Sample Chapter

Ira R. Forman
Nate Forman

MMANNING

D. Marsico
Sample Chapter

Java Reflection in Action
by Ira R. Forman
and
Nate Forman
Sample Chapter 1

Copyright 2004 Manning Publications

contents

Chapter 1 m A few basics
Chapter 2 m Accessing fields reflectively
Chapter 3 m Dynamic loading and reflective construction
Chapter 4 m Using Java’s dynamic proxy
Chapter 5 m Call stack introspection
Chapter 6 m Using the class loader
Chapter 7 m Reflective code generation
Chapter 8 m Design patterns
Chapter 9 m Evaluating performance
Chapter 10 m Reflecting on the future
Appendix A m Reflection and metaobject protocols

Appendix B m Handling compilation errors in the “Hello World!” program
Appendix C m UML

A few basics

In this chapter

m Reflection basics
m Class fundamentals
m Using methods reflectively

CHAPTER 1
A few basics

We are often faced with problems that could be solved simply and elegantly with
reflection. Without it, our solutions are messy, cumbersome, and fragile. Consider
the following scenarios:

m Your project manager is committed to a pluggable framework, knowing
that the system needs to accept new components even after it is built and
deployed. You set up some interfaces and prepare a mechanism for patch-
ing your JAR, but you know that this will not completely satisfy the need
for pluggability.

m After months of developing a client-side application, marketing tells you
that using a different remote mechanism will increase sales. Although
switching is a good business decision, you now must reimplement all of your
remote interfaces.

m The public API to your module needs to accept calls only from specific pack-
ages to keep outsiders from misusing your module. You add a parameter to
each of the API calls that will hold the package name of the calling class.
But, now legitimate users must change their calls, and unwelcome code can
fake a package name.

These scenarios illustrate, in turn, modularity, remote access, and security—and
do not seem to have much in common. But they do: each one contains a change
in requirements that can be satisfied only by making decisions and modifying
code based upon the structure of the program.

Reimplementing interfaces, patching JAR files, and modifying method calls are
all tedious and mechanical tasks. So mechanical, in fact, that you could write an
algorithm that describes the necessary steps:

1 Examine the program for its structure or data.
2 Make decisions using the results of the examination.

3 Change the behavior, structure, or data of the program based upon the
decisions.

While these steps may be familiar to you in your role as programmer, they are not
tasks that you would imagine a program doing. As a result, you assume that adapt-
ing code must be accomplished by a person sitting at a keyboard instead of by a
program running on a computer. Learning reflection allows you to get beyond
this assumption and make your program do this adaptation for you. Consider the
following simple example:

11

Reflection’s value proposition 3

public class HelloWorld {
public void printName () {
System.out.println(this.getClass () .getName()) ;
}
}

The line

(new HelloWorld()) .printName () ;

sends the string HelloWorld to standard out. Now let x be an instance of Hello-
World or one of its subclasses. The line

x.printName () ;

sends the string naming the class to standard out.

This small example is more dramatic than it seems—it contains each of the
steps previously mentioned. The printName method examines the object for its
class (this.getClass()). In doing so, the decision of what to print is made by del-
egating to the object’s class. The method acts on this decision by printing the
returned name. Without being overridden, the printName method behaves differ-
ently for each subclass than it does for Helloworld. The printName method is flex-
ible; it adapts to the class that inherits it, causing the change in behavior. As we
build our examples in scope and complexity, we will show you many more ways to
attain flexibility using reflection.

Reflection’s value proposition

Reflection is the ability of a running program to examine itself and its software
environment, and to change what it does depending on what it finds.

To perform this self-examination, a program needs to have a representation of
itself. This information we call metadata. In an object-oriented world, metadata is
organized into objects, called metaobjects. The runtime self-examination of the
metaobjects is called introspection.

As we saw in the small example above, the introspection step is followed by
behavior change. In general, there are three techniques that a reflection API can
use to facilitate behavior change: direct metaobject modification, operations for
using metadata (such as dynamic method invocation), and intercession, in which
code is permitted to intercede in various phases of program execution. Java sup-
plies a rich set of operations for using metadata and just a few important interces-
sion capabilities. In addition, Java avoids many complications by not allowing
direct metaobject modification.

1.2

CHAPTER 1
A few basics

These features give reflection the power to make your software flexible. Appli-
cations programmed with reflection adapt more easily to changing requirements.
Reflective components are more likely to be reused flawlessly in other applica-
tions. These benefits are available in your current Java development Kkit.

Reflection is powerful, but it is not magical. You must master the subject in
order to make your software flexible. It's not enough to just learn the concepts and
the use of the API. You must also be able to distinguish between situations when
reflection is absolutely required from those when it may be used advantageously
from those when it should be shunned. The examples in this book will help you
acquire this skill. In addition, by the time you reach the end, you will understand
the three issues that have thus far impeded the broad use of reflection:

m security
m code complexity

® runtime performance

You will learn that the concern over security was misguided. Java is so well crafted
and its reflection API so carefully constrained that security is controlled simply. By
learning when to use reflection and when not to, you will avoid unnecessarily
complex code that can often be the result of amateurish use of reflection. In addi-
tion, you will learn to evaluate the performance of your designs, thereby ensuring
the resulting code satisfies its performance requirements.

This introduction describes reflection, but scarcely reveals its value. Software
maintenance costs run three to four or more times development costs. The soft-
ware marketplace is increasing its demand for flexibility. Knowing how to produce
flexible code increases your value in the marketplace. Reflection—introspection
followed by behavior change—is the path to flexible software. The promise of
reflection is great and its time has come. Let’s begin.

