
SAMPLE CHAPTER

Collective Intelligence in Action
by Satnam Alag

Chapter 2

Copyright 2009 Manning Publications

v

brief contents
PART 1 GATHERING DATA FOR INTELLIGENCE1

1 ■ Understanding collective intelligence 3

2 ■ Learning from user interactions 20

3 ■ Extracting intelligence from tags 50

4 ■ Extracting intelligence from content 82

5 ■ Searching the blogosphere 107

6 ■ Intelligent web crawling 145

PART 2 DERIVING INTELLIGENCE ..173

7 ■ Data mining: process, toolkits, and standards 175

8 ■ Building a text analysis toolkit 206

9 ■ Discovering patterns with clustering 240

10 ■ Making predictions 274

PART 3 APPLYING INTELLIGENCE IN YOUR APPLICATION.................... 307

11 ■ Intelligent search 309

12 ■ Building a recommendation engine 349

20

Learning
 from user interactions

Through their interactions with your web application, users provide a rich set of
information that can be converted into intelligence. For example, a user rating an
item provides crisp quantifiable information about the user’s preferences. Aggre-
gating the rating across all your users or a subset of relevant users is one of the sim-
plest ways to apply collective intelligence in your application.

 There are two main sources of information that can be harvested for intelligence.
First is content-based—based on information about the item itself, usually keywords or
phrases occurring in the item. Second is collaborative-based—based on the interac-
tions of users. For example, if someone is looking for a hotel, the collaborative fil-
tering engine will look for similar users based on matching profile attributes and find

This chapter covers
■ Architecture for applying intelligence
■ Basic technical concepts behind collective intelligence
■ The many forms of user interaction
■ A working example of how user interaction is

converted into collective intelligence

21Architecture for applying intelligence

hotels that these users have rated highly. Throughout the chapter, the theme of using
content and collaborative approaches for harvesting intelligence will be reinforced.

 First and foremost, we need to make sure that you have the right architecture in
place for embedding intelligence in your application. Therefore, we begin by describ-
ing the ideal architecture for applying intelligence. This will be followed by an intro-
duction to some of the fundamental concepts needed to understand the underlying
technology. You’ll be introduced to the fields of content and collaborative filtering
and how intelligence is represented and extracted from text. Next, we review the
many forms of user interaction and how that interaction translates into collective
intelligence for your application. The main aim of this chapter is to introduce you to
the fundamental concepts that we leverage to build the underlying technology in
parts 2 and 3 of the book. A strong foundation leads to a stronger house, so make sure
you understand the fundamental concepts introduced in this chapter before proceed-
ing on to later chapters.

2.1 Architecture for applying intelligence
All web applications consist, at a minimum, of an application server or a web
server—to serve HTTP or HTTPS requests sent from a user’s browser—and a database
that stores the persistent state of the application. Some applications also use a messag-
ing server to allow asynchronous processing via an event-driven Service-Oriented
Architecture (SOA). The best way to embed intelligence in your application is to build
it as a set of services—software components that each have a well-defined interface.

 In this section, we look at the two kinds of intelligence-related services and their
advantages and disadvantages.

2.1.1 Synchronous and asynchronous services

For embedding intelligence in your application, you need to build two kinds of ser-
vices: synchronous and asynchronous services.

 Synchronous services service requests from a client in a synchronous manner: the
client waits till the service returns the response back. These services need to be fast,
since the longer they take to process the request, the longer the wait time for the cli-
ent. Some examples of this kind of a service are the runtime of an item-recommenda-
tion engine(a service that provides a list of items related to an item of interest for a
user), a service that provides a model of user’s profile, and a service that provides
results from a search query.

 For scaling and high performance, synchronous services should be stateless—the
service instance shouldn’t maintain any state between service requests. All the informa-
tion that the service needs to process a request should be retrieved from a persistent
source, such as a database or a file, or passed to it as a part of the service request. These
services also use caching to avoid round-trips to the external data store. These services
can be in the same JVM as the client code or be distributed in their own set of machines.
Due to their stateless nature, you can have multiple instances of the services running

22 CHAPTER 2 Learning from user interactions

servicing requests. Typically, a load balancer is used in front of the multiple instances.
These services scale nearly linearly, neglecting the overhead of load-balancing among
the instances.

 Asynchronous services typically run in the background and take longer to process.
Examples of this kind of a service include a data aggregator service(a service that
crawls the web to identify, gather, and classify relevant information) as well as a service
that learns the profile of a user through a predictive model or clustering, or a search
engine indexing content. Asynchronous learning services need to be designed to be
stateless: they receive a message, process it, and then work on the next message. There
can be multiple instances of these services all listening to the same queue on the mes-
saging server. The messaging server takes care of load balancing between the multiple
instances and will queue up the messages under load.

 Figure 2.1 shows an example of the two kinds of services. First, we have the run-
time API that services client requests synchronously, using typically precomputed
information about the user and other derived information such as search indexes or
predictive models. The intelligence-learning service is an asynchronous service that
analyzes information from various types of content along with user-interaction infor-
mation to create models that are used by the runtime API. Content could be either
contained within your system or retrieved from external sources, such as by searching
the blogosphere or by web crawling.

 Table 2.1 lists some of the services that you’ll be able to build in your application
using concepts that we develop in this book.

 As new information comes in about your users, their interactions, and the content
in your system, the models used by the intelligence services need to be updated. There
are two approaches to updating the models: event-driven and non-event-driven. We dis-
cuss these in the next two sections.

Run-time API

Intelligence Learning
Service

User Information
Profile, Transaction

Recommendation Engine
Predictive Models, Indexes

Content Content Content

Articles Video Blogs

Real-Time Events

Service Requests
Synchronous
Services

Asynchronous
Services

Figure 2.1 Synchronous and asynchronous learning services

23Architecture for applying intelligence

2.1.2 Real-time learning in an event-driven system

As users interact on your site, perhaps by looking at an article or video, by rating a
question, or by writing a blog entry, they’re providing your application with informa-
tion that can be converted into intelligence about them. As shown in figure 2.2, you
can develop near–real-time intelligence in your application by using an event-driven
Service-Oriented Architecture (SOA).

Table 2.1 Summary of services that a typical application-embedding intelligence contains

Service Processing type Description

Intelligence Learning
Service

Asynchronous This service uses user-interaction information to build
a profile of the user, update product relevance tables,
transaction history, and so on.

Data Aggregator/
Classifier Service

Asynchronous This service crawls external sites to gather informa-
tion and derives intelligence from the text to classify it
appropriately.

Search Service Asynchronous Indexing
Synchronous
Results

Content—both user-generated and professionally
developed—is indexed for search. This may be com-
bined with user profile and transaction history to cre-
ate personalized search results.

User Profile Synchronous Runtime model of user’s profile that will be used for
personalization.

Item Relevance
Lookup Service

Synchronous Runtime model for looking up related items for a given
item.

Intelligence
Learning
Service

Messaging
Server
(JMS)

Update User
Transaction History

Http Request

Http Response

User Interaction:
Action + Quality

Action Controller

Update
User Profile
Recommendation
Engine

Profile Data
Product Relevance
Transaction History
Content

Use User Profile,
Relevance for
Personalization

Web Server

Database

Asynchronous
Services

User Interaction Event

Data
Aggregator/
Classifier
Service

WEB

Update Content

Figure 2.2 Architecture for embedding and deriving intelligence in an event-driven system

24 CHAPTER 2 Learning from user interactions

The web server receives a HTTP request from the user. Available locally in the same JVM
is a service for updating the user transaction history. Depending on your architecture
and your needs, the service may simply add the transaction history item to its memory
and periodically flush the items out to either the database or to a messaging server.

