Practical Aspect-Oriented Programming

0P

in .Nt|

Matthew D. Groves
Phil Haack

SAMPLE CHAPTER

/ll MANNING

Dottie
Text Box
S A M P L E C H A P T E R

AOP in .NET
by Matthew D. Groves

Chapter 1

Copyright 2013 Manning Publications

brief contents

PART 1 GETTING STARTED WITH AQOP ..c.uuveireieeiereereencenscessessnsens 1

1 = Introducing AOP 3
2 = Acme Car Rental 21

PART 2 THE FUNDAMENTALSOF AOP ..ceueiuriieiinrereencencenseescnnes 53

3 = (all this instead: intercepting methods 55
4 = Before and after: boundary aspects 79

5 = Get this instead: intercepting locations 115
6 = Unit testing aspects 141

PART 3 ADVANCED AOP CONCEPTS «.ceeeeereecereecerceceecescescecescense 169

7 = AOP implementation types 171
8 ® Using AOP as an architectural tool 191

9 = Aspect composition: example and execution 213

Introducing AOP

This chapter covers

= A brief history of AOP

= What problems AOP was created to solve

= Writing a very simple aspect using PostSharp

In this first chapter, I'll start in an obvious place—introducing you to aspect-oriented
programming (AOP), where it came from, and what problems it’ll help you solve.

We’ll look at several tools as you progress through this book, but I will focus on
PostSharp and Castle DynamicProxy. These aren’t the only tools available to .NET
developers, but they’re popular ones that have stood the test of time. The concepts
and code you use in this book should still be applicable if you use a different tool
(see appendix A for notes on the ecosystem of AOP tools in .NET).

We’ll use PostSharp in this chapter, but before you start typing out real code,
we’ll look at features central to the software concept of AOP itself. I'll talk about
cross-cutting concerns, what a nonfunctional requirement is (and contrast it with
a functional requirement), and what nonfunctional requirements have to do
with AOP.

Finally, I'll walk you through a basic “Hello, World!” example using AOP in .NET.
I’ll break apart that example, identifying the individual puzzle pieces and explain-
ing how they fit together into something called an aspect.

1.1

111

CHAPTER 1 Introducing AOP

What is AOP?

AOP is arelatively young conceptin computer science. Like many advancements in mod-
ern computing—including the mouse, IPV6, the graphical user interface (GUI), and
Ethernet—AOP was created at Xerox PARC (now known as PARC, a Xerox company).

Gregor Kiczales lead a team of researchers who first described AOP in 1997. He
and his team were concerned about the use of repetition and boilerplate that were
often necessary and costly in large object-oriented code bases. Common examples of
such boilerplate can be seen with logging, caching, and transacting.

In the resulting research paper, “Aspect-Oriented Programming,” Kiczales and his
team describe problems that object-oriented programming (OOP) techniques were
unable to capture and solve in a clear way. What they observed was that these cross-
cutting concerns ended up scattered throughout the code. This tangled code
becomes increasingly difficult to develop and modify. They analyzed all of the techni-
cal reasons why this tangling pattern occurs and why it’s difficult to avoid, even with
the proper use of design patterns.

The paper describes a solution that is complementary to OOP—that is, “aspects”
that encapsulate the cross-cutting concerns and allow them to be reused. It suggests
several implementations of this solution, which ultimately led to the creation of
Aspect], the leading AOP tool still in use today (for Java).

One of my goals with this book is to avoid some of the complex language and aca-
demic terminology associated with AOP. If you’re interested in diving deeper into the
complex research, the “Aspect-Oriented Programming” white paper (http://mng.bz/
xWIb) is definitely worth a read.

I don’t want to give you the idea that using AOP is more complicated than it really
is. Instead, I want to focus on solving problems in your .NET projects with AOP. Next,
we’ll go through the main features of AOP that were outlined in the original paper,
but I’ll try to avoid a dense academic approach.

Features

Like many developer tools and software concepts, AOP has unique terms and wording
to describe its features, the individual pieces that are put together to make the com-
plete picture.

This is usually the part of AOP that makes people’s eyes glaze over and suddenly
remember that hilarious YouTube cat video they’ve been meaning to watch (again).
But hang in there, and I'll do my best to make these terms approachable. I'm not
going to cover every detail of the exact terminology; I want to keep things simple and
practical for now.

