
SAMPLE LESSON

Get Programming with Go
by Nathan Youngman

Roger Peppé

Lesson 17

 Copyright 2018 Manning Publications

v

Contents

Preface vii
Acknowledgments viii
About this book x
About the authors xiii

Unit 0

GETTING STARTED

Lesson 1 Get ready, get set, Go 3

Unit 1

IMPERATIVE PROGRAMMING

Lesson 2 A glorified calculator 13
Lesson 3 Loops and branches 23
Lesson 4 Variable scope 34
Lesson 5 Capstone: Ticket to Mars 41

Unit 2

TYPES

Lesson 6 Real numbers 45
Lesson 7 Whole numbers 53
Lesson 8 Big numbers 62
Lesson 9 Multilingual text 68
Lesson 10 Converting between types 79
Lesson 11 Capstone: The Vigenère cipher 88

Unit 3

BUILDING BLOCKS

Lesson 12 Functions 93
Lesson 13 Methods 101

Lesson 14 First-class functions 108
Lesson 15 Capstone: Temperature tables 117

Unit 4

COLLECTIONS

Lesson 16 Arrayed in splendor 121
Lesson 17 Slices: Windows into arrays 130
Lesson 18 A bigger slice 138
Lesson 19 The ever-versatile map 146
Lesson 20 Capstone: A slice of life 155

Unit 5

STATE AND BEHAVIOR

Lesson 21 A little structure 161
Lesson 22 Go’s got no class 170
Lesson 23 Composition and forwarding 177
Lesson 24 Interfaces 186
Lesson 25 Capstone: Martian animal

sanctuary 196

Unit 6

DOWN THE GOPHER HOLE

Lesson 26 A few pointers 201
Lesson 27 Much ado about nil 220
Lesson 28 To err is human 230
Lesson 29 Capstone: Sudoku rules 248

vi Contents

Unit 7

CONCURRENT PROGRAMMING

Lesson 30 Goroutines and concurrency 253
Lesson 31 Concurrent state 269
Lesson 32 Capstone: Life on Mars 282

Conclusion Where to Go from here 285
Appendix Solutions 287

Index 339

130

17 LESSON

SLICES: WINDOWS INTO ARRAYS

After reading lesson 17, you’ll be able to

 Use slices to view the solar system through a window
 Alphabetize slices with the standard library

The planets in our solar system are classified as terrestrial, gas giants, and ice giants, as
shown in figure 17.1. You can focus on the terrestrial ones by slicing the first four ele-
ments of the planets array with planets[0:4]. Slicing doesn’t alter the planets array. It just
creates a window or view into the array. This view is a type called a slice.

0 1 2 3 4 5 6 7

terrestrial gasGiants iceGiants

Figure 17.1 Slicing the solar system

131Slicing an array

17.1 Slicing an array

Slicing is expressed with a half-open range. For example, in the following listing,
planets[0:4] begins with the planet at index 0 and continues up to, but not including,
the planet at index 4.

planets := [...]string{
 "Mercury",
 "Venus",
 "Earth",
 "Mars",
 "Jupiter",
 "Saturn",
 "Uranus",
 "Neptune",
}

terrestrial := planets[0:4]
gasGiants := planets[4:6]
iceGiants := planets[6:8]

fmt.Println(terrestrial, gasGiants, iceGiants)

Though terrestrial, gasGiants, and iceGiants are slices, you can still index into slices like
arrays:

fmt.Println(gasGiants[0])

You can also slice an array, and then slice the resulting slice:

Listing 17.1 Slicing an array: slicing.go

Consider this If you have a collection, is it organized in a certain way? The books on a
library shelf may be ordered by the last name of the author, for example. This arrange-
ment allows you to focus in on other books they wrote.

You can use slices to zero in on part of a collection in the same way.

Prints [Mercury
Venus Earth Mars]
[Jupiter Saturn]
[Uranus Neptune]

Prints Jupiter

132 Lesson 17 Slices: windows into arrays

giants := planets[4:8]
gas := giants[0:2]
ice := giants[2:4]
fmt.Println(giants, gas, ice)

The terrestrial, gasGiants, iceGiants, giants, gas, and ice slices are all views of the same plan-
ets array. Assigning a new value to an element of a slice modifies the underlying planets
array. The change will be visible through the other slices:

iceGiantsMarkII := iceGiants
iceGiants[1] = "Poseidon"
fmt.Println(planets)
fmt.Println(iceGiants, iceGiantsMarkII, ice)

17.1.1 Default indices for slicing

When slicing an array, omitting the first index defaults to the beginning of the array.
Omitting the last index defaults to the length of the array. This allows the slicing from
listing 17.1 to be written as shown in the following listing.

terrestrial := planets[:4]
gasGiants := planets[4:6]
iceGiants := planets[6:]

NOTE Slice indices may not be negative.

