
M A N N I N G

David Nicolette
FOREWORD BY George Dinwiddie

Dottie
Text Box
SAMPLE CHAPTER

Software Development Metrics
by David Nicolette

Chapter 1

 Copyright 2015 Manning Publications

vii

contents
foreword xi
preface xiii
acknowledgments xvi
about this book xvii

1 Making metrics useful 1
1.1 Measurements and metrics 2

What makes a metric “pragmatic”? 3 ■ Forward-facing and
backward-facing metrics 4

1.2 Factors affecting the choice of metrics 5
Process model 5 ■ Delivery mode 7

1.3 How the metrics are presented 7
1.4 Name of the metric 7
1.5 Summary 8

2 Metrics for steering 9
2.1 Metric: Percentage of scope complete 11

When to use percentage of scope complete 12 ■ A traditional
project 12 ■ An adaptive project 15 ■ How to use percentage of
scope complete 17 ■ Anti-patterns 20

CONTENTSviii

2.2 Metric: Earned value 21
When to use earned value 21 ■ A traditional project 21
Anti-pattern: the novice team 24

2.3 Metric: Budget burn 24
When to use budget burn 24 ■ A traditional project 25
An adaptive project using beyond budgeting 26 ■ Anti-pattern:
agile blindness 30

2.4 Metric: Buffer burn rate 30
When to use buffer burn rate 31 ■ How to use buffer burn rate 31

2.5 Metric: Running tested features 32
When to use running tested features 32 ■ An adaptive
project 33 ■ Anti-pattern: the easy rider 34

2.6 Metric: Earned business value 34
When to use earned business value 35 ■ An adaptive
project 35 ■ Anti-patterns 38

2.7 Metric: Velocity 39
When to use velocity 39 ■ An adaptive project 40
Anti-patterns 42

2.8 Metric: Cycle time 47
When to use cycle time 47 ■ An adaptive project with consistently
sized work items 47 ■ An adaptive project with variable-sized work
items 49 ■ A traditional project with phase gates 50

2.9 Metric: Burn chart 52
When to use burn charts 53 ■ How to use burn charts 53
Anti-patterns 55

2.10 Metric: Throughput 56
When to use throughput 56 ■ A mixed-model project 57

2.11 Metric: Cumulative flow 59
When to use cumulative flow 59 ■ A traditional project 60

2.12 Not advised 62
Earned schedule 62 ■ Takt time 63

2.13 Summary 63

3 Metrics for improvement 65
3.1 Process-agnostic metrics 65
3.2 Technical metrics 66

CONTENTS ix

3.3 Human metrics 66
3.4 General anti-patterns 66

Treating humans as resources 66 ■ Measuring practices
instead of results 67

3.5 Metric: Velocity 68
When to use velocity 68 ■ An adaptive project 69
Anti-patterns 70

3.6 Metric: Cycle time 71
When to use cycle time 71 ■ Tracking improvement in
predictability 72 ■ Tracking improvement in flow 73
Tracking responsiveness to special-cause variation 74

3.7 Metric: Burn chart 75
When to use burn charts 76 ■ Adaptive development project
using a time-boxed iterative process model 76

3.8 Metric: Cumulative flow 78
When to use a cumulative flow diagram 79 ■ An adaptive
project 79

3.9 Metric: Process cycle efficiency 82
When to use process cycle efficiency 83 ■ Non-value-add
time in queues 84 ■ Non-value-add time in active states 85
What is normal PCE? 86 ■ Moving the needle 86

3.10 Metric: Version control history 88
When to use version control history 88

3.11 Metric: Static code-analysis metrics 89
When to use static code-analysis metrics 89

3.12 Metric: Niko Niko calendar 92
When to use the Niko Niko calendar 92 ■ Examples 92
Happy Camper 94 ■ Omega Wolf 94 ■ Zombie Team 95

3.13 Metric: Emotional seismogram 96
When to use the emotional seismogram 96 ■ Examples 97

3.14 Metric: Happiness index 97
When to use the happiness index 98 ■ Mechanics 98

3.15 Metric: Balls in bowls 102
When to use the balls-in-bowls metric 102 ■ Mechanics 102

3.16 Metric: Health and happiness 102
When to use the health-and-happiness metric 103
Mechanics 103

CONTENTSx

3.17 Metric: Personality type profiles 105
When to use personality profiles 106 ■ Anti-patterns 106

3.18 Summary 107

4 Putting the metrics to work 108
4.1 Pattern 1: Periodic refactoring iterations 109
4.2 Pattern 2: Velocity looks good, but little is delivered 113
4.3 Pattern 3: Linear workflow packaged in time-boxed

iterations 121
4.4 Pattern 4: Erratic velocity but stable delivery 124
4.5 Summary 129

5 Planning predictability 130
5.1 Predictability and stakeholder satisfaction 131

Planning and traditional methods 131 ■ Planning and
adaptive methods 132

5.2 Measuring predictability 132
Estimation 132 ■ Forecasting 134 ■ Predictability of
traditional plans 135 ■ Predictability of adaptive plans 136