AOP’S PURPOSE: CROSS-CUTTING CONCERNS

One of the main drivers leading to the invention of AOP was the presence of cross-
cutting concerns in OOP. Cross-cutting concerns are pieces of functionality that are
used across multiple parts of a system. They cut across, as opposed to standing alone.

What is AOP? 5

This term is perhaps the softest in AOP
terminology because it’s more of an archi- Functional and nonfunctional

tectural concept than a technical one. requirements

Functional requirements are the
value-adding requirements of your
.)) project—the business logic, the Ul,
functional requirement will often cut the persistence (database).

across many parts of your application.

Logging is a common example. Log-

Cross-cutting concerns and nonfunctional
requirements have a lot of overlap: a non-

Nonfunctional requirements are
secondary, yet essential elements
of a project. Examples include log-
(UI) layer, the business logic, the persis- ging, security, performance, and
tence layer, and so on. Even within an indi- data transactions.

ging could be used in the user interface

vidual layer, logging could be used across
many classes and services, crossing all the normal boundaries.

Cross-cutting concerns exist regardless of whether you use AOP. Consider a
method that does X. If you want to perform logging (C), then the method has to per-
form X and C. If you need logging for methods Y and Z, you’d have to put C into each
of those methods, too. C is the cross-cutting concern.

Although cross-cutting concern is a conceptual term that’s defined by a sentence
or two, the adviceis the concrete code that does the work.

AN ASPECT’S JOB: THE ADVICE

The advice is the code that performs the cross-cutting concern. For a cross-cutting con-

cern such as logging, the code could be a call to the log4net library or NLog. It could

be a simple one-line statement—such as Log.Write ("information")—or a bunch of

logic to examine and log arguments, timestamps, performance metrics, and so on.
Adpvice is the “what” of AOP. Now you need the “where.”

AN ASPECT’S MAP: A POINTCUT

Pointcuts are the where. Before defining a pointcut, I need to define a join point. A
join pointis a place that can be defined between logical steps of the execution of your
program. Imagine your program as a low-level flowchart, as shown in figure 1.1.

Any gap in that flowchart could be described as a join point, as in figure 1.2.

Now that you know what a join point is, I can define a pointcut. A pointcut is a set of
join points (or an expression that describes a set of join points). An example of a join
point is “before I call svc.SaveName ()”; an example of a pointcut is “before I call any
method.” Pointcuts can be simple, such as “before every method in a class,” or com-
plex, such as “before every method in a class in the namespace MyServices except for
private methods and method DeleteName.”

Consider the snippet of pseudocode in this listing.

Listing 1.1 A simple program that calls service methods in sequence

nameService.SaveName () ; <—— nameService is of type NameService.
nameService.GetListOfNames () ;

addressService.SaveAddress () ; <—— addressService is of type AddressService.

CHAPTER 1 Introducing AOP

Start program

Start program

After program starts

Before creating object

Create new object “svc”
of type “NameService”

Create new object “svc”
of type “NameService”

After creating object

Before calling method

Call method “SaveName”

Call method “SaveName”
on object “svc”

on object “svc”

After calling method

Before program ends

End program

End program

Figure 1.1 A low-level flowchart of a
program that uses a single service

Let’s create a simple flowchart (figure 1.3) of the previ-
ous code, identifying only the exit join points in that
short snippet.

Suppose I want to insert advice (some piece of
code) only on the exit join points of NameService
objects. My pointcut could be expressed in English as
“exiting a method of NameService.”

How to express that pointcut in code (if it can be
expressed at all) is dependent on the AOP tool you're
using. In reality, just because I can define a join point
in English doesn’t mean I can reach it with a tool.
Some join points are far too low level and not generally
practical.

Once you’ve identified the what (advice) and the
where (join points/pointcuts), you can define an aspect.
The aspect works through a process known as weaving.

Figure 1.2 The same low-level flowchart
with possible join points identified

nameService.SaveName()

nameService.GetListOfNames()

addressService.SaveAddress()

|

Figure 1.3 Flowchart
representation—imagine exit
join points after each step

What is AOP? 7

HOW AOP WORKS: WEAVING

When cross-cutting concerns are coded without AOP, the code often goes inside a
method, intermixed with the core logic of the method. This approach is known as tan-
gling, because the core logic code and the cross-cutting concern code are tangled
together (like spaghetti).

When the cross-cutting concern code is used in multiple methods and multiple
classes (using copy and paste, for instance), this approach is called scattering, because
the code gets scattered throughout your application.

