Sample Chapter

Patrick Peak
Nick Heudecker

/“ MANNING

Dottie
Text Box
Sample Chapter

Hibernate Quickly
by Fatrick Feak
and
Nick Heudecker
Chapter 6

Brief contents

© OO 9 O OO XN N

S

11

Appendix

Why Hibernate? 1

Installing and building projects with Ant 26
Hibernate basics 50

Associations and components 86

Collections and custom types 125

Querying persistent objects 161

Organizing with Spring and data access objects 189
Web frameworks: WebWork, Struts, and Tapestry 217
Hibernating with XDoclet 274

Unit testing with JUnit and DBUnit 313

What's new in Hibernate 5 346

The complete Hibernate mapping catalog 564

vii

2

Querying
persistent objects

This chapter covers

* Querying persistent objects using Hibernate

® The Hibernate Query Language

ith a solid grasp of Hibernate basics, we need to move on to querying

our persistent objects. Instead of SQL, Hibernate has its own, object-

oriented (OO) query language called Hibernate Query Language
(HQL). HQL is intentionally similar to SQL so that it leverages existing
developer knowledge and thus minimizes the learning curve. It supports the
commonly used SQL features, wrapped into an OO query language. In some
ways, HQL is easier to write than SQL because of its OO foundation.

Why do we need HQL? While SQL is more common and has been stan-
dardized, vendor-dependent features limit the portability of SQL state-
ments between different databases. HQL provides an abstraction
between the application and the database, and so improves portability.
Another problem with SQL is that it is designed to work with relational
tables, not objects. HQL is optimized to query object graphs.

This chapter introduces you to HQL gradually and quickly moves on
to more complicated features and queries. First we'll cover the major

161

162

CHAFPTER 6 Querying persistent objects

concepts important to using HQL, such as executing queries using a
few different classes. After the introductory material is covered, we'll
spend the rest of the chapter with HQL examples. If you have a
solid grasp of SQL, you shouldn’t have any problem picking up the
key concepts.

Chapter goals

We have three primary goals in this chapter:

@ Exploring the basics of HQL, including two query mechanisms

@ Identifying variations in HQL queries, including named and posi-
tional parameters

© Understanding how to query objects, associations, and collections

Assumptions

Since HQL is based on SQL, we anticipate that you
© Understand SQL basics, including knowledge of joins, subselects,
and functions.

© Have a firm grasp of JDBC, including the PreparedStatement and
ResultSet interfaces.

6.1 Using HAQL

Hibernate queries are structured similar to their SQL counterparts,
with SELECT, FROM, and WHERE clauses. HQL also supports
subselects if they are supported by the underlying database. Let’s jump
in with the most basic query we can create:

from Event

This query will return all of the Event instances in the database, as well
as the associated objects and non-lazy collections. (You'll recall from
chapter 5 that, by default, persistent collections are populated only
when initially accessed.) The first thing you probably noticed was the

lack of the SELECT clause in front of the FROM clause. Because we

6.1.1

Using HQL 163

want to return complete objects, the SELECT clause is implied and
doesn’t need to be explicitly stated.

How can we execute this query? Two methods are provided in the
Hibernate API to execute queries. The Session interface has three
find(..) methods that can be used for simple queries. The Query inter-
face can be used for more complex queries.

session.find(...)

In Hibernate 2, the Session interface has three overloaded find(..)
methods, two of which support parameter binding. Each of the meth-
ods returns a java.util.List with the query results. For instance, let’s
execute our earlier query:

List results = session.find("from Event");

The Session interface also has a set of methods, named iterate(.),
which are similar to the find(..) methods. Although they appear to be
the same, each of methods functions differently. The find methods
return all of the query results in a List, which is what you'd expect.
The objects in the list are populated when the query is executed. How-
ever, the iterate methods first select all of the object ids matching a
query and populate the objects on demand as they are retrieved from
the Iterator. Here’s an example:

Iterator results = session.iterate("from Event");
while (results.hasNext()) {

Event myEvent = (Event) results.next();

// ..

When the Iterator is returned, only the id values for the Event
instances have been retrieved. Calling results.next() causes the next
Event instance to be retrieved from the database. The iterate methods
are typically less efficient than their find counterparts, except when
dealing with objects stored in a second-level cache.

164

6.1.2

CHAFPTER © Querying persistent objects

Hibernate stores objects in a second-level cache based on the object’s
class type and id. The iterate methods can be more efficient if the
object is already cached, since only the matching object ids are
returned on the initial query and the remainder of the object is
retrieved from the cache.

The find methods in the Session interface are ideal for simple queries.
However, most applications typically require at least a handful of com-
plex queries. The Query interface provides a rich interface for retriev-
ing persistent objects with complicated queries. If you're using
Hibernate 3, you must use the Query interface since the find methods in
the Session interface have been deprecated (although they have been
moved and are still available in the org.hibernate.class.Session sub-
interface). Hibernate 3 applications should use createQuery() and get
NamedQuery () for all query execution.

