 }
]]>
 </fx:Script>
 <s:HGroup id="box" width="100%">
 <s:Button id="button" label="Fire Event" click="onButtonClick(event)"/>
 </s:HGroup>
</s:Application>

You interrupt the propagation of the event at the button level. Normally, this event
would travel through all the functions, triggering all three alerts. But after the first

Listing 11.12 Stopping propagation

Adds event
listener with
high priority

Stops propagation—
second event fires

Event never
reaches parent

243Summary

event, you call the stopPropagation() method. When you run the example, the first
two events—those listening directly to the button—will run, but the parent event lis-
tening to box won’t receive the event and therefore won’t run.

 If you change the stopPropagation() method to stopImmediatePropagation(),
you’ll see only the first alert. The stopImmediatePropagation() method terminates
any and all delivery of the event beyond the first event listener. Discontinuing the
propagation of events is an effective way to handle your event flow, depending on the
circumstances. This is true when you have custom components sending out custom
events.

 You’ve learned the event flow (phases), how to start and stop listening (adding and
removing event listeners), how to create custom events, and how to build your own
event dispatchers. Dive into events as much as you can. They’re crucial to the comple-
tion of great applications and key portions of the available Flex frameworks.

11.4 Summary
This chapter focused on the events system and how this system is used in Flash Player
as well as Flex specifics, namely binding. The events system is arguably the most
important upgrade from ActionScript 2.0 to ActionScript 3.0.

 If you’re coming from a web development background, learning asynchronous
events is a paradigm shift from the standard request/response model of creating web
applications. The events system is the core of this shift. Everything you do through
Flex in some way touches upon the events system. When you key into an application’s
events, you can free your objects to behave independently, to the point where they
don’t need awareness of the application.

 Now that you’ve tackled the events system, we’ll move on to discuss application
navigation, building on your event knowledge while continuing to improve your appli-
cation’s structure, functionality, and portability.

Ahmed Orlando Bland Hooks

F
lex has grown from just a way to build Flash apps into a
rich ecosystem, and Flex 4 introduces new UI components,
better performance monitoring, and speed enhancements

to the compiler.

Flex 4 in Action is a comprehensive tutorial that introduces Flex
to web designers and developers. It starts with the basics—forms
and data—and moves through core concepts like navigation,
drag-and-drop, and events. Even if you’re new to Flex, this book
is all you’ll need to make your apps pop using the new Spark
components, data services, charting, special eff ects, and more.

What’s Inside
How to architect your applications
Use charting to build interactive dashboards
Improve productivity with network monitoring
and unit testing
Give your apps a unique look with themes and skins
And much more

Readers of this book need basic development skills, but no
previous experience with Flex.

Tariq Ahmed is an RIA engineer and Flex community evangelist.
Dan Orlando is an RIA architect, specializing in Flex and AIR.
John C. Bland II is an independent Flex, ColdFusion, and mobile
developer. Joel Hooks is a Flash Platform developer and
ActionScript expert.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/Flex4inAction

$49.99 / Can $57.99 [INCLUDING eBOOK]

FLEX 4 IN ACTION

WEB DEVELOPMENT

“Th e desk reference for all
 things Flex 4”
 —John Griffi n, Overstock.com

“No question is left
 unanswered, no facet
 unexplored.”
 —Peter Pavlovich, Kronos Inc.

“A great book for both
 beginners and experienced
 Flex developers.”
 —Kevin Schmidt
 Adobe Systems, Inc.

“Th e lessons are memorable,
 witty, and very relevant.”
 —Zareen Zaff ar, Amcom

“Completely demystifi es
 building rich user interfaces.”
 —Rick Wagner, Acxiom Corp.

“What you need to be
 fl exible 4 your job!”
 —Rick Evans, SAS

M A N N I N G

SEE INSERT

	BriefTOC.pdf
	brief contents