 Real-time processing can occur when a message is sent to the messaging server, which
then passes this message out to any interested intelligence-learning services. These ser-
vices will process and persist the information to update the user’s profile, update the rec-
ommendation engine, and update any predictive models.1 If this learning process is
sufficiently fast, there’s a good chance that the updated user’s profile will be reflected
in the personalized information shown to the user the next time she interacts.

NOTE As an alternative to sending the complete user transaction data as a mes-
sage, you can also first store the message and then send a lightweight
object that’s a pointer to the information in the database. The learning
service will retrieve the information from the database when it receives
the message. If there’s a significant amount of processing and data trans-
formation that’s required before persistence, then it may be advanta-
geous to do the processing in the asynchronous learning service.

2.1.3 Polling services for non–event-driven systems

If your application architecture doesn’t use a messaging infrastructure—for example,
if it consists solely of a web server and a database—you can write user transaction his-
tory to the database. In this case, the learning services use a poll-based mechanism to
periodically process the data, as shown in figure 2.3.

1 The open source Drools complex-event-processing (CEP) framework could be useful for implementing a rule-
based event-handling intelligent-learning service; see http://blog.athico.com/2007/11/pigeons-complex-
event-processing-and.html.

Intelligence
Learning
Service

Update User
Transaction HistoryHttp Request

Http Response

User Interaction:
Action + Quality

Action Controller
Update
User Profile
Recommendation
Engine

Profile Data
Product Relevance
Transaction History
Content

Use User Profile,
Relevance for
Personalization

Web Server

Database

Polling
Services

Data
Aggregator/
Classifier
Service

WEB

Crawl Web,
External Data

Update Content

Figure 2.3 Architecture for embedding intelligence in a non-event-driven system

25Basics of algorithms for applying CI

So far we’ve looked at the two approaches for building intelligence learning ser-
vices—event-driven and non–event-driven. Let’s now look at the advantages and disad-
vantages of each of these approaches.

2.1.4 Advantages and disadvantages of event-based
and non–event-based architectures

An event-driven SOA architecture is recommended for learning and embedding intel-
ligence in your application because it provides the following advantages:

■ It provides more fine-grained real-time processing—every user transaction can be processed
separately. Conversely, the lag for processing data in a polling framework is depen-
dent on the polling frequency. For some tasks such as updating a search index
with changes, where the process of opening and closing a connection to the index
is expensive, batching multiple updates in one event may be more efficient.

■ An event-driven architecture is a more scalable solution. You can scale each of the ser-
vices independently. Under peak conditions, the messaging server can queue
up messages. Thus the maximum load generated on the system by these ser-
vices will be bounded. A polling mechanism requires more continuous over-
head and thus wastes resources.

■ An event-driven architecture is less complex to implement because there are standard mes-
saging servers that are easy to integrate into your application. Conversely, multiple
instances of a polling service need to coordinate which rows of information are
being processed among themselves. In this case, be careful to avoid using
select for update to achieve this locking, because this often causes deadlocks.
The polling infrastructure is often a source of bugs.

On the flip side, if you don’t currently use a messaging infrastructure in your system,
introducing a messaging infrastructure in your architecture can be a nontrivial task.
In this case, it may be better to begin with building the learning infrastructure using a
poll-based non–event-driven architecture and then upgrading to an event-driven
architecture if the learning infrastructure doesn’t meet your business requirements.

 Now that we have an understanding of the architecture to apply intelligence in
your application, let’s next look at some of the fundamental concepts that we need to
understand in order to apply CI.

2.2 Basics of algorithms for applying CI
In order to correlate users with content and with each other, we need a common lan-
guage to compute relevance between items, between users, and between users and
items. Content-based relevance is anchored in the content itself, as is done by infor-
mation retrieval systems. Collaborative-based relevance leverages the user interaction
data to discern meaningful relationships. Also, since a lot of content is in the form of
unstructured text, it’s helpful to understand how metadata can be developed from
unstructured text. In this section, we cover these three fundamental concepts of learn-
ing algorithms.

26 CHAPTER 2 Learning from user interactions

 We begin by abstracting the various types of content, so that the concepts and algo-
rithms can be applied to all of them.

2.2.1 Users and items

As shown in figure 2.4, most applications generally consist of users and items. An item is
any entity of interest in your application. Items may be articles, both user-generated
and professionally developed; videos; photos; blog entries; questions and answers
posted on message boards; or products and services sold in your application. If your
application is a social-networking application, or you’re looking to connect one user
with another, then a user is also a type of item.

Associated with each item is metadata, which may be in the form of professionally
developed keywords, user-generated tags, keywords extracted by an algorithm after
analyzing the text, ratings, popularity ranking, or just about anything that provides a
higher level of information about the item and can be used to correlate items
together. Think about metadata as a set of attributes that help qualify an item.

 When an item is a user, in most applications
there’s no content associated with a user (unless
your application has a text-based descriptive profile
of the user). In this case, metadata for a user will
consist of profile-based data and user-action based
data. Figure 2.5 shows the three main sources of
developing metadata for an item (remember a user
is also an item). We look at these three sources next.
ATTRIBUTE-BASED

Metadata can be generated by looking at the attributes of the user or the item. The
user attribute information is typically dependent on the nature of the domain of the
application. It may contain information such as age, sex, geographical location, pro-
fession, annual income, or education level. Similarly, most nonuser items have attri-
butes associated with them. For example, a product may have a price, the name of the

Item Metadata
0, ..*

Article Photo Video Blog Product

Extends

Keywords Tags User
Transaction Rating Attributes

Extends

Users

Purchase, Contribute,
Recommend, View,
Tag, Rate, Save, Bookmark

has0, ..*

Figure 2.4 A user
interacts with items, which
have associated metadata.

Metadata

User-Action
Based

Content
Based

Attribute
Based

Figure 2.5 The three sources for
generating metadata about an item

27Basics of algorithms for applying CI

author or manufacturer, the geographical location where it’s available, the creation or
manufacturing date, and so on.
CONTENT-BASED

Metadata can be generated by analyzing the content of a document. As we see in the
following sections, there’s been a lot of work done in the area of information retrieval
and text mining to extract metadata associated with unstructured text. The title, subti-
tles, keywords, frequency counts of words in a document and across all documents of
interest, and other data provide useful information that can then be converted into
metadata for that item.
USER-ACTION-BASED

Metadata can be generated by analyzing the interactions of users with items. User
interactions provide valuable insight into preferences and interests. Some of the inter-
actions are fairly explicit in terms of their intentions, such as purchasing an item, con-
tributing content, rating an item, or voting. Other interactions are a lot more difficult
to discern, such as a user clicking on an article and the system determining whether
the user liked that item or not. This interaction can be used to build metadata about
the user and the item. This metadata provides important information as to what kind
of items the user would be interested in; which set of users would be interested in a
new item, and so on.

 Think about users and items having an associated vector of metadata attributes.
The similarity or relevance between two users or two items or a user and item can be
measured by looking at the similarity between the two vectors. Since we’re interested
in learning about the likes and dislikes of a user, let’s next look at representing infor-
mation related to a user.