In figure 1.4, the core business logic code is shown in green, and the logging code
is shown in red. (In the printed book, the lighter gray in the figures represents green;
the darker color represents red.) This figure represents a code base thatis not using any
aspects: the cross-cutting concern code is in the same classes as the core business logic.

When you refactor to use AOP, you move all the red code (advice) into a new class,
and all that should remain in the original class is the green code that performs the
business logic. Then you tell the AOP tool to apply the aspect (red class) to the busi-
ness class (green class) by specifying a pointcut. The AOP tool performs this combina-
tional step with a process called weaving, as shown in figure 1.5.

In the previous figure, the combined code looks like the original code, mixing
green and red into one class. (This appearance is close to the truth, but in reality
there may be additional work that the AOP tool inserts to do its job.) You won’t see any
of the combined code in your source code files. The code you do see—the classes you
work with, write, and maintain—has a nice organized separation.

The way that AOP tools perform weaving differs from tool to tool. I’ll talk more
about this concept in chapter 7, and you can learn more details about specific AOP
tools in appendix A.

class BusinessModulel { class BusinessModule2 {
. logging members ... logging members
public Methodl () { public Methodl () {
. log start ... log start

. log end tangling ... log end

public Method2 () { public Method2 () {
. log start ... log start
. log end l logging ‘ l logging ‘ ... log end

} }

Figure 1.4 Tangling and scattering. In the printed volume, X represents red code
and Y, the green code.

112

CHAPTER 1 Introducing AOP

class LogAspect {
. logging members

class BusinessModulel ({

public BeginMethod () {

public Methodl () { B log start
e

public EndMethod() {
} ...log end
}

class BusinessModulel {

...logging members

public Methodl () {
. log start

. log end
} Figure 1.5 Splitting up the
classes and recombining
them with weaving

Benefits

The main benefit to using AOP is clean code that’s easier to read, less prone to bugs,
and easier to maintain.

Making code easier to read is important because it allows new team members to
get comfortable and up to speed quickly. Additionally, your future self will thank you.
Have you ever looked at a piece of code you wrote a month ago and been baffled by it?
AOP allows you to move tangled code into its own classes and leave behind more
declarative, clearer code.

AOP helps you make your code less expensive to maintain. Certainly, making your
code more readable will make maintenance easier, but that’s only part of the story. If a
piece of boilerplate code that handles threading (for instance) is used and reused in
your application, then any fixes or changes to that code must be made everywhere.
Refactoring that code into its own encapsulated aspect makes it quicker to change all
the code in one place.

CLEAN UP SPAGHETTI CODE

You may have heard the myth that if you put a frog in a pot of boiling water, it’ll jump
right out, but if you put the frog in a pan of cold water and slowly turn up the heat, it
won’t notice that it’s being cooked until it’s too late. Even though this is only a myth,
its allegorical point rings true for many things. If you're asked to add a lot of cross-cut-
ting concerns to an already large code base, you might balk at adding the code only
one method at a time. Just like a frog thrown into a pot of boiling water, you’ll jump
out immediately and look for cooler water to swim in.

What is AOP? 9

But when you start a new project or add features to a small project, the heat of add-
ing cross-cutting concerns to a few places might not be so sudden.

When I add a first cross-cutting concern to my young project, it takes only a few
lines and repeats only a couple of times. No big deal. I’ll just copy and paste it when I
need it, and I’ll clean it up later.

The temptation to “just getit working” is strong. I'll literally copy and paste that code
to another part of my application and make (usually minor) changes so that the pasted
code works. Call it copy-and-paste programming or copy-and-paste inheritance.

This scattered or tangled code has even been classified as an antipattern. This par-
ticular antipattern has been called shotgun surgery. Code other than the main busi-
ness logic gets mixed in via copy/paste over and over with other code, much like a
burst from a shotgun shell spreads out all over a target. Avoiding this pattern is the
point of the Single Responsibility Principle: a class should have only one reason to
change. Although surgery with a shotgun may accomplish one task (like removing an
appendix), it will cause many other problems. Surgery should be done with a more
precise tool, such as a laser or a scalpel.

Antipatterns

An antipattern is a pattern that’s been identified in software engineering, such as any
pattern you might find in the Gang of Four Design Patterns book (the full title is Design
Patterns: Elements of Reusable Object-Oriented Software, but because of its four
authors, it’s often called the “Gang of Four book”). Unlike those good patterns, an
antipattern is a pattern that often leads to bugs, expensive maintenance, and head-
aches.