Enter George the programmer

George is a programmer at Wildlife Components, a leading animal simulation
software company. In his daily work, George faces many challenges such as the
ones previously mentioned. Throughout this book, we will follow George as he
discovers the benefits of implementing reflective solutions.

For one project, George is working on a team that is implementing a user inter-
face. George’s team uses several standard Java visual components, others that are
developed in house, a few that are open source, and still others that have been
licensed from third parties. All of these components are integrated to form the
user interface for the team’s application.

1.2.1

Enter George the programmer 5

Each of these components provides a setColor method that takes a
java.awt.Color parameter. However, the hierarchies are set up such that the only
common base class for all of them is java.lang.0Object. These components can-
not be referenced using a common type that supports this setColor method.

This situation presents a problem for George’s team. They just want to call set-
Color regardless of a component’s concrete type. The lack of a common type that
declares setColor means more work for the team. In case this scenario seems con-
trived, we invite you to explore the JDK API and see the number of classes that sup-
port the same method but implement no common interface.

Choosing reflection

Given a component, the team’s code must accomplish two steps:

1 Discover a setColor method supported by the component.

2 (Call that setColor method with the desired color.

There are many alternatives for accomplishing these steps manually. Let’s exam-
ine the results of each of these.

If George’s team controlled all of the source code, the components could be
refactored to implement a common interface that declares setColor. Then, each
component could be referenced by that interface type and setColor could be
invoked without knowing the concrete type. However, the team does not control
the standard Java components or third-party components. Even if they changed
the open source components, the open source project might not accept the
change, leaving the team with additional maintenance.

Alternatively, the team could implement an adapter for each component. Each
such adapter could implement a common interface and delegate the setColor
call to the concrete component. However, because of the large number of compo-
nent classes that the team is using, the solution would cause an explosion in the
number of classes to maintain. In addition, because of the large number of com-
ponent instances, this solution would cause an explosion of the number of objects
in the system at runtime. These trade-offs make implementing an adapter an
undesirable option.

Using instanceof and casting to discover concrete types at runtime is another
alternative, but it leaves several maintenance problems for George’s team. First,
the code would become bloated with conditionals and casts, making it difficult to
read and understand. Second, the code would become coupled with each con-
crete type. This coupling would make it more difficult for the team to add,
remove, or change components. These problems make instanceof and casting an
unfavorable alternative.

1.2.2

CHAPTER 1
A few basics

Each of these alternatives involves program changes that adjust or discover the
type of a component. George understands that it is only necessary to find a
setColor method and call it. Having studied a little reflection, he understands
how to query an object’s class for a method at runtime. Once it is found, he
knows that a method can also be invoked using reflection. Reflection is uniquely
suited to solving this problem because it does not over-constrain the solution
with type information.

Programming a reflective solution

To solve his team’s problem, George writes the static utility method setObject-
Color in listing 1.1. George’s team can pass a visual component to this utility
method along with a color. This method finds the setColor method supported by
the object’s class and calls it with the color as an argument.

public static void setObjectColor(Object obj, Color color) {
Class cls = obj.getClass(); () Query object

for its class I
try < QuFry class
object for
Method method = cls.getMethod("setColor", setColor method

new Class[] {Color.class});

method. invoke(obj, new Object[] {color}); e Call resulting method
} on target obj

catch (NoSuchMethodException ex) { <}—° Class of obj does not
throw new IllegalArgumentException (support setColor method
cls.getName ()
+ " does not support method setColor (Coloxr)");

catch (IllegalAccessException ex) { 4—6 Invoker cannot call
throw new IllegalArgumentException (setColor method
"Insufficient access permissions to call"
+ "setColor(:Color) in class " + cls.getName());

catch (InvocationTargetException ex) { setColor method
throw new RuntimeException(ex) ; throws an exception
}

Enter George the programmer 7

This utility method satisfies the team’s goal of being able to set a component’s
color without knowing its concrete type. The method accomplishes its goals with-
out invading the source code of any of the components. It also avoids source code
bloating, memory bloating, and unnecessary coupling. George has implemented
an extremely flexible and effective solution.

Two lines in listing 1.1 use reflection to examine the structure of the parame-
ter obj:

© This line of code queries the object for its class.

O Thisline queries the class for a setColor method that takes a Color argument.

In combination, these two lines accomplish the first task of finding a setColor
method to call.

These queries are each a form of introspection, a term for reflective features
that allow a program to examine itself. We say that setObjectColor introspects on
its parameter, obj. There is a corresponding form of introspection for each fea-
ture of a class. We will examine each of these forms of introspection over the next
few chapters.

One line in listing 1.1 actually affects the behavior of the program:

O 1his line calls the resulting method on obj, passing it the colo—This reflective
method call can also be referred to as dynamic invocation. Dynamic invoca-
tion is a feature that enables a program to call a method on an object at
runtime without specifying which method at compile time.

In the example, George does not know which setColor method to call when writing
the code because he does not know the type of the obj parameter. George’s program
discovers which setColor method is available at runtime through introspection.
Dynamic invocation enables George’s program to act upon the information gained
through introspection and make the solution work. Other reflective mechanisms
for affecting program behavior will be covered throughout the rest of the book.

Not every class supports a setColor method. With a static call to setColor, the
compiler reports an error if the object’s class does not support setColor. When
using introspection, it is not known until runtime whether or not a setColor
method is supported:

O The class of obj does not support a setColor method—It is important for intro-
spective code to handle this exceptional case. George has been guaranteed
by his team that each visual component supports setColor. If that method

1.3

CHAPTER 1
A few basics

is not supported by the type of the obj parameter, his utility method has
been passed an illegal argument. He handles this by having setObjectColor
throw an IllegalArgumentException.