The Query interface

Instances of the Query interface are created by the Session. The Query
interface gives you more control over the returned objects, such as lim-
iting the number of returned objects, setting a timeout for the query,
and creating scrollable result sets. Let’s execute our previous query
using the Query interface:

Query q = session.createQuery("from Event");
List results = q.listQ);

If you want to set bounds on the number of Event objects to return, set
the maxResults property:

Query q = session.createQuery("from Event");
q.setMaxResults(15);
List results = q.listQ;

The Query interface also provides an iterate() method, which behaves
identically to Session.iterate(.). Another feature of the Query

Using HQL 165

interface is the ability to return query results as a ScrollableResults
object. The ScrollableResults object allows you to move through the
returned objects arbitrarily, and is typically useful for returning paged
collections of objects, commonly found in web applications.

Of course, our static queries aren’t very useful in real applications.
Real applications need to populate query parameters dynamically.
JDBC'’s PreparedStatement interface supports setting positional query
parameters dynamically, but populating queries can be cumbersome.

Developers must know the type of each parameter in order to call the
correct setter method in the interface. They also have to keep track of
which positional parameter they are setting. Hibernate expands and
improves on this notion by providing both positional and named
query parameters.

Positional parameters

Positional parameters in Hibernate are very similar to their Prepared-
Statement counterparts. The only significant difference is that the posi-
tion index starts at 0 instead of 1, as in the PreparedStatement.

Suppose you want to return all of the Event instances with a certain
name. Using a positional parameter, your code would look like

Query q = session.createQuery("from Event where name = ? ");
g.setParameter(0@, "Opening Plenary");
List results = q.list(Q;

Note that you didn’t need to set the type of parameter; the Query
object will attempt to determine the type using reflection. It’s also pos-
sible to set a parameter to a specific type using the org.hiber-
nate.Hibernate class:

g.setParameter(@, "Opening Plenary", Hibernate.STRING);
Named parameters are a more interesting, and more powerful, way to

populate queries. Rather than using question marks for parameter
placement, you can use distinctive names.

166

CHAFPTER © Querying persistent objects

Named parameters

The easiest way to explain named parameters is with an example.
Here's our earlier query with a named parameter:

from Event where name = :name

Instead of the ? to denote a parameter, you can use :name to populate

the query:
Query q = session.createQuery("from Event where name = :name");
g.setParameter("name", "Opening Plenary');

List results = q.1list(Q);

With named parameters, you don’t need to know the index position of
each parameter. Named parameters may seem like a minor feature, but
they can save time when populating a query—instead of counting
question marks and making sure you're populating the query correctly,
you simply match the named parameters with your code.

If your query has a named parameter that occurs more than once, it
will be set in the query each time. For instance, if a query has the
parameter startDate twice, it will be set to the same value:

n

Query g = session.createQuery("from Event where "+
"startDate = :startDate or endDate < :startDate");

g.setParameter("startDate", eventStartDate);

List results = q.1list(Q;

We've covered the two styles of query parameters supported by Hiber-
nate. For the purpose of our examples, we've been displaying the que-
ries as hardcoded in application code. Anyone who’s built an
application will know that embedding your queries can quickly create a
maintenance nightmare. Ideally, you would store the queries in a text
file, and the most natural place to do that with Hibernate is in the map-
ping definition file.

Using HQL 167

Named queries

Named queries, not to be confused with named parameters, are queries
that are embedded in the XML mapping definition. Typically, you put
all of the queries for a given object into the same file. Centralizing your
queries in this fashion makes maintenance quite a bit easier. Named
queries are placed at the bottom of the mapping definition files:

<query name="Event.byName">
<! [CDATA[from Event where name=7]]>

</query>

Note that here you wrap the actual query in a CDATA block to ensure
that the XML parser skips the query text. This is necessary since some
symbols, such as < and >, can cause XML parsing errors.

There is no limitation on the number of query elements you can have in
a mapping file; just be sure that all of the query names are unique. You
may name the queries anything you would like, although we have
found that prefixing the name of the persistent class is helpful.

Accessing named queries is simple:

Query q = session.getNamedQuery("Event.byName");

List results = q.listQ;

You should take advantage of named queries when creating your map-
ping definitions. If you add or change a property name, you can also
update all of the affected queries at the same time.

There is certainly no rule about storing your HQL queries in the
mapping definition. You can just as easily put the queries into a
resource bundle and provide your own mechanism to pass them to
the query interfaces.

Now that you know how to query and some of the basics, what happens
when you execute a query, using either the Session or Query interface?

166

6.1.3

CHAFPTER © Querying persistent objects

First, the Hibernate runtime compiles the query into SQL, taking into
account the database-specific SQL dialect. Next, a PreparedStatement
is created and any query parameters are set. Finally, the runtime exe-
cutes the PreparedStatement and converts the ResultSet into instances
of the persistent objects. (It’s a little more complicated than the three-
sentence description, but I hope you get the idea.) When you retrieve
persistent objects, you also need to retrieve the associated objects, such
as many-to-ones and child collections.