2.2.2 Representing user information

A user’s profile consists of a number of attributes—inde-
pendent variables that can be used to describe the item of
interest. As shown in figure 2.6, attributes can be numeri-
cal—have a continuous set of values, for example, the age
of a user—or nominal—have a nonnumerical value or a set
of string values associated with them. Further, nominal
attributes can be either ordinal—enumerated values that
have ordering in them, such as low, medium, and high—or
categorical—enumerated values with no ordering, such as
the color of one’s eyes.

 All attributes are not equal in their predicting capabilities. Depending on the kind
of learning algorithms used, the attributes can be normalized—converted to a scale of
[0-1]. Different algorithms use either numerical or nominal attributes as inputs. Fur-
ther, numerical and nominal attributes can be converted from one format to another
depending on the kind of algorithms used. For example, the age of a user can be con-
verted to a nominal attribute by creating buckets, say: “Teenager” for users under the

Attributes

Numerical Nominal

Ordinal Categorical

Figure 2.6 Attribute
hierarchy of a user profile

28 CHAPTER 2 Learning from user interactions

age of 18, “Young Person” for those between 18 and 25, and so on. Table 2.2 has a list
of user attributes that may be available in your application.

 In addition to user attributes, the user’s interactions with your application give you
important data that can be used to learn about your user, find similar users (cluster-
ing), or make a prediction. The number of times a user has logged in to your applica-
tion within a period of time, his average session time, and the number of items
purchased are all examples of derived attributes that can be used for clustering and
building predictive models.

 Through their interactions, users provide a rich set of information that can be har-
vested for intelligence. Table 2.3 summarizes some of the ways users provide valuable
information that can be used to add intelligence to your application.

Table 2.2 Examples of user-profile attributes

Attribute Type Example Comments

Age Numeric 26 years old User typically provides birth date.

Sex Categorical Male, Female

Annual Income Ordinal or Numeric Between 50-100K
or 126K

Geographical
Location

Categorical can be
converted to numerical

Address, city,
state, zip

The geo-codes associated with the loca-
tion can be used as a distance measure
to a reference point.

Table 2.3 The many ways users provide valuable information through their interactions

Technique Description

Transaction history The list of items that a user has bought in the past
Items that are currently in the user’s shopping cart or favorites list

Content visited The type of content searched and read by the user
The advertisements clicked

Path followed How the user got to a particular piece of content—whether directly from an exter-
nal search engine result or after searching in the application
The intent of the user—proceeding to the e-commerce pages after researching a
topic on the site

Profile selections The choices that users make in selecting the defaults for their profiles and profile
entries; for example, the default airport used by the user for a travel application

Feedback to polls
and questions

If the user has responded to any online polls and questions

Rating Rating of content

Tagging Associating tags with items

Voting, bookmarking,
saving

Expressing interest in an item

29Basics of algorithms for applying CI

We’ve looked at how various kinds of attributes can be used to represent a user’s pro-
file and the use of user-interaction data to learn about the user. Next, let’s look at how
intelligence can be generated by analyzing content and by analyzing the interactions
of the users. This is just a quick look at this fairly large topic and we build on it
throughout the book.

2.2.3 Content-based analysis and collaborative filtering

User-centric applications aim to make the application more valuable for users by
applying CI to personalize the site. There are two basic approaches to personalization:
content-based and collaborative-based.

 Content-based approaches analyze the content to build a representation for the
content. Terms or phrases (multiple terms in a row) appearing in the document are
typically used to build this representation. Terms are converted into their basic form
by a process known as stemming. Terms with their associated weights, commonly
known as term vectors, then represent the metadata associated with the text. Similarity
between two content items is measured by measuring the similarity associated with
their term vectors.

 A user’s profile can also be developed by analyzing the set of content the user
interacted with. In this case, the user’s profile will have the same set of terms as the
items, enabling you to compute the similarities between a user and an item. Content-
based recommendation systems do a good job of finding related items, but they can’t
predict the quality of the item—how popular the item is or how a user will like the
item. This is where collaborative-based methods come in.

 A collaborative-based approach aims to use the information provided by the inter-
actions of users to predict items of interest for a user. For example, in a system where
users rate items, a collaborative-based approach will find patterns in the way items
have been rated by the user and other users to find additional items of interest for a
user. This approach aims to match a user’s metadata to that of other similar users and
recommend items liked by them. Items that are liked by or popular with a certain seg-
ment of your user population will appear often in their interaction history—viewed
often, purchased often, and so forth. The frequency of occurrence or ratings pro-
vided by users are indicative of the quality of the item to the appropriate segment of
your user population. Sites that use collaborative filtering include Amazon, Google,
and Netflix. Collaborative-based methods are language independent, and you don’t
have to worry about language issues when applying the algorithm to content in a dif-
ferent language.

 There are two main approaches in collaborative filtering: memory-based and
model-based. In memory-based systems, a similarity measure is used to find similar
users and then make a prediction using a weighted average of the ratings of the simi-
lar users. This approach can have scalability issues and is sensitive to data sparseness. A
model-based approach aims to build a model for prediction using a variety of
approaches: linear algebra, probabilistic methods, neural networks, clustering, latent
classes, and so on. They normally have fast runtime predicting capabilities. Chapter 12

30 CHAPTER 2 Learning from user interactions

covers building recommendation systems in detail; in this chapter we introduce the
concepts via examples.

 Since a lot of information that we deal with is in the form of unstructured text, it’s
helpful to review some basic concepts about how intelligence is extracted from
unstructured text.

2.2.4 Representing intelligence from unstructured text

This section deals with developing a representation for unstructured text by using the
content of the text. Fortunately, we can leverage a lot of work that’s been done in the
area of information retrieval. This section introduces you to terms and term vectors,
used to represent metadata associated with text. Section 4.3 presents a detailed work-
ing example on this topic, while chapter 8 develops a toolkit that you can use in your
application for representing unstructured text. Chapter 3 presents a collaborative-
based approach for representing a document using user-tagging.

 Now let’s consider an example where the text being analyzed is the phrase “Collec-
tive Intelligence in Action.”

 In its most basic form, a text document consists of terms—words that appear in the
text. In our example, there are four terms: Collective, Intelligence, in, and Action. When
terms are joined together, they form phrases. Collective Intelligence and Collective Intelli-
gence in Action are two useful phrases in our document.

 The Vector Space Model representation is one of the most commonly used methods
for representing a document. As shown in figure 2.7, a document is represented by a
term vector, which consists of terms appearing in the document and a relative weight
for each of the terms. The term vector is one representation of metadata associated
with an item. The weight associated with each term is a product of two computations:
term frequency and inverse document frequency.

 Term frequency (TF) is a count of how often a term appears. Words that appear often
may be more relevant to the topic of interest. Given a particular domain, some words
appear more often than others. For example, in a set of books about Java, the word Java
will appear often. We have to be more discriminating to find items that have these less-
common terms: Spring, Hibernate, and Intelligence. This is the motivation behind inverse
document frequency (IDF). IDF aims to boost terms that are less frequent. Let the total num-
ber of documents of interest be n, and let ni be the number of times a given term
appears across the documents. Then IDF for a term is computed as follows:

Note that if a term appears in all documents, then
its IDF is log(1) which is 0.

 Commonly occurring terms such as a, the, and in
don’t add much value in representing the docu-
ment. These are commonly known as stop words and
are removed from the term vector. Terms are also

idfi
n
ni⎝ ⎠
⎛ ⎞log=

Term
wt

Term
wt

Term
wtText

Term Vector

Figure 2.7 Term vector representation
of text

31Basics of algorithms for applying CI

converted to lowercase. Further, words are stemmed—brought to their root form—to
handle plurals. For example, toy and toys will be stemmed to toi. The position of words,
for example whether they appear in the title, keywords, abstract, or the body, can also
influence the relative weights of the terms used to represent the document. Further, syn-
onyms may be used to inject terms into the representation.