5.3 Predictability in unpredictable workflows 143
5.4 Effects of high variation in work item sizes 144

Deployable units of work 144 ■ Trackable units of work 145
Demonstrating the value of consistently sized work items 145

5.5 Effects of high work-in-process levels 147
Work in process, cycle time, process cycle efficiency, and
throughput 147 ■ Work in process and defect density 152

5.6 Summary 154

6 Reporting outward and upward 155
6.1 Reporting hours 156

An example 157 ■ Aggregate numbers are approximate 158

6.2 Reporting useless but mandated metrics 158
Categories of problematic metrics 159 ■ Recognizing what’s really
happening 160 ■ Beware of motivational side effects of
metrics 161 ■ Understanding what the numbers mean 162

6.3 Summary 163

index 165

1

Making metrics useful

This book is designed for a person at the bottom of the management hierarchy in a
software development organization. A person in such a position usually has direct
responsibility for delivery as well as management duties at the team level. In a tradi-
tional organization, this role is usually called Project Manager. In contemporary
organizations, people with similar responsibilities may have a title like Team Lead,
Development Lead, Delivery Lead, Scrum Master, or Iteration Manager. In a peer-
based, self-organizing team, these responsibilities may be shared across all team
members.

 The purpose of the book is to provide practical guidance to people who need to
steer work in progress and who want to measure the effectiveness of process-
improvement efforts. It offers a way to do so that doesn’t depend on popular buzz-
words and doesn’t require the work to be done in any particular way. It suggests

This chapter covers
 The difference between measurements and metrics

 What we mean by pragmatic metrics

 Trailing and leading indicators

 The purpose and functions of metrics

 Factors to consider when choosing metrics

2 CHAPTER 1 Making metrics useful

what can be measured based on organizational realities, and not necessarily what
should be measured in an ideal world.

 Anything you do in the course of your work ought to have a clear purpose. Other-
wise, you’re just performing random activities in order to stay busy. Metrics for soft-
ware development have a couple of purposes. First, you can use them to judge how
well you’re tracking toward the goals of a project. Second, you can use metrics to help
you understand whether you’re improving your delivery performance.

 With that in mind, metrics can help with the following:

 Steering work in progress
 Guiding process improvements

Software development and delivery is usually carried out either as a discrete project
that has a beginning and an end, or as an ongoing activity for evolutionary develop-
ment or production support. In either case, there are expectations about how the
work will progress. You need to know, as early as possible, when actual performance is
diverging from expected performance so that you can take appropriate corrective
action. I think of this action as steering the work: directing the work toward a goal.

 It has become the norm for software professionals to assess their own practices and
methods almost continuously, and to try to improve the way they do their work. Met-
rics can be useful to help you understand when a change leads to improvement and
when it doesn’t. Metrics can also help you make a case to change formal methods
based on quantitative results from using a proposed new approach.

 This chapter sets the stage for our examination of metrics for software develop-
ment. To choose metrics appropriate to your work context, you need to know what
decisions you’re trying to support through metrics. You also need to understand how
each metric is affected by a few key factors, such as whether you’re taking a traditional
or adaptive approach to development, what sort of process model you’re using, and
whether you’re running discrete projects or carrying out continuous development
and support.

1.1 Measurements and metrics
A measurement is a quantitative observation of one of the following:

 Something relevant to the decisions you have to make
 Information you have to report regarding the progress of development
 The effects of process improvements

A metric is a recurring measurement that has informational, diagnostic, motivational,
or predictive power of some kind. It helps you understand whether you’re at risk of
missing expected results, or whether changes in process or practices are resulting in
improved performance.

3Measurements and metrics

1.1.1 What makes a metric “pragmatic”?

Sometimes, managers get a bit carried away with metrics. They track all the metrics
they can think of, or all the metrics their favorite project-management tool happens to
support. They may or may not be able to tell you just why they’re tracking any given
metric. That sort of thing isn’t practical; it’s busywork. It’s better to be pragmatic
about measurement—that is, to have a clear purpose in mind for each metric you use.

 There is effort and cost involved in collecting data and tracking metrics. To justify
this cost, any metrics you use must have a practical purpose. A metric is pragmatic if it
provides information that helps a stakeholder make a decision.

 People usually think of the customer of a software product as the primary or only
stakeholder of the software development project. For the purposes of this book, you
are the main stakeholder, because you’re the party with primary responsibility for
tracking progress. Your management, other departments in your company, and mem-
bers of the development team are also stakeholders.

 Ideally, any metrics you track will help at least one of these stakeholders make deci-
sions of one kind or another. Customers may make decisions about scope and sched-
ule depending on how the work is progressing. Management may make decisions
about portfolio management and budget allocations. Team members may make deci-
sions about how to improve their delivery effectiveness. You may make decisions about
how to steer work in progress.

 All too often, project managers track metrics just because they can, or just
because “it’s always been done that way.” I’ve seen managers get carried away with
graphics or query options offered by their project-management software. I’ve seen
others track metrics that don’t apply to the work they’re managing, because they used
the same metrics on previous projects where those metrics did apply. And I’ve seen
managers use metrics that formally belong to the methodology they think they’re
using, when in fact the work isn’t done according to that methodology. I want to
encourage you to consider the practical purpose of any metrics you choose to use,
and to avoid creating extra work for yourself by collecting data that won’t or can’t be
used to support decisions.