Outer joins and HQL

Using SQL, the most natural way to retrieve data from multiple tables
with a single query is to use a join. Joins work by linking associated
tables using foreign keys. Hibernate uses an outer join to retrieve asso-
ciated objects. When the HQL is compiled to SQL, Hibernate creates
the outer join statements for the associated objects (assuming you've
enabled outer joins—see chapter 3 for an explanation of the
max_fetch_depth property). This results in one query returning all of
the data necessary to reconstitute an Event instance. All of this happens
behind the scenes in the Hibernate runtime. Compare this with writing

the following SQL:

select e.*, 1.* from events as e
left outer join locations as 1 on e.location_id = 1.1id

Clearly, HQL is much more concise than SQL. It’s also possible to dis-
able outer join fetching for a specific association by setting the fetch
attribute in the mapping definition, as shown here:

<many-to-one name="location" fetch="select”/>

Alternatively, outer join fetching can be disabled globally by setting the
max_fetch_depth property to 0 in the hibernate.cfg.xml file:

<property name="max_fetch_depth">0</property>

You will typically leave outer join fetching enabled, as it can greatly
improve performance by reducing the number of trips to the database

6.1.4

6.1.5

Using HQL 169

to retrieve an object. The max_fetch_depth property is just one configu-
ration parameter that can impact queries. We'll look at two more:
show_sql and query_substitutions.

Show SQL

While debugging HQL statements, you may find it useful to see the
generated SQL to make sure the query is doing what you expect. Set-
ting the show_sql property to true will result in the generated SQL
being output to the console, or whatever you have System.out set to.
Set the property in your hibernate.cfg.xml file:

<property name="show_sql">true</property>
You will want to turn off SQL output when deploying to production,

especially in an application server. Application servers typically set
System.out to a log file, and the SQL output can be overwhelming.

Query substitutions

Hibernate supports many different databases and SQL dialects, each
with different names for similar functions. Using query substitutions,
you can normalize function names and literal values, which simplifies
porting to different databases. Query substitutions can be a confusing,
so let’s look at a few examples.

First, to configure query substitutions in the configuration file, use the
following:

<property name="query.substitutions">
convert CONV, true 1, false 0
</property>

This configuration setting performs three substitutions:

© The CONV function is now aliased to convert.
© Boolean true values are replaced with 1.

© Boolean false values are replaced with 0.

170

CHAFPTER © Querying persistent objects

Query substitutions occur when the HQL is compiled into SQL. The
substitutions for boolean values are useful if your database does not
support boolean data types. This allows you to use true and false in
your queries, which is clearer than using 1 and 6.

By substituting convert for the name of the CONV function, you can
make your HQL statements more portable. For example, MySQL
names the function CONV, while Oracle names the same function CON-
VERT. If you port your application to Oracle, you only need to update
the query substitution property instead of the HQL.

6.1.6 Query parser

Hibernate 3 introduces a new HQL abstract syntax tree (AST) query
parser, which replaces the classic parser found in earlier releases.
While the parser in use doesn’t make much difference to you, we men-
tion it because in some cases, particularly when migrating an applica-
tion from Hibernate 2 to 3, you may want to use the classic parser.
You'll likely want to use the classic parser if the AST parser complains
about your existing HQL.

To switch from the AST parser (which is the default) to the classic
parser, set the following property in your hibernate.properties file:

hibernate.query.factory_class=
org.hibernate.hql.classic.ClassicQueryTranslatorFactory

If you're configuring Hibernate using the hibernate.cfg.xml property,
use this:

<property name="query.factory_class">
org.hibernate.hql.classic.ClassicQueryTranslatorFactory
</property>

Ideally, you'll use the newer AST parser. When the SessionFactory is
created, the AST parser validates all of the named HQL queries found

Querying objects with HQL 17

in your mapping files, which can save you a lot of time when you're
testing your application.

We've covered the introductory information necessary to use HQL in
your applications. The remainder of the chapter will be spent discuss-
ing the features of the query language.

6.2 Querying objects with HQL

6.2.1

With a solid foundation in executing queries, you can concentrate on
exploring the query language itself. If you have experience with SQL,
you shouldn’t have a problem getting a firm grasp of HQL.

This section doesn’t have much Java code; instead, we provide a num-
ber of example queries and explanations. Although we've presented the
occasional HQL statement at various points earlier in the book, this
section examines features of HQL that we haven’t used.