This copy-and-paste strategy may help you get something done fast, but in the long
term you end up with messy, expensive spaghetti code. Hence the well-known rule of
thumb: Don’t Repeat Yourself (DRY).

All these things can add up to a boiled frog. I don’t want you to get boiled. Instead
of a tedious spiral into spaghetti code, let’s move beyond copy and paste and use good
design patterns.

REDUCE REPETITION
When you move beyond simple copy and paste, you start using techniques such as
dependency injection and/or the decorator pattern to handle cross-cutting concerns.
This is good. You’re writing loosely coupled code and making things easier to test. But
when it comes to cross-cutting concerns, when you’re using dependency injection
(DI), you may still end up with tangling/scattering. If you take it to the next level and
use the decorator pattern, you may still end up with a lot of pseudocode.

Imagine that you’ve refactored a cross-cutting concern such as transaction man-
agement (begin/commit/rollback) to a separate service. It might look like the
pseudocode in the following.

10 CHAPTER 1 Introducing AOP

Listing 1.2 Example of refactoring using DI instead of AOP

public class InvoiceService {

ITransactionManagementService _transaction; Two services are required

IInvoiceData _invoicedb; to instantiate this class;

InvoiceService (IInvoiceData invoicedb, one of them is for a
ITransactionManagementService transaction) < cross-cutting concern.

_invoicedb = invoicedb;
_transaction = transaction;

} Even though we’re

void CreateInvoice(ShoppingCart cart) { using DI, the use of the
_transaction.Start () ; dependencies is tangled.
_invoicedb.CreateNewInvoice () ;
foreach(item in cart) Createlnvoice has to
_invoicedb.AddItem(item) ; manage the start and end
_invoicedb.ProcessSalesTax () ; of a transaction itself and
_transaction.Commit () ; its core invoice concerns.

}

In this example, the InvoiceService isn’t dependent on a specific transaction man-
agement service implementation. It will use whatever service is passed to it via the
interface: the exact implementation is a detail left to another service. (This is a form
of dependency inversion called DI). This approach is better than hard-coding transac-
tion code into every method. But I would argue that although the transaction man-
agement code is loosely coupled, it’s still tangled up with the InvoiceService code:
you still have to put _transaction.Start() and _transaction.Commit () among the
rest of your code. This approach also makes unit testing a little more tedious: the
more dependencies, the more stubs/fakes you need to use.

If you’re familiar with DI, you may also be familiar with the use of the decorator pat-
tern. Suppose the InvoiceService class has an interface, such as IInvoiceService. We
could then define a decorator to handle all the transactions. It would implement the
same interface, and it would take the real InvoiceService as a dependency through its
constructor, as shown next.

Listing 1.3 Use of the decorator pattern in pseudocode

public class TransactionDecorator : IInvoiceData ({
IInvoiceData _realService;
ITransactionManagementService _transaction;

| Decorator implements
the same interface.

public Transa?tlonDecoratog(II§v01ceData svc, Dependsonthe
Dependsona > ITransact}onManagement ervice _trans) { serﬂceifsdecoraﬁng
transaction _realService = svc;
. . _transaction = trans; .
implementation) Transaction Start
Transaction End public void CreateInvoice (ShoppingCart cart) { EOWIwes'nthe
;lzosl?\‘lzelsoin the _transaction.Start () ; < ecorator.
decorator. _realService.CreateInvoice(cart) ; <5 The decorated

_transaction.End() ; method is called.

What is AOP? 11

This decorator (and all the dependencies) are configured with an Inversion of Con-
trol (IoC) tool (for example, StructureMap) to be used instead of an InvoiceService
instance directly. Now we’re following the open/closed principle by extending
InvoiceService to add transaction management without modifying the Invoice-
Service class. This is a great starting point, and sometimes this approach might be
sufficient for a small project to handle cross-cutting concerns.

But consider the weakness of this approach, particularly as your project grows.
Cross-cutting concerns are things such as logging and transaction management that are
potentially used in many different classes. With this decorator, we’ve cleaned up only
one class: InvoiceService. If there’s another class, such as SalesRepService, we need
to write another decorator for it. And if there’s a third class, such as PaymentServicer
You guessed it: another decorator class. If you have 100 service classes that all need
transaction management, you need 100 decorators. Talk about repetition!

At some point between decorator 3 and decorator 100 (only you can decide how
much repetition is too much), it becomes practical to ditch decorators for cross-
cutting concerns and move to using a single aspect. An aspect will look similar to a
decorator, but with an AOP tool it becomes more general purpose. Let’s write an
aspect class and use an attribute to indicate where the aspect should be used, as in
the next example (which is still pseudocode).