The setObjectColor utility method may not have access to nonpublic setColor
methods. In addition, during the dynamic invocation, the setColor method may
throw an exception:

© The class containing listing 1.1 does not have access privileges to call a pro-
tected, package, or private visibility setColor method.

O The invoked setColor method throws an exception.

It is important for methods using dynamic invocation to handle these cases prop-
erly. For simplicity’s sake, the code in listing 1.1 handles these exceptions by wrap-
ping them in runtime exceptions. For production code, of course, this would be
wrapped in an exception that the team agrees on and declared in the utility
method’s throws clause.

All of this runtime processing also takes more time than casts and static invoca-
tion. The method calls for introspection are not necessary if the information is
known at compile time. Dynamic invocation introduces latency by resolving which
method to call and checking access at runtime rather than at compile time. Chap-
ter 9 discusses analysis techniques for balancing performance trade-offs with the
tremendous flexibility benefits that reflection can give you.

The rest of this chapter focuses on the concepts necessary to fully understand
listing 1.1. We examine, in detail, the classes that George uses to make it work.
We also discuss the elements supported by Java that allow George such a flexi-
ble solution.

Examining running programs

Reflection is a program’s ability to examine and change its behavior and structure
at runtime. The scenarios previously mentioned have already implied that reflec-
tion gives programmers some pretty impressive benefits. Let’s take a closer look at
what reflective abilities mean for the structure of Java.

Think of introspection as looking at yourself in a mirror. The mirror provides
you with a representation of yourself—your reflection—to examine. Examining
yourself in a mirror gives you all sorts of useful information, such as what shirt
goes with your brown pants or whether you have something green stuck in your
teeth. That information can be invaluable in adjusting the structure of your ward-
robe and hygiene.

Examining running programs 9

A mirror can also tell you things about your behavior. You can examine
whether a smile looks sincere or whether a gesture looks too exaggerated. This
information can be critical to understanding how to adjust your behavior to make
the right impression on other people.

Similarly, in order to introspect, a program must have access to a representa-
tion of itself. This self-representation is the most important structural element of a
reflective system. By examining its self-representation, a program can obtain the
right information about its structure and behavior to make important decisions.

Listing 1.1 uses instances of Class and Method to find the appropriate setColor
method to invoke. These objects are part of Java’s self-representation. We refer to
objects that are part of a program’s self-representation as metaobjects. Meta is a
prefix that usually means about or beyond. In this case, metaobjects are objects that
hold information about the program.

Class and Method are classes whose instances represent the program. We refer
to these as classes of metaobjects or metaobject classes. Metaobject classes are most of
what make up Java’s reflection API.

We refer to objects that are used to accomplish the main purposes of an appli-
cation as base-level objects. In the setObjectColor example above, the application
that calls George’s method as well as the objects passed to it as parameters are base-
level objects. We refer to the nonreflective parts of a program as the base program.

Metaobjects represent parts of the running application, and, therefore, may
describe the base program. Figure 1.1 shows the instanceof relationship between
base-level objects and the objects that represent their classes. The diagramming
convention used for figure 1.1 is the Unified Modeling Language (UML). For
readers unfamiliar with UML, we will describe the conventions briefly in
section 1.7. For the moment, it is important to understand that the figure can be
read as “fido, a base-level object, is an instance of Dog, a class object on the metalevel.”

Metaobjects are a convenient self-representation for reflective programming.
Imagine the difficulty that George would have in accomplishing his task if he had
tried to use the source code or the bytecodes as a representation. He would have to
parse the program to even begin examining the class for its methods. Instead, Java
metaobjects provide all of the information he needs without additional parsing.

Metaobjects often also provide ways of changing program structure, behavior,
or data. In our example, George uses dynamic invocation to call a method that he
finds through introspection. Other reflective abilities that make changes include
reflective construction, dynamic loading, and intercepting method calls. This
book shows how to use these mechanisms and others to solve common but diffi-
cult software problems.

10 CHAPTER 1
A few basics

“ — | class
metalevel object

/
/
__________ —_—
§'/
9]
base level &/
~/
)

IIIEHHHIIII
—~ —| base-level
object

Figure 1.1 Dog is a class object, a metaobject that represents the class Dog.
The object £ido is an instance of Dog operating within the application. The
instanceof relationship, represented in this diagram by a dependency,
connects objects on the base level to an object that represents their class on
the metalevel.

1.4 Finding a method at runtime

At the beginning of our example, George’s setObjectColor method is passed a
parameter obj of type Object. The method cannot do any introspection until it
knows the class of that parameter. Therefore, its first step is to query for the
parameter’s class:

Class cls = obj.getClass();

The getClass method is used to access an object’s class at runtime. The getClass
method is often used to begin reflective programming because many reflective
tasks require objects representing classes. The getClass method is introduced by
java.lang.Object, so any object in Java can be queried for its class'.

The getClass method returns an instance of java.lang.Class. Instances of
Class are the metaobjects that Java uses to represent the classes that make up a
program. Throughout this book, we use the term class object to mean an instance
of java.lang.Class. Class objects are the most important kind of metaobject
because all Java programs consist solely of classes.

! The getclass method is final. This keeps Java programmers from fooling reflective programs. If it were
not final, a programmer could override getClass to return the wrong class.

Finding a method at runtime 11

Class objects provide programming metadata about a class’s fields, methods,
constructors, and nested classes. Class objects also provide information about the
inheritance hierarchy and provide access to reflective facilities. For this chapter,
we will concentrate on the use of Class in listing 1.1 and related fundamentals.