The FROM clause
The FROM clause allows you to specify the objects that will be que-

ried. It also lets you create aliases for object names. Suppose you want
to query all Event instances matching a given name. Your resulting
query would be as follows:

from Event e where e.name='Opening Plenary'

This new query introduces a shorthand name, or alias, for the Event
instance: e. This shorthand name can be used just like its SQL counter-
part, except here you're using it to identify objects instead of tables.
Unlike SQL, HQL does not allow the as keyword when defining the

alias. For instance:

from Event as e where e.name='0Opening Plenary'

The as in the previous query will cause an org.hibernate.QueryExcep-
tion when you attempt to execute the query. Since as is implied, there
is no need to insert it in the query. You're also querying a property of
the Event: the name. When querying properties, use the JavaBean

172

CHAFPTER © Querying persistent objects

property name instead of the column name in the table. You shouldn’t
be concerned with the underlying relational tables and columns when
using HQL, but instead focus on the properties of the domain objects.

You will typically have one object in the FROM clause of the query, as
in our examples to this point. Querying on one object type simplifies
the results, since you're only going to get a List containing instances of
the queried object. What happens if you need to query multiple associ-
ated objects? You could have multiple objects in the FROM clause,
such as

from Event e, Attendee a where ..
How do you know what object type the result list will contain? The
result list will contain a Cartesian product of the queried objects, which

probably isn’t what you want. To query on associated objects, you'll
need to join them in the FROM clause.

6.2.2 Joins

You're probably familiar with SQL joins, which return data from mul-
tiple tables with a single query. You can think of HQL joins in a similar
way, only you're joining object properties and associations instead of
tables. If we want to return all Events that a specific Attendee is going
to be attending, join the attendee property to the Event in the query:

from Event e join e.attendees a where a.id=314

You can join all associations (many-to-one and one-to-one), as well as
collections, to the query’s base object. (We refer to the base object in a
query as the object listed in the FROM clause. In this case, the base
object is the Event.) As the previous query shows, you can also assign
an alias to joined associations and query on properties in the joined
object. The naming convention for HQL aliases is to use a lowercase
word, similar to the Java variable naming convention.

Types of joins

HQL has different types of joins, all but one of them taken from SQL.

We summarize the join types in table 6.1.

Querying objects with HQL 173

Table 6.1 Join types

Join Type Rule
inner join Unmatched objects on either side of the join are dis-
carded.
left [outer] join All objects from the left side of the join are returned.

If the object on the left side of the join has no match-
ing object on the right side of the join, it is still
returned.

right [outer] join All objects from the right side of the join are
returned. If the object on the right side of the join
has no matching object on the left side of the join, it
is still returned.

full join All objects from either side of the join are returned,
regardless of matching objects on the opposite side
of the join.

inner join fetch Used to retrieve an associated object or a collection

of objects regardless of the outer—join or lazy prop-
erty on the association. This join does not have a SQL
counterpart.

Unless you specify left, right, or full as the prefix to the join state-
ment, the default is to use inner joins. All of the joins in table 6.1
behave like their SQL counterparts, except for inner join fetch. Join-
ing a lazy collection with inner join fetch will cause the collection to
be returned as populated. For example:

from Event e inner join fetch e.speakers
returns all of the Event instances with populated collections of Speak-

ers. Let’s look at joining an object associated to the base object as a
many-to-one:

from Event e join e.location 1 where l.name = :name
Joining the Location instance to the Event allows querying on the

Location properties, and results in a more efficient SQL query. Let’s
say you had the following query:

174

CHAFPTER © Querying persistent objects

from Event e where e.location.name = :name and
e.location.address.state = :state

Since you're walking the object graph twice, once for the Location
name and again for the Location state, the query compiler will join the
Location instance to the Event twice. Joining the Location to the Event
in the FROM clause results in only one join and a more efficient query.

Joined objects can also be returned in the SELECT clause of the HQL
statement. The HQL SELECT clause is discussed next.

6.2.3 Selects

The SELECT clause allows you to specify a list of return values to be
returned from a query. If you recall from chapter 1, selecting specific
columns of data returned from a query is called projection. Possible
return values include entire objects, specific object properties, and
derived values from a query. Derived values include the results from
various functions, such as min(..), max(..), and count(.)).

The SELECT clause does not force you to return entire objects. It’s
possible to return specific fields of objects, just as in SQL. Another
interesting feature of HQL is the ability to return new objects from the
selected values. We'll examine both features next.

Projection

Suppose that instead of returning the entire Event object in your que-
ries, you only want to return the name of the Event. Retrieving the
entire object just to get the name is pretty inefficient. Instead, your
query will only retrieve the desired data:

select e.name from Event e

This query returns a list of String instances containing the Event
names. If you want to return the Event start date in addition to the
name, add another parameter to the SELECT clause:

select e.name, e.startDate from Event e

Querying objects with HQL 175

Each element in the returned list is an Object[] containing the speci-
fied values. The length of the Object[] array is equal to the number of
columns retrieved. Listing 6.1 illustrates querying and processing mul-
tiple scalar values.

Listing 6.1 Multiple scalar values

Session session = factory.openSession();
String query = " select e.name, e.startDate from Event e ";
Query query = session.createQuery("query");
List results = query.list(Q);
for (Iterator I = results.iterator(); i.hasNext();) {
Object[] row = (Object[]) i.next();
String name = (String) row[0];
Date startDate = (Date) row[1];
// ..