 Figure 2.8 shows the steps involved in analyzing text. These steps are

1 Tokenization—Parse the text to generate terms. Sophisticated analyzers can also
extract phrases from the text.

2 Normalize—Convert them into a normalized form such as converting text into
lower case.

3 Eliminate stop words—Eliminate terms that appear very often.
4 Stemming—Convert the terms into their stemmed form to handle plurals.

A large document will have more occurrences of a term than a similar document of
shorter length. Therefore, within the term vector, the weights of the terms are nor-
malized, such that the sum of the squared weights for all the terms in the term vector
is equal to one. This normalization allows us to compare documents for similarities
using their term vectors, which is discussed next.

 The previous approach for generating metadata is content based. You can also
generate metadata by analyzing user interaction with the content—we look at this in
more detail in sections 2.3 and 2.4; chapter 3 deals with developing metadata from
user tagging.

 So far we’ve looked at what a term vector is and have some basic knowledge of how
they’re computed. Let’s next look at how to compute similarities between them. An
item that’s very similar to another item will have a high value for the computed simi-
larity metric. An item whose term vector has a high computed similarity to that of a
user’s will be very relevant to a user—chances are
that if we can build a term vector to capture the
likes of a user, then the user will like items that have
a similar term vector.

2.2.5 Computing similarities

A term vector is a vector where the direction is the
magnitude of the weights for each of the terms. The
term vector has multiple dimensions—thousands to
possibly millions, depending on your application.
Multidimensional vectors are difficult to visualize,
but the principles used can be illustrated by using a
two-dimensional vector, as shown in figure 2.9.

Tokenization Normalize Eliminate
Stop Words Stemming Figure 2.8 Typical steps involved in

analyzing text

1

1

X

Y

v1

v2

1x 1y

2x 2y

()212
1 yx +Length =

()
() ()222

2
2
1

2
1

2121

yxyx

yyxx

++

⋅+⋅
Similarity =

θ

Normalized vector = ()[]112
1

2
1

1 yx
yx +

Figure 2.9 Two dimensional
vectors, v1 and v2

32 CHAPTER 2 Learning from user interactions

 Given a vector representation, we normalize the vector such that its length is of
size 1 and compare vectors by computing the similarity between them. Chapter 8
develops the Java classes for doing this computation. For now, just think of vectors as a
means to represent information with a well-developed math to compute similarities
between them.

 So far we’ve looked at the use of term vectors to represent metadata associated
with content. We’ve also looked at how to compute similarities between term vectors.
Now let’s take this one step forward and introduce the concept of a dataset. Algo-
rithms use data as input for analysis. This data consists of multiple instances repre-
sented in a tabular form. Based on how data is populated in the table, we can classify
the dataset into two forms: densely populated, or high-dimensional sparsely populated
datasets—similar in characteristics to a term vector.

2.2.6 Types of datasets

To illustrate the two forms of datasets used as input for learning by algorithms, let’s
consider the following example.

 Let there be three users—John, Joe, and Jane. Each has three attributes: age, sex,
and average number of minutes spent on the site. Table 2.4 shows the values for the
various attributes for these users. This data can be used for clustering2 and/or to build
a predictive model.3 For example, similar users according to age and/or sex might be
a good predictor of the number of minutes a user will spend on the site.

 In this example dataset, the age attribute is a good predictor for number of minutes
spent—the number of minutes spent is inversely proportional to the age. The sex attri-
bute has no effect in the prediction. In this made-up example, a simple linear model is
adequate to predict the number of minutes spent (minutes spent = 50 – age of user).

This is a densely populated dataset. Note that the number of rows in the dataset will
increase as we add more users. It has the following properties:

■ It has more rows than columns—The number of rows is typically a few orders of
magnitude more than the number of columns. (Note that to keep things sim-
ple, the number of rows and columns is the same in our example.)

■ The dataset is richly populated—There is a value for each cell.

2 Chapter 9 covers clustering algorithms.
3 Chapter 10 deals with building predictive models.

Age Sex
Number of minutes per
day spent on the site

John 25 M 25

Joe 30 M 20

Jane 20 F 30
Table 2.4 Dataset with
small number of attributes

33Basics of algorithms for applying CI

The other kind of dataset (high-dimensional, sparsely populated) is a generalization
of the term vector representation. To understand this dataset, consider a window
of time such as the past week. We consider the set of users who’ve viewed any of
the videos on our site within this timeframe. Let n be the total number of videos in
our application, represented as columns, while the users are represented as rows.
Table 2.5 shows the dataset created by adding a 1 in the cell if a user has viewed
a video. This representation is useful to find similar users and is known as the User-
Item matrix.

Alternatively, when the users are represented as columns and the videos as rows, we
can determine videos that are similar based on the user interaction: “Users who have
viewed this video have also viewed these other videos.” Such an analysis would be help-
ful in finding related videos on a site such as YouTube. Figure 2.10 shows a screenshot
of such a feature at YouTube. It shows related videos for a video.

Video 1 Video 2 … … Video n

John 1

Joe 1 1

Jane 1

Figure 2.10 Screenshot from YouTube showing related videos for a video

Table 2.5 Dataset with
large number of attributes

34 CHAPTER 2 Learning from user interactions

This dataset has the following properties:

■ The number of columns is large —For example, the number of products in a site
like Amazon.com is in millions, as is the number of videos at YouTube.

■ The dataset is sparsely populated with nonzero entries in a few columns.
■ You can visualize this dataset as a multidimensional vector —Columns correspond to

the dimensions and the cell entry corresponds to the weight associated for that
dimension.

We develop a toolkit to analyze this kind of dataset in chapter 8. The dot product or
cosine between two vectors is used as a similarity metric to compare two vectors.

 Note the similarity of this dataset with the term vector we introduced in section 2.2.3.
Let there be m terms that occur in all our documents. Then the term vectors corre-
sponding to all our documents have the same characteristics as the previous dataset, as
shown in table 2.6.

Now that we have a basic understanding of how metadata is generated and repre-
sented, let’s look at the many forms of user interaction in your application and how
they are converted to collective intelligence.

2.3 Forms of user interaction
To extract intelligence from a user’s interaction in your application, it isn’t enough to
know what content the user looked at or visited. You also need to quantify the quality
of the interaction. A user may like the article or may dislike it, these being two
extremes. What one needs is a quantification of how the user liked the item relative to
other items.

 Remember, we’re trying to ascertain what kind of information is of interest to the
user. The user may provide this directly by rating or voting for an article, or it may need
to be derived, for example, by looking at the content that the user has consumed. We
can also learn about the item that the user is interacting with in the process.

 In this section, we look at how users provide quantifiable information through
their interactions; in section 2.4 we look at how these interactions fit in with collec-
tive intelligence. Some of the interactions such as ratings and voting are explicit in
the user’s intent, while other interactions such as using clicks are noisy—the intent
of the user isn’t known perfectly and is implicit. If you’re thinking of making your
application more interactive or intelligent, you may want to consider adding some of
the functionality mentioned in this section. We also look at the underlying persis-
tence architecture that’s required to support the functionality. Let’s begin with rat-
ings and voting.