Listing 1.4 Using AOP instead of DI for cross-cutting concerns

public class InvoiceService {
IInvoiceData _invoicedb; Still only one service
InvoiceService(IInvoiceData invoicedb) { is being passed in.
_invoicedb = invoicedb;

}

[TransactionAspect]

void CreateInvoice (ShoppingCart cart) {
_invoicedb.CreateNewInvoice() ;
foreach (item in cart)
_invoicedb.AddItem(item) ;

contain any

Createlnvoice doesn’t
transaction code.

}

public class TransactionAspect {
ITransactionManagementService _transaction;
TransactionAspect (ITransactionManagementService transaction) {
_transaction = transaction;

}

void OnEntry () {
_transaction.Start () ;

is moved to OnEntry

J The transaction Start
in an aspect.

}

is moved to OnExit in
an aspect.

void OnSuccess () {
_transaction.Commit () ;

J The transaction End

12

CHAPTER 1 Introducing AOP

Note that AOP has at no point completely replaced DI (nor should it). InvoiceService
is still using DI to get the IInvoiceData instance, which is critical to performing the busi-
ness logic and isn’t a cross-cutting concern. But ITransactionManagementServiceis no
longer a dependency of InvoiceService: it’s been moved to an aspect. You don’t have
any more tangling because CreateInvoice no longer has any transaction code.

ENCAPSULATION
Instead of 100 decorators, you have only one aspect. With that one aspect, you've
encapsulated the cross-cutting concern into one class.

Let’s continue with the example and build out the project some more. Next is a
pseudocode class that doesn’t follow the Single Responsibility Principle (SRP) due to a
cross-cutting concern.

Listing 1.5 Pseudocode example of an extremely simple AddressBookService

public class AddressBookService {
public string GetPhoneNumber (string name) {
if (name is null) throw new ArgumentException ("name") ;
var entry = PhoneNumberDatabase.GetEntryByName (name) ;
return entry.PhoneNumber;

}

This class looks easy enough to read and maintain, but it’s doing two things: it’s get-
ting the phone number based on the name passed in, and it’s checking to make sure
that the name argument isn’t invalid. Even though checking the argument for validity
is related to the service method, it’s still secondary functionality that could be sepa-
rated and reused.

The following is what the pseudocode might look like with that concern separated
using AOP.

Listing 1.6 Pseudocode example with argument checking split out using AOP

public class AddressBookService {
[CheckForNullArgumentsAspect] <—— Aspect is applied as an attribute.
public string GetPhoneNumber (string name) {
var entry = PhoneNumberDatabase.GetEntryByName (name) ;
return entry.PhoneNumber;

}

public class CheckForNullArgumentsAspect { 4 Aspectdass
public void OnEntry (MethodInformation method)
{

foreach(arg in method.Arguments)
if (arg is null) throw ArgumentException (arg.name)

}

One new addition to this example is a MethodInformation parameter for OnEntry,
which supplies some information about the method so that the arguments can be
checked for nulls.

113

What is AOP? 13

I can’t overstate how trivial this example is, but with the code separated (as in the
next example), the CheckForNullArgumentsAspect code can be reused on other
methods for which you want to ensure that the arguments are valid.

Listing 1.7 Encapsulated and reusable code

public class AddressBookService {
[CheckForNullArgumentAspect]
public string GetPhoneNumber (string name) { ... }
}

public class InvoiceService {
[CheckForNullArgumentAspect]

public Invoice GetInvoiceByName (string name) { ... }
[CheckForNullArgumentAspect]
public void CreateInvoice (ShoppingCart cart) { ... }

}

public class PaymentSevice {

[CheckForNullArgumentAspect]

public Payment FindPaymentByInvoice(string invoiceId) { ... }
}
Let’s look at the previous listing with maintenance in mind. If we want to change
something with Invoices, we need to change only InvoiceService. If we want to
change something with the null checking, we need to change only CheckForNull-
ArgumentAspect. Each of the classes involved has only one reason to change. We're
now less likely to cause a bug or a regression when making a change.

If any of this seems familiar to you, it’s perhaps because you’ve already been using
similar techniques in .NET that aren’t labelled as aspects.