Looking at listing 6.1, you'll notice the values in the Object[] array are
in the same order given in the query. Also, since the array contains
Object instances, no primitive values can be returned from a scalar
query. This limitation is also present when querying a single scalar
value, since a List cannot contain primitive values.!

A common use of scalar value queries is to populate summary objects
containing a subset of the data in the persistent object. In our case, a
summary object would consist of the Event name and start date. When
iterating over the result list, you would need to create a separate list of
summary objects. Fortunately, there’s a better way to do this.

Returning new objects

The SELECT clause can be used to create new objects, populated from
values in the query. Let’s look at an example:

select new EventSummary(e.name, e.startDate) from Event e

' The contract for the java.util.List interface specifies that it can only store and return
instances of java.lang.Object. Since primitive types (int, long, boolean, etc.) do not
inherit from java.lang.Object, they cannot be stored in a java.util.List. For more infor-
mation, refer to http://java.sun.com/docs/books/tutorial/collections/.

176

6.2.4

CHAFPTER © Querying persistent objects

The result list will be populated with instances of the EventSummary
class. Looking at the constructor used in the HQL statement, the
EventSummary class must have a constructor matching the constructor
used in the HQL statement: EventSummary (String, Date).

We have covered the major components of HQL queries. The follow-
ing section presents the aggregate functions that are available in HQL

and how they can be used in SELECT and WHERE clauses.

Using functions

Functions are special commands that return a computed value. In SQL,
there are two types of functions: aggregate and scalar. Scalar functions
typically operate on a single value and return a single value. There are
also scalar functions that don’t require arguments, such as now() or
CURRENT_TIMESTAMP, which both return a timestamp. Aggregate func-
tions operate on a collection of values and return a summary value.

Hibernate supports five of the most commonly used SQL aggregate
functions: count, avg, min, max, and sum. The functions perform the
same operations as their SQL counterparts, and each operates on an
expression. The expression contains the values that the function oper-
ates on. Table 6.2 summarizes the five aggregate functions.

The count(..) function can also take advantage of the distinct and all
keywords to filter the computed value. Let’s look at some examples of
using functions in HQL queries.

Table 6.2 Hibernate aggregate functions

Function Usage
avg(expression) Calculates the average value of the expression.
count(expression) Counts the number of rows returned by the expression.
max(expression) Returns the maximum value in the expression.
min(expression) Returns the minimum value in the expression.
sum(expression) Returns the sum of column values in the expression.

Querying objects with HQL 177

select count(e) from Event e

This example returns the number of Events persisted in the database.
To count the number of distinct Events, use the distinct keyword:

select count(distinct e) from Event e

All of the aggregate functions return an Integer. The easiest way to
retrieve the result is to get the first element in the result list:

Integer count =
(Integer) session.find("select count(distinct e) from "+
"Event e").get(0);

You may also use functions in scalar value queries:

select e.name, count(e) from Event e

Suppose you want to get the collection of Attendees for a given Event.
With what you know so far, you would have to retrieve the Event and
then get the collection of Attendees. The code for this is as follows:

String query = "from Event e inner join fetch e.attendees "+
"where e.name = :name";

Query g = session.createQuery(query);

g.setParameter("name", "Opening Plenary');

Event event = (Event) q.list().get(0);

Set attendees = event.getAttendees();

session.close();

While this takes six lines of code, there is a much shorter way to obtain
a child collection. Hibernate provides the elements(.) function to
return the elements of a collection:

select elements(e.attendees) from Event e where name = :name
This query returns a List of Attendee instances for a given Event. If

you join the collection in the FROM clause, you can just use the join
alias. For example, the next query is the same as our previous query:

178 CHAFPTER © Querying persistent objects

select elements(a) from Event e
join e.attendees a
where name = :name

Functions can also be used in the WHERE clause, which we cover
later in this chapter. HQL properties, or attributes available for objects
In a query, are presented next.

6.2.5 HQL properties

HQL supports two object properties: id and class. The id property
gives you access to the primary key value of a persistent object.
Regardless of what you name the id property in the object and map-
ping definition, using id in HQL queries will still return the primary
key value. For instance, if you have a class with an id property named
objectId, you would still use the id property in HQL:

from MyObject m where m.id > 50

This query selects all instances of MyObject where the objectId prop-
erty value 1s greater than 50. You can still use the objectId property if
you prefer. Think of HQL's id property as shorthand for the primary

key value. The class property provides a similar function.

The class property provides access to the full Java class name of per-
sistent objects in an HQL query. This is typically useful when you have
mapped a persistent class hierarchy and only want to return classes of a
certain type. We'll look at an example to see how the class property
can be used.