Once the setObjectColor method has discovered the class of its parameter, it
queries that class for the method it wants to call:

Method method = cls.getMethod("setColor", new Class[] {Color.class});

The first parameter to this query is a String containing the desired method’s
name, in this case, setColor. The second parameter is an array of class objects
that identify the types of the method’s parameters. In this case, we want a method
that accepts one parameter of type Color, so we pass getMethod an array of one
element containing the class object for Color.

Notice that the assignment does not use getClass to provide the class object for
Color. The getClass method is useful for obtaining the class for an object refer-
ence, but when we know only the name of the class, we need another way. Class
literals are Java’s way to specify a class object statically. Syntactically, any class
name followed by .class evaluates to a class object. In the example, George
knows that setObjectColor always wants a method that takes one Color argument.
He specifies this using Color.class.

Class has other methods for introspecting about methods. The signatures and
return types for these methods are shown in table 1.1. As in the previous example,
the queries use an array of Class to indicate the types of the parameters. In

Table 1.1 The methods defined by Class for method query

Method Description
Method getMethod (String name, Returns a Method object that represents a public
Class[] parameterTypes) method (either declared or inherited) of the target

Class object with the signature specified by the
second parameters

Method[] getMethods () Returns an array of Method objects that represent
all of the public methods (either declared or inher-
ited) supported by the target Class object

Method getDeclaredMethod (Returns a Method object that represents a
String name, declared method of the target Class object with
Class[] parameterTypes) the signature specified by the second parameters

Method[] getDeclaredMethods () Returns an array of Method objects that represent

all of the methods declared by the target Class
object

12

1.5

CHAPTER 1
A few basics

querying for a parameterless method, it is legal to supply null, which is treated
the same as a zero-length array.

As their names indicate, getDeclaredMethod and getDeclaredMethods return
method objects for methods explicitly declared by a class. The set of declared
methods does not include methods that the class inherits. However, these two que-
ries do return methods of all visibilities—public, protected, package, and private.

The queries getMethod and getMethods return method objects for a class’s pub-
lic methods. The set of methods covered by these two includes both methods
declared by the class and those it inherits from superclasses. However, these que-
ries return only a class’s public methods.

A programmer querying a class using getDeclaredMethod might accidentally
specify a method that the class does not declare. In this case, the query fails with a
NoSuchMethodException. The same exception is thrown when getMethod fails to
find a method among a class’s public methods.

In the example, George needs to find a method, and he does so using one of
the methods from table 1.1. Once retrieved, these method objects are used to
access information about methods and even call them. We discuss method objects
in detail later in this chapter, but first let’s take a closer look at how class objects
are used with the methods from table 1.1.

Representing types with class objects

The discussion of the methods from table 1.1 indicates that Java reflection uses
instances of Class to represent types. For example, getMethod from listing 1.1 uses
an array of Class to indicate the types of the parameters of the desired method.
This seems fine for methods that take objects as parameters, but what about types
not created by a class declaration?

Consider listing 1.2, which shows a fragment of java.util.vVector. One
method has an interface type as a parameter, another an array, and the third a
primitive. To program effectively with reflection, you must know how to intro-
spect on classes such as Vector that have methods with such parameters.

public class Vector ... {
public synchronized boolean addall(Collection c)
public synchronized void copyInto(Object[] anArray)
public synchronized Object get(int index)

1.5.1

1.5.2

Representing types with class objects 13

Table 1.2 Methods defined by Class that deal with type representation

Method Description
String getName() Returns the fully qualified name of the target Class object
Class getComponentType() If the target object is a Class object for an array, returns the

Class object representing the component type

boolean isArray() Returns true if and only if the target Class object repre-
sents an array

boolean isinterface() Returns true if and only if the target Class object repre-
sents an interface

boolean isPrimitive() Returns true if and only if the target Class object repre-
sents a primitive type or void

Java represents primitive, array, and interface types by introducing class objects to
represent them. These class objects cannot do everything that many other class
objects can. For instance, you cannot create a new instance of a primitive or inter-
face. However, such class objects are necessary for performing introspection.
Table 1.2 shows the methods of Class that support type representation.

The rest of this section explains in greater detail how Java represents primitive,
interface, and array types using class objects. By the end of this section, you
should know how to use methods such as getMethod to introspect on Vec-
tor.class for the methods shown in listing 1.2.

Representing primitive types

Although primitives are not objects at all, Java uses class objects to represent all
eight primitive types. These class objects can be indicated using a class literal when
calling methods such as those in table 1.1. For example, to specify type int, use
int.class. Querying the Vector class for its get method can be accomplished with

Method m = Vector.class.getMethod("get", new Class[] {int.class});

A class object that represents a primitive type can be identified using isPrimitive.

The keyword void is not a type in Java; it is used to indicate a method that does
not return a value. However, Java does have a class object to represent void. The
isPrimitive method returns true for void.class. In section 1.6, we cover intro-
spection on methods. When introspecting for the return type of a method,
void.class is used to indicate that a method returns no value.

Representing interfaces

Java also introduces a class object to represent each declared interface. These
class objects can be used to indicate parameters of interface type. The addall

14

1.5.3

1.6

CHAPTER 1
A few basics

method of Vector takes an implementation of the Collection interface as an
argument. Querying the Vector class for its addall method can be written as
Method m = Vector.class.getMethod("addall",
new Class[] {Collection.class});
A class object that represents an interface may be queried for the methods and
constants supported by that interface. The isInterface method of Class can be
used to identify class objects that represent interfaces.