Term 1 Term 2 Term m

Document 1 0.8 0.6

Document 2 0.7 0.7

Document 3 1

Table 2.6 Sparsely populated
dataset corresponding to term
vectors

35Forms of user interaction

2.3.1 Rating and voting

Asking the user to rate an item of interest is an explicit way of getting feedback on
how well the user liked the item. The advantage with a user rating content is that the
information provided is quantifiable and can be used directly.

 It’s interesting to note that most ratings in a system tend to be positive, especially
since people rate items that they’ve bought/interacted with and they typically buy/
interact with items that they like.

 Next, let’s look at how you can build this functionality in your application.
PERSISTENCE MODEL4

Figure 2.11 shows the persistence model for storing ratings. Let’s introduce two enti-
ties: user and item. user_item_rating is a mapping table that has a composite key,
consisting of the user ID and content ID. A brief look at the cardinality between the
entities show that

■ Each user may rate 0 or more items.
■ Each rating is associated with only one user.
■ An item may contain 0 or more ratings.
■ Each rating is associated with only one item.

Based on your application, you may alternatively want to also classify the items in your
application. It’s also helpful to have a generic table to store the ratings associated with
the items. Computing a user’s average rating for an item or item type is then a simple
database query.

 In this design, answers to the following questions amount to a simple database query:

■ What is the average rating for a given item?
■ What is the average rating for a given item from users who are between the ages

of 25 and 35?
■ What are the top 10 rated items?

The last query can be slow, but faster performance can be obtained by having a
user_item_rating_statistic table, as shown in figure 2.10. This table gets updated by
a trigger every time a new row is inserted in the user_item_rating table. The average

4 The code to create the tables, populate the database with test data, and run the queries is available from the
code download site for this book.

Figure 2.11
Persistence of
ratings in a table
that stores each
user’s ratings in
a separate table

36 CHAPTER 2 Learning from user interactions

is precomputed and is calculated by dividing the cumulative sum by the number of rat-
ings. If you want to trend the ratings of an item on a daily basis, you can augment the
user_item_rating_statistic to have the day as another key.
VOTING—“DIGG IT”

Most applications that allow users to rate use a scale from zero to five. Allowing a user
to vote is another way to involve and obtain useful information from the user. Digg, a
website that allows users to contribute and vote on interesting articles, uses this idea.
As shown in figure 2.12, a user can either digg an article, casting a positive vote, or bury
it, casting a negative vote. There are a number of heuristics applied to selecting which
articles make it to the top, some being the number of positive votes received by the
article along with the date the article was submitted in Digg.

Voting is similar to rating. However, a vote can have only two values—1 for a positive
vote and -1 for a negative vote.

2.3.2 Emailing or forwarding a link

As a part of viral marketing efforts, it’s com-
mon for websites to allow users to email or
forward the contents of a page to others.
Similar to voting, forwarding the content to
others can be considered a positive vote for
the item by the user. Figure 2.13 is a screen-
shot from The Wall Street Journal showing how
a user can forward an article to another user.

2.3.3 Bookmarking and saving

Online bookmarking services such as del.
icio.us and spurl.net allow users to store and
retrieve URLs, also known as bookmarks.
Users can discover other interesting links
that other users have bookmarked through

Figure 2.12 At Digg.com, users are allowed to vote on how they like an article—“digg it” is a positive
vote, while “Bury” is a negative vote.

Figure 2.13 Screenshot from The Wall Street
Journal (wsj.com) that shows how a user can
forward/email an article to another user

37Forms of user interaction

recommendations, hot lists, and other such features. By bookmarking URLs, a user is
explicitly expressing interest in the material associated with the bookmark. URLs that are
commonly bookmarked bubble up higher in the site.

 The process of saving an item or adding it to a list is similar to bookmarking and
provides similar information. Figure 2.14 is an example from The New York Times,
where a user can save an item of interest. As shown, this can then be used to build a
recommendation engine where a user is shown related items that other users who
saved that item have also saved.

If a user has a large number of bookmarks, it can become cumbersome for the user to
find and manage bookmarked or saved items. For this reason, applications allow their
users to create folders—a collection of items bookmarked or saved together. As shown
in figure 2.15, folders follow the composite design
pattern,5 where they’re composed of bookmarked
items. A folder is just another kind of item in your
application that can be shared, bookmarked, and
rated in your application. Based on their compo-
sition, folders have metadata associated with them.

 Next, let’s look at how a user purchasing an
item also provides useful information.

2.3.4 Purchasing items

In an e-commerce site, when users purchase items, they’re casting an explicit vote of
confidence in the item—unless the item is returned after purchase, in which case it’s a
negative vote. Recommendation engines, for example the one used by Amazon (Item-
to-Item recommendation engine; see section 12.4.1) can be built from analyzing the
procurement history of users. Users that buy similar items can be correlated and items
that have been bought by other users can be recommended to a user.

2.3.5 Click-stream

So far we’ve looked at fairly explicit ways of determining whether a user liked or dis-
liked a particular item, through ratings, voting, forwarding, and purchasing items.

5 Refer to the Composite Pattern in the Gang of Four design patterns.

http://timesfile.nytimes.com/store

Recommendation
based on what
others saved

Item saved

Figure 2.14 Saving an item
to a list (NY Times.com)

Item

Bookmark Folder

0 .. *

Figure 2.15 Composite pattern
for organizing bookmarks together

38 CHAPTER 2 Learning from user interactions

When a list of items is presented to a user, there’s a good chance that the user will
click on one of them based on the title and description. But after quickly scanning the
item, the user may find the item to be not relevant and may browse back or search for
other items.

 A simple way to quantify an article’s relevance is to record a positive vote for any
item clicked. This approach is used by Google News to personalize the site (see sec-
tion 12.4.2). To further filter out noise, such as items the user didn’t really like, you
could look at the amount of time the user spent on the article. Of course, this isn’t fail
proof. For example, the user could have left the room to get some coffee or been
interrupted while looking at the article. But on average, simply looking at whether an
item was visited and the time spent on it provides useful information that can be
mined later. You can also gather useful statistics from this data:

■ What is the average time a user spends on a particular item?
■ For a user, what is the average time spent on any given article?

One of the ways to validate the data and clear
out outliers is to use a validation window. To
build a validation window, treat the amount
of time spent by a user as a normal distribu-
tion (see figure 2.16) and compute the mean
and standard deviation from the samples.

 Let’s demonstrate this with a simple
example—it’s fictitious, but illustrates the
point well. Let the amount of time spent by
nine readers on an article be [5, 47, 50, 55,
47, 54, 100, 45, 50] seconds. Computing the
mean is simple (add them all up and divide
it by nine, the number of samples); it’s 50.33
seconds. Next, let’s compute the standard
deviation. For this, take the difference of each of the samples from its mean and square
it. This leads to [2055.11, 11.11, 0.11, 21.78, 11.11, 13.44, 2466.78, 28.44, 0.11]. Add
them up and divide it by eight, the number of samples minus one. This gives us 576, and
the square root of this is the standard deviation, which comes out to be 24. Now you can
create a validation window two or three times the standard deviation from the mean. For
our example, we take two times the standard deviation, which gives us a confidence level
of 95 percent. For our example, this is [2.33 98]. Anything outside this range is an outlier.