AOP in your daily life

“Are you telling me I could’ve had another acronym on my resume all this time?” As a
.NET developer, you might do several common things every day that are part of AOP,
such as:

= ASP.NET Forms Authentication

= An implementation of ASPNET’s IHttpModule

= ASP.NET MVC Authentication

= ASP.NET MVC implementations of TActionFilter

ASP.NET has an IHttpModule that you can implement and set up in web.config. When
you do this, each module will run for every page request to your web application.
Inside an IHttpModule implementation, you can define event handlers that run at the
beginning or at the end of requests (BeginRequest and EndRequest, respectively).
When you do this, you're creating a boundary aspect: code that’s running at the
boundaries of a page request.

If you've used out-of-the-box forms authentication, then you’ve already been
implementing such an approach. ASPNET Forms Authentication uses the
Forms-AuthenticationModule behind the scenes, which is itself an implementation

14

1.2

CHAPTER 1 Introducing AOP

public class CustomHeaderHttpModule : IHttpModule { ... } |
NS T T T T T T T T T T T T Tt e e e e e e e o
HttpModule
Request from
BeginRequest
browser o 9 q
ASP.NET
Page
Response
displayed in e EndRequest
browser
o void context_BeginRequest (object sender, EventArgs e) { ... }
e void context_EndRequest (object sender, EventArgs e) { ... }

Figure 1.6 The HttpModule lifecycle in relation to the request->ASP.NET page->response

of IHttpModule (see figure 1.6). Instead of putting code on every page to check
authentication, you (wisely) use this module to encapsulate the authentication. If
the authentication changes, you change only the configuration, not every single
page. If you create a new page, you don’t have to worry about forgetting to add
authentication code to it.

The same is true for ASPNET MVC applications. You have the ability to create
Attribute classes that implement IActionFilter. These attributes can be applied to
actions, and they run code before and after the action executes (OnActionExecuting
and OnActionExecuted, respectively). If you use the default AccountController that
comes standard with a new ASPNET MVC project, you’ve probably seen the [Autho-
rize] attribute in action. AuthorizeAttribute is a builtin implementation of an
IActionFilter (figure 1.7) that handles forms authentication for you so you don’t
have to put authentication code in all of your controller action methods.

ASP.NET developers aren’t the only ones who may have seen and used AOP without
realizing it. These are examples of AOP used within the .NET framework—they don’t
have anything explicitly called an aspect. If you’ve seen these examples before, you
already have an idea of how AOP can help you.

Now that you’re familiar with the benefits and features of AOP, let’s write some real
code. Warm up Visual Studio. You’re about to write your first aspect.

Hello, World

We’ll get to more useful examples in later chapters; for now, let’s get your first aspect
out of the way to give you a taste of what’s in store. As we write this aspect, I’ll point out

Hello, World 15

Browser ActionFilter Controller

request for action A

| OnActionExecuting(...) { ... }

Action A :|

. OnActionExecuted(. .. .
response from action A (bt }

Browser ActionFilter Controller

Figure 1.7 The ASP.NET MVC ActionFilter lifecycle

some of the AOP features (advice, pointcut, and so on) along the way. Don’t worry if you
don’t fully understand what’s going on yet. Follow along just to get your feet wet.

I’ll be using Visual Studio and PostSharp. Both Visual Studio 2010 and Visual
Studio 2012 should work fine. Visual Studio Express (which is a free download) should
work, too. I'm also using NuGet, which is a great package manager tool for .NET that
integrates with Visual Studio. If NuGet is not part of your arsenal, you should definitely
download it from NuGet.org and install it. It will make your life as a .NET developer
much easier. Appendix B outlines the basics of NuGet, but you can read more about it
at NuGet.org.

Start by selecting File->New Project->Console Application. Call it whatever you
want, but I'm calling mine HelloWorld. You should be looking at an empty console
project such as the following:
class Program {

static void Main(string[] args) {

}
}
Next, install PostSharp with NuGet. NuGet can work from a PowerShell command
line within Visual Studio called the Package Manager Console. To install PostSharp via
the Package Manager Console, use the Install-Package command (it should look
like the following example):
PM> Install-Package postsharp
Successfully installed 'PostSharp 2.1.6.17'.
Successfully added 'PostSharp 2.1.6.17' to HelloWorld.
Alternatively, you can do it via the Visual Studio UI by first right-clicking References in
Solution Explorer, as shown in figure 1.8.