Representing array types

Java arrays are objects, but their classes are created by the JVM at runtime. A new
class is created for each element type and dimension. Java array classes implement
both Cloneable and java.io.Serializable.

Class literals for arrays are specified like any other class literal. For instance, to
specify a parameter of a single-dimension Object array, use the class literal
Object[].class. A query of the Vector class for its copyInto method is written as

Method m = Vector.class.getMethod("copyInto", new Class[]{Object[].class});

Class objects that represent arrays can be identified using the isarray method of
Class. The component type for an array class can be obtained using getCompo-
nentType. Java treats multidimensional arrays like nested single-dimension arrays.
Therefore, the line

int[][].class.getComponentType ()

evaluates to int[].class. Note the distinction between component type and ele-
ment type. For the array type int[][], the component type is int [] while the ele-
ment type is int.

Not all Java methods take non-interface, non-array object parameters like set-
Color from our George example. In many cases, it is important to introspect for
methods such as the Vector methods of listing 1.2. Now that you understand how
to introspect for any Java method, let’s examine what can be done once a method
is retrieved.

Understanding method objects

Most of the examples over the last few sections have used the identifier Method but
not explained it. Method is the type of the result of all of the method queries in
table 1.1. George uses this class in listing 1.1 to invoke setColor. From this con-
text, it should be no surprise that java.lang.reflect.Method is the class of the

1.6.1

Understanding method objects 15

Table 1.3 Methods defined by Method

Method Description

Class getDeclaringClass() Returns the Class object that declared the method repre-
sented by this Method object

Class[] getExceptionTypes() Returns an array of Class objects representing the types of
the exceptions declared to be thrown by the method repre-
sented by this Method object

int getModifiers() Returns the modifiers for the method represented by this
Method object encoded as an int

String getName() Returns the name of the method represented by this Method
object
Class[] getParameterTypes() Returns an array of Class objects representing the formal

parameters in the order in which they were declared

Class getReturnType() Returns the Class object representing the type returned by
the method represented by this Method object

Object invoke(Object obj, Object[] args) | Invokes the method represented by this Method object on
the specified object with the arguments specified in the
Object array

metaobjects that represent methods. Table 1.3 shows some of the methods sup-
ported by the metaobject class Method.

Each Method object provides information about a method including its name,
parameter types, return type, and exceptions. A Method object also provides the
ability to call the method that it represents. For our example, we are most inter-
ested in the ability to call methods, so the rest of this section focuses on the invoke
method.

Using dynamic invocation

Dynamic invocation enables a program to call a method on an object at runtime
without specifying which method at compile time. In section 1.2, George does not
know which setColor method to call when he writes the program. His program
relies upon introspection to examine the class of a parameter, obj, at runtime to
find the right method. As a result of the introspection, the Method representing
setColor is stored in the variable method.

Following the introspection in listing 1.1, setColor is invoked dynamically with
this line:

method. invoke (obj, new Object[] {color});

16

1.6.2

CHAPTER 1
A few basics

where the variable color holds a value of type Color. This line uses the invoke
method to call the setColor method found previously using introspection. The
setColor method is invoked on obj and is passed the value of color as a parameter.

The first parameter to invoke is the target of the method call, or the Object on
which to invoke the method. George passes in obj because he wants to call set-
Color (the method represented by method) on obj. However, if setColor is
declared static by the class of obj, the first parameter is ignored because static
methods do not need invocation targets. For a static method, null can be sup-
plied as the first argument to invoke without causing an exception.

The second parameter to invoke, args, is an Object array. The invoke method
passes the elements of this array to the dynamically invoked method as actual
parameters. For a method with no parameters, the second parameter may be
either a zero-length array or null.

Using primitives with dynamic invocation

The second parameter to invoke is an array of 0bject, and the return value is also
an Object. Of course, many methods in Java take primitive values as parameters
and also return primitives. It is important to understand how to use primitives
with the invoke method.

If the type of a parameter is a primitive, invoke expects the corresponding args
array element to be a wrapper object containing the argument. For example,
when invoking a method with an int parameter, wrap the int argument in a
java.lang.Integer and pass it into the args array. The invoke method unwraps
the argument before it passes it to the actual code for the method being invoked.

The invoke method handles primitive return types by wrapping them before
they are returned. Thus, when invoking a method with an int return type, the
program receives an object of type Integer in return. If the method being
invoked is declared with a void return, invoke returns the value null.

So, primitives need to be wrapped when passed into a dynamic invocation and
unwrapped when received as a return value. For clarity, consider the following
dynamic call to hashCode method on our obj variable from the example.

Method method = obj.getClass().getMethod("hashCode", null);

int code = ((Integer) method.invoke (obj, null)).intValue() ;

The first line introspects for the method hashCode with no arguments. This query
does not fail because that method is declared by Object. The hashCode method
returns an int. The second line invokes hashCode dynamically and stores the
return value in the variable code. Notice that the return value comes back wrapped

Understanding method objects 17

% | :Class | ‘ obj
AN
I

I
I
I
| I
getMethod (“hashCbde” ,null) :
! A Method
é _Met_hog _ = | |
| I |
| 1 1 I |
: invoke (obj,null) l >
| I
| I
! ! hashCode ()
|
|
|
! int
N N =
| I
: Integer :
= - — — — - - = - — - L]

I I |
I I |
an ! ! |
I I |
| ! X

Figure 1.2 Sequence diagram illustrating the use of getMethod and invoke. The return
arrows are labeled with the type of the value that is returned. Note that the call to invoke
wraps the int return value in an Integer object.

in an Integer, and it is cast and unwrapped. The above snippet of code is illus-
trated in the sequence diagram in figure 1.2.