 So we flag the seventh sample of 100 seconds as an outlier—perhaps the user had
stepped out or was interrupted while reading the article. Next, continue the same pro-
cess with the remaining eight samples [5, 47, 50, 55, 47, 54, 45, 50]. The new mean and
standard deviation is 44.125 and 16.18. The new confidence window is [11.76 76.49].
The first sample is an outlier; perhaps the user didn’t find the article relevant.

 Now let’s remove this outlier and recompute the validation window for the sample
set of [47, 50, 55, 47, 54, 45, 50]. The new mean and standard deviation is 49.71 and 3.73

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

-6 -4 -2 0 2 4 6

Figure 2.16 A normal distribution with a mean
of 0 and standard deviation of 1

39Forms of user interaction

respectively. The new confidence window is [42.26 57.17]. Most users will spend time
within this window. Users that spent less time were probably not interested in the con-
tent of the article.

 Of course, if you wanted to get more sophisticated (and a lot more complex), you
could try to model the average time that a user spends on an item and correlate it with
average time spent by a typical user to shrink or expand the validation window. But for
most applications, the preceding process of validation window should work well. Or if
you want to keep things even simpler, simply consider whether the article has been vis-
ited, irrespective of the time spent6 reading it.

2.3.6 Reviews

Web 2.0 is all about connecting people with similar people. This similarity may be
based on similar tastes, positions, opinions, or geographic location. Tastes and opin-
ions are often expressed through reviews and recommendations. These have the
greatest impact on other users when

■ They’re unbiased
■ The reviews are from similar users
■ They’re from a person of influence

Depending on the application, the information provided by a user may be available to
the entire population of users, or may be privately available only to a select group of
users. This is especially the case for software-as-a-service (SaaS) applications, where a
company or enterprise subscribing to the service forms a natural grouping of users. In
such applications, information isn’t usually shared across domains. The information is
more contextually relevant to users within the company, anyway.

 Perhaps the biggest reasons why people review items and share their experiences
are to be discovered by others and for boasting rights. Reviewers enjoy the recogni-
tion, and typically like the site and want to contribute to it. Most of them enjoy doing
it. A number of applications highlight the contributions made by users, by having a
Top Reviewers list. Reviews from top reviewers are also typically placed toward the top
and featured more prominently. Sites may also feature one of their top reviewers on
the site as an incentive to contribute.

 Some sites may also provide an incentive, perhaps monetary, for users to contrib-
ute content and reviews. Epinions.com pays a small amount to its reviewers. Similarly,
Revver, a video sharing site, pays its users for contributed videos. It’s interesting to
note that even though sites like Epinions.com pay money to their reviewers, while
Amazon doesn’t, Amazon still has on order of magnitude more reviews from its users.

 Users tend to contribute more to sites that have the biggest audience.
 In a site where anyone can contribute content, is there anything that stops your

competitors from giving you an unjustified low rating? Good reviewers, especially
those that are featured toward the top, try to build a good reputation. Typically, an

6 Google News, which we look at in chapter 12, simply uses a click as a positive vote for the item.

40 CHAPTER 2 Learning from user interactions

application has links to the reviewer’s profile along with
other reviews that he’s written. Other users can also write
comments about a review. Further, just like voting for articles
at Digg, other users can endorse a reviewer or vote on his
reviews. As shown in figure 2.17, taken from epinions.com,
users can “Trust” or “Block” reviewers to vote on whether a
reviewer can be trusted.

 The feedback from other users about how helpful the
review was helps to weed out biased and unhelpful reviews. Sites also allow users to
report reviewers who don’t follow their guidelines, in essence allowing the community
to police itself.
MODELING THE REVIEWER AND ITEM RELATIONSHIP

We need to introduce another entity—the reviewer,
who may or may not be a user of your application.
The association between a reviewer, an item, and an
ItemReview is shown in figure 2.18. This is similar to
the relationship between a user and ratings.

■ Each reviewer may write zero or more reviews.
■ Each review is written by a reviewer.
■ Each item may have zero or more reviews.
■ Each review is associated with one item.

The persistence design for storing reviews is shown in figure 2.19, and is similar to the
one we developed for ratings. Item reviews are in the form of unstructured text and
thus need to be indexed by search engines.

 So far, we’ve looked at the many forms of user interaction and the persistence
architecture to build it in your application. Next, let’s look at how this user-interaction
information gets converted into collective intelligence.

Figure 2.19
Schema design for
persisting reviews

Figure 2.17 Epinions.com
allows users to place a
positive or negative vote of
confidence in a reviewer.

Reviewer Item

0, .. *
ItemReview

1

0, .. *

Figure 2.18 The association
between a reviewer, an item,
and the review of an item

41Converting user interaction into collective intelligence

2.4 Converting user interaction into collective intelligence
In section 2.2.6, we looked at the two forms of data representation that are used by
learning algorithms. User interaction manifests itself in the form of the sparsely popu-
lated dataset. In this section, we look at how user interaction gets converted into a
dataset for learning.

 To illustrate the concepts, we use a simple example dealing with three users who’ve
rated photographs. In addition to the cosine-based similarity computation we intro-
duced in section 2.2.5, we introduce two new similarity computations: correlation-based
similarity computation and adjusted-cosine similarity computation. In this section, we
spend more time on this example which deals with ratings to illustrate the concepts. We
then briefly cover how these concepts can be generalized to analyze other user interac-
tions in section 2.4.2. That section forms the basis for building a recommendation
engine, which we cover in chapter 12.

2.4.1 Intelligence from ratings via an example

There are a number of ways to transform raw ratings from users into intelligence.
First, you can simply aggregate all the ratings about the item and provide the average
as the item’s rating. This can be used to create a Top 10 Rated Items list. Averages
work well, but then you’re constantly promoting the popular content. How do you
reach the potential of The Long Tail? A user is really interested in the average rating
for content by users who have similar tastes.

 Clustering is a technique that can help find a group of users similar to the user.
The average rating of an item by a group of users similar to a user is more relevant to
the user than a general average rating. Ratings provide a good quantitative feedback
of how good the content is.

 Let’s consider a simple example to understand the basic concepts associated with
using ratings for learning about the users and items of interest. This section intro-
duces you to some of the basic concepts.

 Let there be three users: John, Jane, and Doe, who each rate three items. As per
our discussion in section 2.2.1, items could be anything—blog entries, message board
questions, video, photos, reviews, and so on. For our example, let them rate three
photos: Photo1, Photo2, and Photo3, as shown in table 2.7. The table also shows the
average rating for each photo and the average rating given by each user. We revisit this
example in section 12.3.1 when we discuss recommendation engines.

Photo1 Photo2 Photo3 Average

John 3 4 2 3

Jane 2 2 4 8/3

Doe 1 3 5 3

Average 2 3 11/3 26/3
Table 2.7 Ratings data
used in the example

42 CHAPTER 2 Learning from user interactions

Given this set of data, we answer two questions in our example:

■ What are the set of related items for a given item?
■ For a user, who are the other users that are similar to the user?

We answer these questions using three approaches: cosine-based similarity, correla-
tion-based similarity, and adjusted-cosine-based similarity.
COSINE-BASED SIMILARITY COMPUTATION

Cosine-based similarity takes the dot product of two vectors as described in section 2.2.4.
First, to learn about the photos, we transpose the matrix, so that a row corresponds to
a photo while the columns (users) correspond to dimensions that describe the photo,
as shown in table 2.8.

Next, we normalize the values for each of the rows. This is done by dividing each of the
cell entries by the square root of the sum of the squares of entries in a particular row.
For example, each of the terms in the first row is divided by �32+22+12 = �14 = 3.74 to
get the normalized dataset shown in table 2.97.