Let’s say the Attendee class has an association to the Payment class. The
Payment class specifies how the Attendee will pay for the Events. Pay-
ment has two subclasses: CreditCardPayment and CashPayment. You
want to retrieve all Attendees who have paid with cash:

from Attendee a join a.payment p where p.class =
com.manning.hq.ch06.CashPayment

6.2.6

Querying objects with HQL 179

As with the id property, you can also return the class property in the
SELECT statement:

select p.id, p.class from Payment p;

This query returns all of the ids and classes for Payment as a List of
Object[]s. However, the class property is not returned as an instance
of java.lang.Class. Instead, the class property is a java.lang.String,
which has the same value as the discriminator specified in the mapping
definition.

The class property is only available on object hierarchies—in other
words, objects mapped with a discriminator value. If you try to query
the class property of an object without a discriminator value, you'll
recelve a QueryException stating that the query parser couldn’t resolve
the class property.

The id and class properties can be used in SELECT and WHERE
clauses. Expressions that can occur in the WHERE clause are covered
in the next section.

Using expressions

Expressions are used to query object properties for desired criteria.
Occurring in the WHERE clause of an HQL query, expressions sup-
port most of the common SQL operators that you're probably accus-
tomed to using. We won't explain each available expression but instead
give a number of examples demonstrating expressions in HQL.

A number of available expressions are designed to query child collec-
tions or attributes of objects contained within a collection. The sim-
plest function is size(..), which returns the number of elements in a
collection:

from Event e where size(e.attendees) > 0

The size of a collection can also be accessed as a property, like id and
class:

from Event e where e.attendees.size > 0

180

CHAFPTER © Querying persistent objects

Which form you choose is entirely up to you; the result is the same. If
you are using an indexed collection (array, list, or map), you can take
advantage of the functions shown in table 6.3.

Table 6.3 Functions for indexed collections

Function Description
elements(expression) Returns the elements of a collection.
indices(expression) Returns the set of indices in a collection. May

be used in a SELECT clause.
maxElement(expression) Returns the maximum element in a collection

containing basic types.
minElement(expression) Returns the minimum element in a collection

containing basic types.
maxIndex(expression) Returns the maximum index in a collection.
minindex(expression) Returns the minimum index in a collection.

All of the functions in table 6.3 can only be used with databases that
support subselects. Additionally, the functions can only be used in the
WHERE clause of an HQL statement. We looked at the elements(..)
function earlier, but its usage changes slightly when used ina WHERE
clause. Like the size property, the maximum and minimum functions
can also be used as properties. Let’s look at a few examples. First:

from Speaker s where maxIndex(s.eventSessions) > 10
or in its property form:
from Speaker s where s.eventSessions.maxIndex > 10

The maxElement and minElement functions only work with basic data
types, such as numbers (ints, longs, etc.), Strings, and Dates. These
functions do not work with persistent objects, like Speakers or Attend-
ees. For example, to select all Events with more than 10 available rooms:

from Event e where maxElement(e.availableRooms) > 10

Indexed collections can also be accessed by their index. For example:

from Speaker s where s.eventSessions[3].name = :name

Querying objects with HQL 181

The above HQL queries the fourth EventSession object in the collec-
tion and returns the associated Speaker instance. (Remember that col-
lection indexes start at 0, not 1.) Let’s look at another, more
complicated example:

from Speaker s where
s.eventSessions[size(s.eventSessions) - 1].name = :name

You can get creative within the brackets —for instance, passing in an
expression to compare properties of the last collection element. Here’s
another example of querying on indexed collections using an expres-
sion within brackets.

select e from EventSession e, Speaker s where
s.eventSessions[maxIndex(e.eventSessions)] != e

You'll notice that at the end of the previous query, you just referenced
the EventSession as e instead of using the id property of the EventSes-
sion. This demonstrates that you can use a persistent entity in a query.
Let’s look at a simple example:

Session sess = factory.openSession();

Query q = sess.createQuery("from EventSession e where e=?");
gq.setEntity (1, myOtherEventSession);

List 1 = q.1list(Q;

sess.close();

When you call Query.setEntity(..), the generated SQL doesn’t match
on all fields of the entity object—only on the id value. The generated
SQL for our query looks like

select e_.id, e_.name from event_sessions as e_ where (e_id=?)
Only the id of the passed entity is used, so it’s perfectly acceptable to

use entity instances in your query objects without worrying about
overhead.

182

CHAFPTER © Querying persistent objects

HQL also supports various operators, including logical and compari-
son operators. Logical operators include and, any, between, exists, in,
like, not, or, and some. The comparison operators include =, >, <, >=,
<=, and <>.

Grouping and ordering

The GROUP BY clause is used when returning multiple scalar values
from a SELECT clause, with at least one of them the result of an
aggregate function. For instance, you need a GROUP BY clause for
the following HQL statement:

select e.name, count(elements(a)) from Event e
join e.attendees a group by e.name

The GROUP BY clause is necessary so that the count function groups
the correct Events together. Like most other things in relational the-
ory, queries returning both scalar values and values from aggregate
functions have a name: vector aggregates. The query shown here is a
vector aggregate.