1.6.3 Avoiding invocation pitfalls

At one point, George thinks, “If I have a Method representing setColor, why do I need
to introspect for it every time? I'll just cache the first one that comes along and optimize out
the vest of the queries.” When he tries this, he gets an IllegalArgumentException
from invoke on many of the subsequent calls. The exception message means that
the method was invoked on an object that is not an instance of the declaring class.

George’s optimization fails because it assumes that all methods with the same
signature represent the same method. This is not the case. In Java, each method is
identified by both its signature and its declaring class.

Let’s take a closer look at this failure. Figure 1.3 shows the classes Animal and
Shape, which both declare a setColor method with the same signature. These two
setColor methods are not the same method in Java because they do not have the
same declaring class.

18

CHAPTER 1
A few basics
Animal Shape
+ setColor (c:Color) + setColor (c:Color)

two different
setColor
methods

Dog

Figure 1.3 A Unified Modeling Language (UML) class diagram. Dog
is a subclass of Animal. Animal and Shape both declare a set-
Color method of the same signature. The Java language considers
the two setColor methods shown to be different methods. How-
ever, the setColor method for Dog is the same method as the one
for Animal.

Another class, Dog, extends Animal and inherits its setColor method. The set-
Color method for Dog is the same as the setColor method for animal because Dog
inherits setColor from Animal. The setColor method for Dog is not the same
method as the one for shape. Therefore, when dealing with this situation, it is usu-
ally simplest to introspect for a Method each time instead of caching.

Several other exceptions can occur when calling invoke. If the class calling
invoke does not have appropriate access privileges for the method, invoke throws
an IllegalAccessException. For example, this exception can occur when
attempting to invoke a private method from outside its declaring class.

IllegalArgumentException can be thrown by invoke under several circum-
stances. Supplying an invocation target whose class does not support the method
being invoked causes an IllegalArgumentException. Supplying an args array of
incorrect length or with entries of the wrong type also causes an I1legalArgument-
Exception. If any exception is thrown by the method being invoked, that excep-
tion is wrapped in an InvocationTargetException and then thrown.

Dynamic invocation is a truly important feature in Java reflection. Without it,
each method call must be hard-coded at compile time, denying programmers the
flexibility of doing what George does in listing 1.1. In later chapters, we return to
dynamic invocation for more advanced applications and expose other powerful
ways to use information gained through introspection.

Diagramming for reflection 19

1.7 Diagramming for reflection

Throughout this book, we use the Unified Modeling Language (UML) for dia-
grams like figure 1.4. Those familiar with UML will probably notice that figure 1.4
combines UML class and object diagrams. Reflection represents all of the class dia-
gram entities at runtime using metaobjects. Therefore, combining class and
object diagrams is useful for clearly communicating reflective designs.

UML diagrams typically include only classes or only non-class objects. Model-
ing reflection calls for combining the two and using the instance0f dependency
to connect an object with its instantiating class. UML defines the instanceOf
dependency with same meaning as the Java instanceof operator. However, this
book uses the instanceOf dependency only to show that an object is a direct
instance of a class. For clarity, we partition figure 1.4 into its base level and meta-
level, although that partition is not standard UML. For more detail on UML, see

appendix C.
«interface»
Cloneable
~N\
class
metalevel objects
/
-l ____
/
&
(?/
base level &7/
A9
9/
5

dolly
— — | base-level
object

Figure 1.4 This is a Unified Modeling Language (UML) diagram describing Dolly
the cloned sheep. The diagram shows an object, do11y, which is an instance of
the class Sheep. It describes Sheep as a Mammal that implements Cloneable.
The important thing to notice about this diagram is that it includes both objects
and classes, as is necessary for describing reflective systems.

20

CHAPTER 1
A few basics

1.8 Navigating the inheritance hierarchy

After George’s team has been using setObjectColor from listing 1.1 for a while,
one of his team members, Martha, runs into a problem. Martha tells George that
setObjectColor is not seeing a setColor method inherited by her component.
After exploring the inheritance hierarchy, George and Martha discover that the
inherited method is protected, and so it is not found by the line

Method method = cls.getMethod("setColor", new Class[] {Color.class});

George decides that he needs a method that introspects over methods of all visi-
bilities, declared or inherited. Looking back at the methods from table 1.1,
George notices that there is no method that does this, so he decides to write his
own. Listing 1.3 shows the source code for getSupportedMethod, a method that
George has written to accomplish that query. George has placed getSupported-
Method in his own convenience facility called Mopex. This is one of many useful
methods that George has put in Mopex, and throughout this book, we explain and
make use of them.

public static Method getSupportedMethod(Class cls,
String name,
Class|[] paramTypes)
throws NoSuchMethodException

if (cls == null) {
throw new NoSuchMethodException () ;
}
try {
return cls.getDeclaredMethod(name, paramTypes);
}
catch (NoSuchMethodException ex) {
return getSupportedMethod(cls.getSuperclass (), name, paramTypes);

}

The getSupportedMethod method is a recursive method that traverses the inherit-
ance hierarchy looking for a method with the correct signature using getDe-
claredMethod. It uses the line

return getSupportedMethod(cls.getSuperclass(), name, paramTypes) ;

Navigating the inheritance hierarchy 21

to accomplish this traversal. The getSuperclass method returns the class object
representing the class that its target extends. If there is no extends clause, getSu-
perclass returns the class object for Object. If cls represents Object, getSuper-
class returns null, and getSupportedMethod throws a NoSuchMethodException on
the next call.