We can find the similarities between the items by taking the dot product of their
vectors. For example, the similarity between Photo 1 and Photo 2 is computed as
(0.8018 * 0.7428) + (0.5345 * 0.3714) + (0.2673 * 0.557) = 0.943.

 Using this, we can develop the item-to-item similarity table, shown in table 2.10.
This table also answers our first question: what are the set of related items for a given
item? According to this, Photo1 and Photo2 are very similar. The closer to 1 a value in
the similarity table is, the more similar the items are to each other.

John Jane Doe Average

Photo1 3 2 1 2

Photo 2 4 2 3 3

Photo 3 2 4 5 11/3

Average 3 8/3 3 26/3

John Jane Doe

Photo1 0.8018 0.5345 0.2673

Photo2 0.7428 0.3714 0.557

Photo3 0.2981 0.5963 0.7454

7 There is a unit test in the downloadable code that implements this example.

Photo1 Photo2 Photo3

Photo1 1 0.943 0.757

Photo2 0.943 1 0.858

Photo3 0.757 0.858 1

Table 2.8 Dataset
to describe photos

Table 2.9 Normalized dataset
for the photos using raw ratings

Table 2.10 Item-to-item using raw ratings

43Converting user interaction into collective intelligence

To determine similar users, we need to consider the original data in table 2.7. Here,
associated with each user is a vector, where the rating associated with each item corre-
sponds to a dimension in the vector. The analysis process is similar to our approach for
calculating the item-to-item similarity table. We first need to normalize the vectors and
then take a dot product between two normalized vectors to compute their similarities.

 Table 2.11 contains the normalized vectors associated with each user. The process
is similar to the approach taken to compute table 2.9 from table 2.8. For example,
�32+42+22 = �29 = 5.385 is the normalizing factor for John’s vector in table 2.7.

Next, a user-to-user similarity table can be computed as shown in table 2.12 by taking
the dot product of the normalized vectors for two users.

As shown in table 2.12, Jane and Doe are very similar. The preceding approach uses the
raw ratings assigned by a user to an item. Another alternative is to focus on the devia-
tions in the rating from the average values that a user provides. We look at this next.
CORRELATION-BASED SIMILARITY COMPUTATION

Similar to the dot product or cosine of two vectors, one can compute the correlation
between two items as a measure of their similarity—the Pearson-r correlation. This corre-
lation between two items is a number between –1 and 1, and it tells us the direction
and magnitude of association between two items or users. The higher the magni-
tude—closer to either –1 or 1—the higher the association between the two items. The
direction of the correlation tells us how the variables vary. A negative number means
one variable increases as the other decreases, or in this example, the rating of one
item decreases as the rating of another increases.

 To compute the correlation, we need to isolate those cases where the users co-
rated items—in our case, it’s the complete set, as all the users have rated all the con-
tent. Let U be the set of users that have rated both item i and j.

 Now the scary-looking formula to compute the correlation:

Photo1 Photo2 Photo3

John 0.5571 0.7428 0.3714

Jane 0.4082 0.4082 0.8165

Doe 0.1690 0.5071 0.8452

John Jane Doe

John 1 0.83 0.78

Jane 0.83 1 0.97

Doe 0.78 0.97 1.00

corr i j,() ueU Rui Ri–() Ruj Rj–()∑
ueU Rui Ri–()2∑ ueU Ruj Rj–()2∑

--=

Table 2.11 Normalized
rating vectors for each user

Table 2.12 User-to-user similarity table

44 CHAPTER 2 Learning from user interactions

where Ru,i is the rating of user u for item i and Ri is the average rating of item i. The
correlation computation looks for variances from the mean value for the items.

 Let’s look at the correlation of Photo 1 and Photo 2.

Alternatively, for the computation, it’s useful to subtract the average value for a row as
shown in table 2.13. Note that the sum of the numbers for each row is equal to zero.

Table 2.14 shows the correlation matrix between the items and provides answers to
our first question: what are the set of related items for a given item? According to this,
Photo 1 and Photo 3 are strongly negatively correlated.

Similarly, the correlation matrix between the users is computed along the rows of the
data shown in table 2.7. Table 2.15 contains the normalized rating vectors for each
user that will be used for computing the correlation. Note that the sum of the values
for each row is 0.

The resulting correlation matrix is shown in table 2.16 and provides answers to our sec-
ond question: given a user, who are the other users that are similar to that user? Note
that users Jane and Doe are highly correlated—if one likes an item, chances are the
other likes it, too. John is negatively correlated—he dislikes what Jane and Doe like.

 Since users Jane and Doe are highly correlated, you can recommend items that are
rated highly by Jane to Doe and vice versa.

John Jane Doe

Photo1 1 0 -1

Photo 2 1 -1 0

Photo 3 -5/3 1/3 4/3

Photo1 Photo2 Photo3

Photo1 1 0.5 -0.982

Photo2 0.5 1 -0.655

Photo3 -0.982 -0.655 1

Photo1 Photo2 Photo3

John 0 0.7071 -0.7071

Jane -0.4083 -0.4083 0.8166

Doe -0.7071 0 0.7071

Numerator 3 2–() 4 3–() 2 2–() 2 3–() 1 2–() 3 3–()+ + 1= =

Denominator 3 2–()2 2 2–()2 1 2–()+ +
2

4 3–()2 2 3–()2 3 3–()2+ + 2= =

Corr(1,2)=0.5

Table 2.13 Normalized matrix
for the correlation computation

Table 2.14 Correlation matrix for the items

Table 2.15 Normalized
rating vectors for each user

45Converting user interaction into collective intelligence

ADJUSTED COSINE-BASED SIMILARITY COMPUTATION

One drawback of computing the correlation between items is that it doesn’t take into
account the difference in rating scale between users. For example, in the example data,
user Doe is correlated highly with Jane but tends to give ratings toward the extremes.

 An alternative formula, known as adjusted cosine is used, which is

where Ru is the average rating for user u. Here, instead of subtracting the average
value for a row, the average value provided by a user is used.

 To compute this, it’s again useful to normalize the dataset by removing the average
rating value from the column values. This leads to the data shown in table 2.17. Note
that the sum of the entries for a column is equal to zero.

Table 2.18 shows the item-to-item similarity for the three items. Again, Photo1 and
Photo3 are strongly negatively correlated, while Photo2 and Photo3 are similar.

Along the same lines, to compute the similarity between users, we subtract the average
rating associated with each item in table 2.7. Table 2.19 shows the resulting table. Note
that the sum of the values for a column is equal to 0.

John Jane Doe

John 1 -0.866 -0.5

Jane -0.866 1 0.87

Doe -0.5 0.87 1

John Jane Doe

Photo1 0 -2/3 -2

Photo2 1 -2/3 0

Photo3 -1 4/3 2

Photo1 Photo2 Photo3

Photo1 1 0.1754 -0.891

Photo2 0.1754 1 .604

Photo3 -0.891 .604 1

Photo1 Photo2 Photo3

John 1 1 -5/3

Jane 0 -1 1/3

Doe -1 0 4/3

similarity i j,() ueU Ru i, Ru–() Ru j, Ru–()∑
ueU Ru i, Ru–()2∑ ueU Ru ij, Ru–()2∑

---=

Table 2.16 Correlation
matrix for the users

Table 2.17 Normalized matrix for the
adjusted cosine-based computation

Table 2.18 Similarity between
items using correlation similarity

Table 2.19 Normalized
rating vectors for each user

46 CHAPTER 2 Learning from user interactions

Again, normalizing each of the vectors to unit length leads to table 2.20.