On the other hand, queries returning a single value are referred to as
scalar aggregates. Scalar aggregate queries do not require a GROUP
BY clause, but vector aggregate queries do. Let’s look at a scalar
aggregate query:

select count(a) from Event e join e.attendees a

Since there is nothing to group by in the SELECT clause, no GROUP

BY clause is required.

The GROUP BY clause can be used with the HAVING clause to place
search criteria on the results of GROUP BY. Using the HAVING
clause does not impact the aggregates; instead, it impacts the objects
returned by the query. You can use the HAVING clause as you would

a WHERE clause since the same expressions are available:

select e.name, count(a) from Event e
join e.attendees a group by e.name
having length(e.name) > 10

Criteria queries 1863

This query returns the Event name and number of Attendees if the
Event name has more than 10 characters. You can also be more cre-

ative in the HAVING clause:

select e.name, count(a) from Event e
join e.attendees a group by e.name
having size(a) > 10

This time you're getting the Event name and Attendee count for all
Events with more than 10 Attendees. Of course, now that you have
your Event names, you'll probably want to order them.

We've seen the ORDER BY clause in a few queries before this point,
and its usage is very straightforward. The ORDER BY clause allows
you to sort the result objects in a desired order. You may sort the
objects in ascending or descending order, with ascending as the

default. Build on the example by adding an ORDER BY clause:

select e.name, count(a) from Event e
join e.attendees a, join e.location 1 group by e.name
having size(a) > 10 order by e.name, 1.name

This query returns the same objects with the same criteria, only now the
returned objects are sorted according to the Event and Location names.

HQL provides a powerful mechanism to query persistent objects. The
problem with HQL is that it is static and cannot easily be changed at
runtime. Creating queries dynamically with string concatenation is a
possibility, but that solution is tedious and cumbersome. Hibernate
provides a simple API that can be used to create queries at runtime.

6.3 Criteria queries

The Criteria API provides an alternative method to query persistent
objects. It allows you to build queries dynamically, using a simple API.
Criteria queries are generally used when the number of search parame-
ters can vary.

184

CHAFPTER © Querying persistent objects

Despite their relative usefulness, Criteria queries are somewhat lim-
ited. Navigating associations 1s cumbersome, requiring you to create
another Criteria, rather than using the dot notation found in HQL.
Additionally, the Criteria API does not support the equivalent of
count(..), or other aggregate functions. Finally, you can only retrieve
complete objects from Criteria queries.

However, the Criteria API can be excellent for certain use cases —for
instance, in an advanced search screen where the user can select the
field to search on as well as the search value. Let’s look at a few exam-
ples of using Criteria queries:

Criteria criteria = session.createCriteria(Event.class);
criteria.add(Restrictions.between("duration",

new Integer(60), new Integer(90));
criteria.add(Restrictions.like("name", "Presen%"));
criteria.addOrder(Order.asc("name"));
List results = criteria.list(Q);

The Criteria query is essentially the same as the following HQL.:

from Event e where (e.duration between 60 and 90) and
(e.name like 'Presen%') order by e.name

The methods in the Criteria class always return the current Criteria
instance, allowing you to create queries in a more concise manner:

List results = session.createCriteria(Event.class).
.add(Restrictions.between("duration”, new Integer(60),
new Integer(90))
.add(Restrictions.like("name", "Presen%"))
.addOrder(Order.asc("name"))
list(Q;

The result is the same, but the code is arguably cleaner and more

concise.

Stored procedures 1865

The Criteria API isn't as fully featured as HQL, but the ability to gen-
erate a query programmatically using a simple API can lend a great
deal of power to your applications.

6.4 Stored procedures

A shortcoming in earlier releases of Hibernate was the lack of support
for stored procedures. Thankfully, Hibernate 3 addresses this problem.
Stored procedures are defined in the mapping document and declare
the name of the stored procedure as well as the return parameters.
Let’s look at an example.

Suppose we have the following Oracle stored procedure:

CREATE FUNCTION selectEvents RETURN SYS_REFCURSOR
AS
sp_cursor SYS_REFCURSOR;
BEGIN
OPEN st_cursor FOR
SELECT id, event_name, start_date, duration
FROM events;
RETURN sp_cursor;
END;

You can see that the stored procedure retrieves four columns from the
events table, which is used to populate an Event instance. Before you
can use it, however, you have to declare the stored procedure in the
mapping file for the Event class:

<sql-query name="selectEvents_SP" callable="true">
<return alias="ev" class="Event">
<return-property name="id" column="id"/>
<return-property name="name" column="event_name"/>
<return-property name="startDate" column="start_date"/>
<return-property name="duration" column="duration"/>
</return>
{ ? = call selectEvents() }
</sql-query>

1866

CHAFPTER 6 Querying persistent objects

Executing the stored procedure is the same as using a named HQL
query:

Query query = session.getNamedQuery("selectEvents_SP");
List results = query.list(Q);

If your stored procedures take parameters, you can set them using the
Query.setParameter(int, Object) method. Your stored procedures
must return a result set to be usable by Hibernate. If you have legacy
procedures that don’t meet this requirement, you can execute them
using the JDBC Connection, accessed by session.connection().