Now that George has implemented getSupportedMethod, which performs the
introspection that he wants, he can change setObjectColor to use this new func-
tionality. Listing 1.4 shows this update to setObjectColor.

Listing 1.4 setObjectColor updated to use get SupportedMethod

public static void setObjectColor(Object obj, Color color) {
Class cls = obj.getClass();
try {
Method method = Mopex.getSupportedMethod(cls,
"setColor",
new Class[]{Color.class}
)
method. invoke (obj, new Object[] {color});
}
catch (NoSuchMethodException ex) {
throw new IllegalArgumentException (
cls.getName() + " does not support"
+ "method setColor(:Color)");
}
catch (IllegalAccessException ex) {
throw new IllegalArgumentException (
"Insufficient access permissions to call"
+ "setColor(:Color) in class "
+ cls.getName()) ;
}
catch (InvocationTargetException ex) {
throw new RuntimeException (ex) ;

This update allows setObjectColor to retrieve metaobjects for private, package,
and protected methods that are not retrieved by getMethod. However, this update
does not guarantee permission to invoke the method. If setObjectColor does not
have access to Martha’s inherited method, an IllegalAccessException is thrown
instead of a NoSuchMethodException.

George has just observed one way that reflection can save him effort. Before
the reflective enhancement, he and Martha needed to explore the inheritance

22

1.8.1

CHAPTER 1
A few basics

hierarchy to diagnose Martha’s problem. George’s enhancement traverses the
inheritance hierarchy and reports the problem, saving them the trouble. In chap-
ter 2, we discuss bypassing visibility checks using reflection. For now, let’s con-
tinue to discuss the tools that make George and Martha’s enhancement possible.

Introspecting the inheritance hierarchy

As shown in the previous section, runtime access to information about the inherit-
ance hierarchy can prevent extra work. Getting the superclass of a class is only
one of the operations that Java reflection provides for working with the inherit-
ance hierarchy. Table 1.4 shows the signatures and return types for the methods
of class for dealing with inheritance and interface implementation.

Table 1.4 Methods of Class that deal with inheritance

Method Description

Class|] getinterfaces() Returns an array of Class objects that represent the direct
superinterfaces of the target Class object

Class getSuperclass() Returns the Class object representing the direct superclass
of the target Class object or null if the target represents
Object, an interface, a primitive type, or void

boolean isAssignableFrom(Class cls) | Returns true if and only if the class or interface represented
by the target Class object is either the same as or a super-
class of or a superinterface of the specified Class parameter

boolean islnstance(Object obj) Returns true if and only if the specified Object is assign-
ment-compatible with the object represented by the target
Class object

The getInterfaces method returns class objects that represent interfaces. When
called on a class object that represents a class, getInterfaces returns class objects
for interfaces specified in the implements clause of that class’s declaration. When
called on a class object that represents an interface, getInterfaces returns class
objects specified in the extends clause of that interface’s declaration.

Note the method names getInterfaces and getSuperclass are slightly incon-
sistent with terminology defined by the Java Language Specification. A direct super-
class is the one named in the extends clause of a class declaration. A class X is a
superclass of a class Y if there is a sequence of one or more direct superclass links
from ¥ to X. There is a corresponding pair of definitions for direct superinterface
and superinterface. Consequently, getSuperclass returns the direct superclass
and getInterfaces returns the direct superinterfaces.

1.8.2

Navigating the inheritance hierarchy 23

To get all of the methods of a class, a program must walk the inheritance hier-
archy. Luckily, this walk is not necessary to query whether a class object represents
a subtype of another class object. This query can be accomplished using the isAs-
signableFrom method. The name isAssignableFrom tends to be confusing. It
helps to think of

X.isAssignableFrom(Y)

as “an X field can be assigned a value from a Y field.” For example, the following
lines evaluate to true:

Object.class.isAssignableFrom(String.class)
java.util.List.class.isAssignableFrom(java.util.Vector.class)

double.class.isAssignableFrom(double.class)
The line below, however, evaluates to false:
Object.class.isAssignableFrom(double.class)

The isInstance method is Java reflection’s dynamic version of instanceof. If the
target class object represents a class, isInstance returns true if its argument is an
instance of that class or any subclass of that class. If the target class object repre-
sents an interface, isInstance returns true if its argument’s class implements that
interface or any subinterface of that interface.

Exposing some surprises

In the Java reflection API, there are some relationships that may be surprising
upon first glance. Discussing these relationships now prepares us for encounter-
ing them later in the book and in reflective programming in general. Being pre-
pared in this manner allows for better reflective programming.

The isInstance method can be used to show a very interesting fact about the
arrangement of the classes in the Java reflection API. The line

Class.class.isInstance(Class.class)

evaluates to true. This means that the class object for Class is an instance of itself,
yielding the circular instance0f dependency of figure 1.5. Class is an example of
a metaclass, which is a term used to describe classes whose instances are classes.
Class is Java’s only metaclass.

In Java, all objects have an instantiating class, and all classes are objects. With-
out the circular dependency, the system must support an infinite tower of class
objects, each one an instance of the one above it. Instead, Java uses this circularity
to solve this problem.

24

1.8.3

CHAPTER 1
A few basics

instanceOf
“metaclass» [= T T '
java.lang.Class — _ _
7
& /
g7
A
5/
metalevel Dog
class objects
7
& /
g7
T/
base level 5@ y

Figure 1.5 The object £ido is an instance of the Dog class. Dog is an instance
of the class Class. Class is also an instance of Class. Class is a metaclass
because it is a class whose instances are classes.