Finally, table 2.21 contains the similarity matrix between the users by taking the dot
product of their vectors.

So far in this section, we’ve looked at how to transform user rating data into a dataset
for analysis, and we used three different similarity metrics to compute the similarities
between various items and users. The method used for computing the similarity does
have an effect on the result. Next, let’s look at how this approach can be generalized
for other interactions such as voting.

 The analysis for using voting information is similar to that for rating. The only dif-
ference is that the cell values will be either 1 or –1 depending on whether the user
voted for or against the item. The persistence model for representing voting is similar
to that developed in the previous section for persisting ratings.

2.4.2 Intelligence from bookmarking, saving, purchasing Items,
forwarding, click-stream, and reviews

In this section, we quickly look at how other forms of user-interaction get transformed
into metadata. There are two main approaches to using information from users’ inter-
action: content-based and collaboration-based.
CONTENT-BASED APPROACH

As shown in figure 2.20, metadata is associated with each item. This term vector could
be created by analyzing the content of the item or using tagging information by users,
as we discuss in the next chapter. The term vec-
tor consists of keywords or tags with a relative
weight associated with each term. As the user
saves content, visits content, or writes recom-
mendations, she inherits the metadata associ-
ated with each.

 This implies that both users and items are
represented by the same set of dimen-
sions—tags. Using this representation, one

Photo1 Photo2 Photo3

John 0.4575 0.4575 -0.7625

Jane 0 -0.9486 0.3162

Doe -0.6 0 0.8

John Jane Doe

John 1 -0.675 -0.884

Jane -0.675 1 -0.253

Doe -0.884 -0.253 1.00

Table 2.20 Normalizing
the vectors to unit lengthr

Table 2.21 Adjusted cosine
similarity matrix for the users

User Items

MetaData

Visits

Metadata MetaData

Items

Metadata
Update

Figure 2.20 A user’s metadata vector
is created using the metadata vector
associated with all the items visited.

47Converting user interaction into collective intelligence

can compare users with other users, users with items, and items with other items using
cosine-based similarity. We see an example of this in the next chapter.
COLLABORATION-BASED APPROACH

The analysis of data collected by bookmarking, saving an item, recommending an
item to another user, purchasing an item, or click-stream analysis is similar. To under-
stand this, let’s use the following example.

 Consider data collected in a window of time. Again, let our three users John, Jane,
and Doe bookmark three articles Article 1, Article 2, and Article 3, as shown in table 2.22.
We’ve placed a 1 for articles that the user has bookmarked. This is a sparsely populated
dataset as described in section 2.2.6.Using this data, you maybe interested in finding the

following answers:

■ What are other items that have been bookmarked by other users who bookmarked the same
articles as a specific user?—When the user is John, the answer is Article 3—Doe
has bookmarked Article 1 and also Article 3.

■ What are the related items based on the bookmarking patterns of the users?

To determine the answer to the last question, it’s again useful to invert the dataset to
the one shown in table 2.23. Again, the users correspond to the dimensions of the vec-
tor for an article. Similarities between two items are measured by computing the dot
product between them.

The normalized matrix is shown in table 2.24.

The item-to-item similarity matrix based on this data is shown in table 2.25. According
to this, if someone bookmarks Article 1, you should recommend Article 3 to the user,
and if the user bookmarks Article 2, you should also recommend Article 3.

Article 1 Article 2 Article 3

John 1

Jane 1 1

Doe 1 1

John Jane Doe

Article 1 1 1

Article 2 1

Article 3 1 1

John Jane Doe

Article 1 0.7071 0.7071

Article 2 1

Article 3 0.7071 0.7071

Table 2.22 Bookmarking data for analysis

Table 2.23 Adjusted cosine
similarity matrix for the users

Table 2.24 Normalized dataset
for finding related articles

48 CHAPTER 2 Learning from user interactions

A similar analysis can be performed by using information from the items the user
saves, purchases, and recommends. You can further refine your analysis by associating
data only from users that are similar to a user based on user-profile information. In
section 12.3, we further discuss this approach when we discuss building recommenda-
tion engines.

 In this section, we looked at how we can convert user interactions into intelligence
using a simple example of rating photos. We looked at finding items and users of
interest for a user. We computed this by using three similarity computations.

2.5 Summary
Services for embedding intelligence in your applications can be divided into two
types. First, synchronous services get invoked when the web server processes a request
for a user. Second, asynchronous services typically run in the background and take
longer to process. An event-driven SOA architecture is recommended for embed-
ding intelligence.

 There’s a rich amount of information that can be used from user interaction.
Metadata attributes can be used to describe items and users. Some interactions such
as ratings, voting, buying, recommendations, and so forth are fairly explicit as to
whether the user likes the item or not. There are two main approaches to finding
items of interest for a user: content-based and collaborative-based. Content-based
techniques build a term vector—a multidimensional representation for the item
based on the frequency of occurrence and the relative frequency of the terms—and
then associate similar items based on the similarities between term vectors. Collabora-
tive-based techniques tend to automate “word of mouth recommendations” to find
related items and users.

 Metadata associated with users and items can be used to derive intelligence in the
form of building recommendation engines and predictive models for personalization,
and for enhancing search.

 Tagging is another way that users interact with items and provide a rich set of infor-
mation. We look at tagging next in chapter 3.

2.6 Resources
 “All of Web2.0.” Chrisekblog. http://chrisek.com/wordpress/2006/10/03/all-of-web-20/
 Arthur, Charles. “What is the 1% rule?” July 2006. The Guardian. http://

technology.guardian.co.uk/weekly/story/0,,1823959,00.html
 Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. Modern Information Retrieval. Paperback,

May 15, 1999.

Article 1 Article 2 Article 3

Article 1 1 0 0.5

Article 2 0 1 0.7071

Article 3 0.5 0.7071 1
Table 2.25 Related articles
based on bookmarking

49Resources

 Goldberg, David, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.

 Grossman, David A., and Ophir Frieder. Information Retrieval: Algorithms and Heuristics
(The Information Retrieval Series) (2nd Edition). Paperback, Jan 23, 2006.

 “Joshua Schachter.” Joho the Blog. http://www.hyperorg.com/blogger/mtarchive/
berkman_joshua_schachter.html

 Kelly, Kevin. “A review of review sites.” http://www.kk.org/cooltools/archives/000549.php
 Kopelman, Josh. “53,651.” Blog. May 2006 . http://redeye.firstround.com/2006/05/

53651.html
 Pulier, Eric, and Hugh Taylor. 2005. Understanding Enterprise SOA. Manning.
 Sarwar, Badru, George Karypis, Joseph Konstan, and John Riedl. Item-based Collaborative Filtering

Recommendation Algorithms. ACM, 2001. http://www10.org/cdrom/papers/519/
node1.html

 “Should top users be paid?” Stewtopia, Blog. September 11, 2006. http://blog.stewtopia.com/
2006/09/11/should-top-users-be-paid/

 Thornton, James. Collaborative Filtering Research Papers. http://jamesthornton.com/cf/
 Wang, Jun, Arjen P. de Vries, and Marcel J.T. Reinders. Unifying User-based and Item-based

Collaborative Filtering Approaches by Similarity Fusion. 2006. http://ict.ewi.tudelft.nl/pub/
jun/sigir06_similarityfuson.pdf.