NuGet.org

16

CHAPTER 1 Introducing AOP

ﬁ Solution Explorer
[| 3]
F HelloWorld
| Properties
4 | References
Microsoft.CSharp
ﬁystern
—— ..;Y‘tam.Core
— _-_S);:tem.Dala
3 System.Data.DataSetExtensions
3 System.Xml
-3 System.Xml.Ling
4] Program.cs

Add Reference...
_Add Service Reference.., -
| @ Manage NuGet Packages...

Figure 1.8 Starting
NuGet with the Ul

Select Online, search for PostSharp, and click Install (see figure 1.9).

You may get a PostSharp message that asks you about licensing. Accept the free
trial and continue, but rest assured that even when that trial expires, you’ll still be
able to use all the PostSharp examples in this book with the free PostSharp Express
Edition (unless otherwise noted). Additionally, the Express Edition is free for com-
mercial use, so you can use it at your job, too. (You still need a license, but it’s a free
license.) Now that PostSharp is installed, you can close out of the NuGet dialog. In
Solution Explorer under References, you should see a new PostSharp reference
added to your project.

Now you’re ready to start writing your first aspect. Create a class with one simple
method that writes only to Console. Mine looks like the following:
public class MyClass {

public void MyMethod() {
Console.WriteLine("Hello, world!");

}

Instantiate a MyClass object inside the Main method, and call the method. The follow-
ing code shows how the Program class should look now:

class Program {
static void Main(string[] args) {
var myObject = new MyClass();
myObject.MyMethod () ;

HelloWorld - Manage NuGe

Installed packages Sort by: | Most Downleads

HuGet official package source you preduce versatile and robust applications with fe...

Search Results

Figure 1.9 Search for PostSharp and install with NuGet Ul

Online
PostSharp Created by: SharpCrafters s.r.0.
Al i PostSharp is an AOP framework for NET that helps Id hap

Version: 21517
E| Last Updated: 5/31/2012

Hello, World 17

r

B C:\Windows\system32\cmd.exe

to continue .

Figure 1.10 Console output
of “Hello, world!”

Execute that program now (F5 or Ctrl+F5 in Visual Studio), and your output should
look like figure 1.10.

We’re not pushing the limits of innovation just yet, but hang in there. Before we
create an aspect, let’s specify what cross-cutting concern this aspect will be taking
care of. Let’s keep it simple and define our requirement as “log something before
and after the Hello, world! message is written.” We could cram an extra couple of
Console.WriteLine statements into MyMethod, but instead, let’s steer away from
modifying MyClass and write something that can be reused with other classes.

Create a new class that inherits from OnMethodBoundaryAspect, which is a base
class in the PostSharp.Aspects namespace, something like the following:

[Serializable]
public class MyAspect : OnMethodBoundaryAspect {

}

PostSharp requires aspect classes to be Serializable (because PostSharp instantiates
aspects at compile time, so they can be persisted between compile time and run time.
This will be covered in more detail in chapter 7).

Congratulations! You’ve just written an aspect, even though it doesn’t do anything
yet. Like the name of the base class implies, this aspect allows you to insert code on
the boundaries of methods.

Remember join points? Every method has boundary join points: before the
method starts, when the method ends, when the method throws an exception, and
when the method ends without exception (in PostSharp, these are OnEntry, OnExit,
OnException, and OnSuccess, respectively).

Let’s make an aspect that inserts code before and after a method is called. Start by
overriding the OnEntry method. Inside that method, write something to Console,
such as the following:

[Serializable]
public class MyAspect : OnMethodBoundaryAspect {

public override void OnEntry (MethodExecutionArgs args) {

Console.WriteLine ("Before the method");

}
}
Notice the MethodExecutionArgs parameter. It’s there to give information and con-
text about the method being bounded. We won’t use it in this simple example, but
argument objects like that are almost always used in a real aspect.

18

CHAPTER 1 Introducing AOP

Think back to the advice feature of an aspect. In this case, the advice is just one
line of code: Console.WriteLine ("Before the method") ;. Create another override,
but this time override OnExit, as the following code shows:

[Serializable]
public class MyAspect : OnMethodBoundaryAspect {
public override void OnEntry (MethodExecutionArgs args) {
Console.WriteLine ("Before the method") ;

;ublic override void OnExit (MethodExecutionArgs args) {
Console.WriteLine("After the method");
}
}
Once again, the advice is just another Console.WriteLine statement.

Now you’ve written an aspect that will write to Console before and after a method.
But which method? We’ve only partially specified the where or the pointcut. We know
that the join points are before and after a method. But which method(s)?