The circularity presented in figure 1.5 makes people uncomfortable because we
instinctively mistrust circular definitions. However, as programmers, we are famil-
iar with other kinds of circular definitions. For example, consider recursion. A
method that uses recursion is defined in terms of itself; that is, it has a circular
definition. When used properly, recursion works just fine. Similarly, there are
constraints on the definition of java.lang.Class that make this circularity work
just fine.

For more information about this circularity, see Pulting Metaclasses to Work [33].
Putting Metaclasses to Work is an advanced book on reflection and metaobject pro-
tocols written by one of the authors of this book. It is a good resource for readers
who are interested in the theoretical and conceptual basis for reflection.

Another reflective circularity

Adding inheritance to our previous diagram yields the arrangement in figure 1.6.
Inheritance adds more circularity to the picture. Object is an instance Class,
which can be validated because the following line returns true:

Navigating the inheritance hierarchy 25

instanceOf
of “metaclass» [= = |
‘xﬂstaﬁce/ ~ java.lang.Class — N
— — —
java.lang.Object g,ﬂ
o
S’
5?/
S/
/
metalevel Dog
7 class objects
& 7
g/
5
o/
A
base level Y,
~
fido

Figure 1.6 Object is the top of the Java inheritance hierarchy, so classes of metaobjects,
including Class, are subclasses of Object. This means that the methods of Object are part
of the reflection API. All Java classes are instances of its only metaclass, Class. These two
conditions create a cycle in the diagram.

Class.class.isInstance (Object.class)
Class is also a subclass of Object, validated by
Object.class.isAssignableFrom(Class.class)

which also returns true. Conceptually, we already know these facts because in
Java, each object has one instantiating class, and all classes are kinds of objects.
However, it is comforting that the reflective model is consistent with our previous
understanding of the language.

The new circularity implies additional constraints on the definitions of Object
and Class. These constraints are satisfied when the Java Virtual Machine loads the
java.lang package. Again, a full explanation of the constraints may be found in
Putting Metaclasses to Work [33].

Figure 1.6 also illustrates why Object is considered part of the reflection API. All
metaobjects extend Object, and so they inherit its methods. Therefore, each of
those methods can be used in reflective programming.

26

CHAPTER 1
A few basics

1.9 Summary

Reflection allows programs to examine themselves and make changes to their
structure and behavior at runtime. Even a simple use of reflection allows pro-
grammers to write code that does things that a programmer would normally do.
These simple uses include getting the class of an object, examining the meth-
ods of a class, calling a method discovered at runtime, and exploring the inher-
itance hierarchy.

The metaobject classes Class and Method represent the classes and methods
of running programs. Other metaobjects represent the other parts of the pro-
gram such as fields, the call stack, and the loader. Class has additional methods
to support these other metaobjects. Querying information from these metaob-
jects is called introspection.

Metaobjects also provide the ability to make changes to the structure and
behavior of the program. Using dynamic invocation, a Method metaobject can be
commanded to invoke the method that it represents. Reflection provides several
other ways to affect the behavior and structure of a program such as reflective
access, modification, construction, and dynamic loading.

There are several patterns for using reflection to solve problems. A reflective
solution often starts with querying information about the running program from
metaobjects. After gathering information using introspection, a reflective pro-
gram uses that information to make changes in the behavior of the program.

Each new metaobject class allows us to grow our examples in scope and value.
These examples reveal lessons that we have learned and techniques that we have
applied. Each one follows the same basic pattern of gathering information with
introspection and then using the information to change the program in some way.

JAVA

JAVA Reflection IN ACTION

Ira R. Forman and Nate Forman

magine programs that are able to adapt—with no intervention

by you—to changes in their environment. With Java reflection

you can create just such programs. Reflection is the ability of
a running program to look at itself and its environment, and to
change what it does depending on what it finds. This inbuilt
feature of the Java language lets you sidestep a significant source
of your maintenance woes: the “hard-coding” between your core

application and its various components.

Java Reflection in Action shows you that reflection isn’t hard to

do. It starts from the basics and carefully builds a complete under-
standing of the subject. It introduces you to the reflective way of
thinking. And it tackles useful and common development tasks,

in each case showing you the best-practice reflective solutions that
replace the usual “hard-coded” ones. You will learn the right way
to use reflection to build flexible applications so you can nimbly
respond to your customers’ future needs. Master reflection and
you'll add a versatile and powerful tool to your developer’s toolbox.

What's Inside

* Practical introduction to reflective programming

= Examples from diverse areas of software engineering
* How to design flexible applications

* When to use reflection—and when not to

= Performance analysis

Dr.Ira Forman is a computer scientist at IBM. He has worked on
reflection since the early 1990s when he developed IBM’s SOM
Metaclass Framework. Nate Forman works for Ticom Geomatics
where he uses reflection to solve day-to-day problems. Ira and
Nate are father and son. They both live in Austin, Texas.

/“ MANNING $44.95US/$67.95 Canada

“Even occasional users [of
reflection] will immediately
adopt the book’s patterns
and idioms to solve common
problems.”

—DouG Lea

SUNY Oswego, author of
CONCURRENT PROGRAMMING IN JAVA

“... guide[s] you through one
compelling example after
another, each one illustrating
reflection’s power while
avoiding its pitfalls.”

—JOHN VLISSIDES
IBM, coauthor of
DESIGN PATTERNS

www.manning.com/forman

AUTHOR .
- Authors respond to reader questions

é Ebook edition available

MR i
MV AN o
9 1781932"394184

ISBN 1-932394-18-4