Listing 17.2 Default indices: slicing-default.go

Prints [Jupiter Saturn
Uranus Neptune]
[Jupiter Saturn]
[Uranus Neptune]

Copies the iceGiants
slice (a view of the
planets array)

Prints [Mercury Venus
Earth Mars Jupiter Saturn
Uranus Poseidon]

Prints [Uranus Poseidon]
[Uranus Poseidon]
[Uranus Poseidon]

Quick check 17.1

1 What does slicing an array produce?
2 When slicing with planets[4:6], how many elements are in the result?

QC 17.1 answer

1 A slice.
2 Two.

133Composite literals for slices

You can probably guess what omitting both indices does. The allPlanets variable is a
slice containing all eight planets:

allPlanets := planets[:]

17.2 Composite literals for slices

Many functions in Go operate on slices rather than arrays. If you need a slice that
reveals every element of the underlying array, one option is to declare an array and then
slice it with [:], like this:

dwarfArray := [...]string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}
dwarfSlice := dwarfArray[:]

Slicing strings
The slicing syntax for arrays also works on strings:

neptune := "Neptune"
tune := neptune[3:]

fmt.Println(tune)

The result of slicing a string is another string. However, assigning a new value to neptune
won’t change the value of tune or vice versa:

neptune = "Poseidon"
fmt.Println(tune)

Be aware that the indices indicate the number of bytes, not runes:

question := "¿Cómo estás?"
fmt.Println(question[:6])

Prints tune

Prints tune

Prints ¿Cóm

Quick check 17.2 If Earth and Mars were the only colonized planets, how could you derive
the slice colonized from terrestrial?

QC 17.2 answer

colonized := terrestrial[2:]

134 Lesson 17 Slices: windows into arrays

Slicing an array is one way to create a slice, but you can also declare a slice directly. A
slice of strings has the type []string, with no value between the brackets. This differs
from an array declaration, which always specifies a fixed length or ellipsis between the
brackets.

In the following listing, dwarfs is a slice initialized with the familiar composite literal syn-
tax.

dwarfs := []string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}

There is still an underlying array. Behind the scenes, Go declares a five-element array
and then makes a slice that views all of its elements.

17.3 The power of slices

What if there were a way to fold
the fabric of space-time, bring-
ing worlds together for instanta-
neous travel? Using the Go
standard library and some inge-
nuity, the hyperspace function in
listing 17.4 modifies a slice of
worlds, removing the (white)
space between them.

Listing 17.3 Start with a slice: dwarf-slice.go

Quick check 17.3 Use the %T format verb to compare the types of dwarfArray and the
dwarfs slice.

QC 17.3 answer

fmt.Printf("array %T\n", dwarfArray)
fmt.Printf("slice %T\n", dwarfs)

Prints array [5]string
Prints slice []string

135The power of slices

package main

import (
 "fmt"
 "strings"
)

// hyperspace removes the space surrounding worlds
func hyperspace(worlds []string) {
 for i := range worlds {
 worlds[i] = strings.TrimSpace(worlds[i])
 }
}

func main() {
 planets := []string{" Venus ", "Earth ", " Mars"}
 hyperspace(planets)

 fmt.Println(strings.Join(planets, ""))
}

Both worlds and planets are slices, and though worlds is a copy, they both point to the same
underlying array.

If hyperspace were to change where the worlds slice points, begins, or ends, those changes
would have no impact on the planets slice. But hyperspace is able to reach into the underly-
ing array that worlds points to and change its elements. Those changes are visible by
other slices (views) of the array.

Slices are more versatile than arrays in other ways too. Slices have a length, but unlike
arrays, the length isn’t part of the type. You can pass a slice of any size to the hyperspace
function:

dwarfs := []string{" Ceres ", " Pluto"}
hyperspace(dwarfs)

Arrays are rarely used directly. Gophers prefer slices for their versatility, especially
when passing arguments to functions.

Listing 17.4 Bringing worlds together: hyperspace.go

This argument is a
slice, not an array.

Planets
surrounded
by space

Prints
VenusEarthMars

136 Lesson 17 Slices: windows into arrays

17.4 Slices with methods

In Go you can define a type with an underlying slice or array. Once you have a type, you
can attach methods to it. Go’s ability to declare methods on types proves more versatile
than the classes of other languages.

The sort package in the standard library declares a StringSlice type:

type StringSlice []string

Attached to StringSlice is a Sort method :

func (p StringSlice) Sort()

To alphabetize the planets, the following listing converts planets to the sort.StringSlice
type and then calls the Sort method.

package main

import (
 "fmt"
 "sort"
)

func main() {
 planets := []string{
 "Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune",
 }

 sort.StringSlice(planets).Sort()
 fmt.Println(planets)
}

Listing 17.5 Sorting a slice of strings: sort.go

Quick check 17.4 Look up TrimSpace and Join in the Go documentation at golang.org/pkg.
What functionality do they provide?

QC 17.4 answer

1a TrimSpace returns a slice with leading and trailing white space removed.
1b Join concatenates a slice of elements with a separator placed between them.

Sorts planets
alphabetically

Prints [Earth Jupiter Mars
Mercury Neptune Saturn
Uranus Venus]

https://golang.org/pkg

137Summary

To make it even simpler, the sort package has a Strings helper function that performs the
type conversion and calls the Sort method for you:

sort.Strings(planets)

Summary

 Slices are windows or views into an array.
 The range keyword can iterate over slices.
 Slices share the same underlying data when assigned or passed to functions.
 Composite literals provide a convenient means to initialize slices.
 You can attach methods to slices.

Let’s see if you got this...

Experiment: terraform.go

Write a program to terraform a slice of strings by prepending each planet with "New ".
Use your program to terraform Mars, Uranus, and Neptune.

Your first iteration can use a terraform function, but your final implementation should
introduce a Planets type with a terraform method, similar to sort.StringSlice.

Quick check 17.5 What does sort.StringSlice(planets) do?

QC 17.5 answer The planets variable is converted from []string to the StringSlice type,
which is declared in the sort package.

	Get Programming with Go
	Copyright
	Contents
	Slices: Windows into Arrays
	back cover