Stored procedures are an interesting addition to Hibernate and are
useful in organizations that prefer to perform the majority of their data-
base queries as procedures.

©.5 Hibern8IDE

One of the problems with HQL is testing the query to make sure it
works. This is typically a problem when you're new to HQL or trying
out new features. Hibern8IDE provides a simple interface to your
mapping definitions and an HQL console for executing queries inter-
actively. (Of course, you'll also want to add unit tests to your code base
for repeatability.)

Hibern8IDE loads the Hibernate configuration file (either hiber-
nate.cfg.xml or hibernate.properties) and the mapping definitions for
your persistent objects. Once you have loaded the configuration file
and mapping definitions, you can enter HQL queries in the HQL
Commander tab. Hibern8IDE also supports executing named queries
defined in the mapping documents. After you execute a query, the
results are presented in a table that you can browse to ensure the cor-
rect objects and properties are returned.

Hibern8IDE is designed to be used from the command line, but you
can also start it from an Ant build file:

Summary 187

<target name="hibern8" description="Starts Hibern8IDE.">
<java classname="net.sf.hibern8ide.Hibern8IDE”
classpathref="project.class.path" fork="true"/>
</target>

Hibern8IDE is a useful tool for exploring the query language, espe-
cially when you're first starting out with HQL. It is relatively easy to
use and provides all of the necessary features for querying your objects.

Hibern8IDE only works with Hibernate 2. The project has been
rebranded as HibernateConsole for Hibernate 3. HibernateConsole is
a plug-in for the Eclipse IDE.

6.6 Summary

The Hibernate Query Language abstracts queries from the underlying
database. While the language is similar to SQL, HQL is object ori-
ented and has features to support querying object graphs.

There are two common methods used to execute an HQL statement.
The Session interface provides an overloaded find method that can
execute queries and return the results. The Query interface also offers
the ability to execute queries, but it provides more fine-grained control
of the query, such as limiting the number of returned objects.

Both the Query and Session interfaces allow results to be returned as a
List or as an Iterator. The key difference between the two is that the
Iterator actually retrieves objects when the next() method is called.
When a List is returned, all of the contained objects are populated
when the query is executed.

Like JDBC PreparedStatements, HQL queries can take positional
parameters, denoted with a question mark. However, HQL also sup-
ports the concept of named parameters.

The Criteria class is used to create queries programmatically. It's
handy when you don’t know what the exact query will be, as in an

188

CHAFPTER © Querying persistent objects

advanced search function where the user can query on various fields.
Criterias have some limitations, such as limited object graph naviga-
tion and an inability to retrieve specific fields from objects.

When you're first starting out with HQL or a query has you stumped,
Hibern8IDE is a great tool. While it doesn’t replace a unit test suite, it
can save you time when crafting and optimizing queries, or if you just
want to explore the syntax or new functionality.

JAVA

HIBERNATE Qusickely

Patrick Peak = Nick Heudecker

ositioned as a layer between the applica-
tion and the database, Hibernate is a

powerful object/relational persistence and
query service for Java. It takes care of automating
a tedious task: the manual bridging of the gap
between object oriented code and the relarional
database. Hibernate Quickly gives you all you need
to start working with Hibernate now.

The book focuses on the 20% you need 80% of
the time. The pages saved are used to introduce
you to the Hibernarte “ecosystem”: how Hibernare
can work with other common development tools
and frameworks like XDaocler, Struts, Webwork,
Spring, and Tapestry.

The book builds its code examples incrementally,
introducing new concepts as it goes. It covers
Hibernate’s many, useful configuration and design
options, breaking a complex subject into
digestible pieces. With a gradual “crawl-walk-run”
approach, the book teaches you what Hibernate
is, what it can do, and how you can work with

it effectively.

What's Inside

® Writing mapping files and creating associations

® Hibernate with XDoclet, Scrurs, Webwork,
Spring, and Tapestry

® Querying persistent abjects

® Using web application architecture

n T::sting with JUnir and Ant

MW MaNNING 54495 US/$60.95 Canada

Hibernate v3

I highly recommend this book.”

—Christopher Haupt, Senior Engineering
Manager, Adobe Systems Inc.

“If you want to learn Hibernate quickly,
this book shows you step by step.”

—Sang Shin, Java Technology Archirect,
Sun Microsystems

Patrick Peak is the CTO of a firm that
emphasizes open source frameworks and
tools for competitive advantage. He lives
in Arlington, Virginia.

Nick Heudecker has large scale development
experience with projects for Fortune 500
clients, the media, and government. He lives
in Chicago, Illinois.

AUTHOR A
A =
QHLIKE
Ask the Authors

Ebook edition

www.manning.com/peak
S4L495

WA AV i
9 1781932394412

ISBN 1-932394-41-9