The most basic way to tell PostSharp which method (or methods) to apply this
aspect to is to use the aspect as an attribute on the method. For instance, to put it on
the boundaries of the “Hello, world” method from earlier, use MyAspect as an attri-
bute, as in the following example.

public class MyClass {
[MyAspect]
public void MyMethod () {
Console.WriteLine("Hello, world!");

) Attributes
} In reality, you aren’t
required to put attributes
Now, run the application again (F5 or Ctrl+F5). on every piece of code
Right after the program is compiled, PostSharp when using PostSharp. In
will take over and perform the weaving. Post- chapter 8, | cover the ability

of PostSharp to multicast

Sharp is a post compiler AOP tool, so it will modify e T T e

your program after it has been compiled but

: time, I'll continue to use
before it has been executed. individual attributes just to
When your program is executed, you should keep things simple.

see output like that in figure 1.11.

Bl C:\Windows'\system32\cmd.exe

Figure 1.11 Output with MyAspect applied

1.3

Summary 19

That’s it! You’ve now written an aspect and told PostSharp where to use it, and Post-
Sharp has performed the weaving.

This example may not seem that impressive, but notice that you were able to put
code around the MyMethod method without making any changes to MyMethod itself.
Yeah, you did have to add that [MyAspect] attribute, but you’ll see in later chapters
more efficient and/or centralized ways of applying PostSharp aspects by multicasting
attributes. Also, using attributes isn’t the only way to use AOP: tools such as Castle
DynamicProxy use an IoC tool, and I'll examine that tool in later chapters as well.
You’re well on your way to mastering AOP in .NET.

Summary

AOP isn’t as complicated as it might sound. It might take some getting used to, because
you may have to adjust the way you think about cross-cutting concerns. But there will be
plenty more examples in this book to help you get started.

AOP is an inspiring, powerful tool that’s fun to use. I'm in awe of the implementa-
tions of the various tools such as PostSharp and Castle DynamicProxy, both written by
people far smarter than I. These are tools that I like and that I'll use in this book, but
if you aren’t totally comfortable with them, you can check out some of the other AOP
tools for .NET (see appendix A).

Whatever tool you decide to use, AOP will help you do your job more effectively.
You’ll spend less time copying and pasting the same boilerplate code or fixing the
same bug in that boilerplate 100 times. In abstract terms, this helps you adhere to the
single responsibility principle and use the open/closed principle effectively, without
repetition. In real-world terms, it will allow you to spend more time adding value and
less time doing mindless, tedious work. It will get you to happy hour faster; whether
happy hour is a literal happy hour at your local pub, or your son’s baseball game, AOP
is going to help you get there in a better frame of mind—and on time.

AOP/.NET

AOP i v

Matthew D. Groves

such as logging or authorization, are difficult to maintain
independently. In aspect-oriented programming (AOP)
you isolate these cross-cutting concerns into their own classes,
disentangling them from business logic. Mature AOP tools like
PostSharp and Castle DynamicProxy now offer NET developers
the level of support Java coders have relied on for years.

(ore concerns that cut across all parts of your application,

AOP in .NET introduces aspect-oriented programming and
provides guidance on how to get the most practical benefit
from this technique. The book’s many examples concentrate on
modularizing non-functional requirements that often sprawl
throughout object-oriented projects. You'll appreciate its
straightforward introduction using familiar C#-based examples.

What's Inside

¢ Clear and simple introduction to AOP
e Maximum benefit with minimal theory

e PostSharp and Castle DynamicProxy

This book requires no prior experience with AOP. Readers
should know C# or another OO language.

Matthew D. Groves is a developer with over ten years of
professional experience working with C#, ASPNET,
JavaScript, and PHP.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/AOPin.NET

/l/l MANNING

$49.99 / Can $52.99 [INCLUDING eBOOK]

€CHelps the reader integrate
techniques and technologies
with real-world practices. 3

— From the Foreword by Phil Haack
GitHub Developer

€CShows how you can clean
up your code using a
powerful concept.

—Maarten Balliauw, JetBrains

€CThe best single volume for
the variety of NET AOP
concepts presented.)

—Mick Wilson
Mind Over Machines, Inc.

€€ Cuts through the
complexity of AOP
with relevant examples. 39

—Heather Campbell, Kainos

€C A great introduction to AOP
for NET developers.??

—Paul Stack, OpenTable Inc.

ISBN 13: 978-1-k17291-14-2
ISBN 10: 1-61729L-14-5

“ ‘H 5H4 | 9“9
M7816171291142