TRAILING AND LEADING INDICATORS

We’re interested in measuring things that have already happened as well as predicting
things that are likely to happen in the future. Measurements of things that have
already happened can often help us predict how things are likely to progress going
forward.

 Any metric that provides information about things that have already happened is
considered a trailing indicator or lagging indicator. Any metric that helps us predict how
things will happen in the future is considered a leading indicator. A leading indicator
often comprises a series of trailing indicators along with a calculated trend that sug-
gests how things are likely to play out, provided circumstances remain stable.

4 CHAPTER 1 Making metrics useful

FUNCTIONS OF METRICS

Metrics have three functions, or effects:

 Informational
 Diagnostic
 Motivational

When a metric provides plain information, it serves an informational function. When
a metric calls attention to a problem, it serves a diagnostic function. When a metric
influences people’s behavior, it serves a motivational function. Metrics may perform in
more than one of these ways at the same time and can have effects that you didn’t
intend or plan—especially motivational effects.

1.1.2 Forward-facing and backward-facing metrics

There are a couple of different general approaches to software development and
delivery. The traditional approach involves a thorough analysis of stakeholder needs, a
comprehensive solution design, a careful assessment of risks, and a fixed budget allo-
cation in advance. The adaptive approach involves defining a vision for the desired
future state, performing sufficient analysis to get started, and exploring the solution
space in collaboration with stakeholders through incremental delivery and frequent
feedback.

 Many metrics boil down to a comparison between expected and actual perfor-
mance. With the traditional approach, the definition of expectations is in the compre-
hensive project plan that’s created before development begins. As development
progresses, the definition of success (the project plan) lies in the past. Even when a
plan is re-baselined, the new plan lies in the past, from the perspective of the develop-
ment team. I think of metrics that support traditional development as backward-facing
metrics, because you have to face the past in order to see your target (see figure 1.1).

Direction of progress

Manager GoalBasis of
measurement

Approved
plan

Direction of measurement

Line of sight

Traditional approach:
The approved plan is the definition of success.

When reality differs, reality must be made
to conform with the plan.

Figure 1.1 Traditional development: you must face the past to see your target.

5Factors affecting the choice of metrics

With the adaptive approach, the definition of expectations is the point-in-time under-
standing of the future-state vision as of today. This understanding evolves day by day as
development progresses. I think of metrics that support adaptive development as for-
ward-facing metrics, because you have to face the future in order to see your target (see
figure 1.2).

 For the purpose of choosing meaningful metrics, the key distinction is the way the
triple constraint or iron triangle of scope, schedule, and budget is managed. With the
traditional approach, the scope, schedule, and budget are all fully defined in
advance. Metrics are used to track the development team’s performance compared
with the plan.

 With the adaptive approach, one or two of these factors are left flexible on pur-
pose. Metrics are used to assess whether the scope, schedule, or budget has to be
adjusted to keep the work on track toward the future-state vision. Some metrics are
meaningful only with one approach or the other.

1.2 Factors affecting the choice of metrics
In addition to the general approach—traditional or adaptive development—you also
have to consider the process model and delivery mode you’re using to develop and deliver
the solution.

1.2.1 Process model

The sort of development process you’re using will influence your choice of metrics.
Some metrics depend on the work being done in a certain way. A common problem is
that people believe they’re using a given process, when in fact they’re working accord-
ing to a conflicting set of assumptions. If you apply metrics that depend on the pro-
cess being done correctly, you won’t obtain information that can help you steer the

Direction of progress

Manager GoalBasis of
measurement

Evolving
plan

Original
plan

Direction of measurement

Line of sight

Adaptive approach:
Success means meeting customer needs as of the date of
delivery. The evolving plan is used for navigation. When

reality differs from expectations, you adapt the plan.

Figure 1.2 Adaptive development: you must face the future to see your target.

6 CHAPTER 1 Making metrics useful

work or measure the results of process-improvement efforts. You have to measure
what’s really happening, regardless of the buzzwords people use to label it.

 Countless published and home-grown processes are in use to build and deliver
software. In my experience, they all boil down to just four basic reference models:

 Linear—Based on the assumption that software development must proceed in
order through a distinct series of steps. The steps include activities such as busi-
ness analysis, requirements specification, solution design, coding, testing,
deployment, and support. The linear process model is sometimes called a water-
fall process, because work can’t flow backward any more than water can flow
uphill.

 Iterative—Based on the assumption that a single pass through the requirements
is unlikely to result in a good solution. With an iterative process, the require-
ments are revisited time and again, and the solution is built up through a series
of iterations. This may involve progressive refinement of the solution, gradual
addition of specific features, or a combination.

 Time-boxed—The same as the iterative model, with the addition of two defining
characteristics: (1) each iteration is the same length, and (2) a potentially ship-
pable increment (or vertical slice) of the solution is delivered by the end of each
time-boxed iteration.

 Continuous flow—Based on the assumption that the most effective way to keep
work moving forward is to focus on maintaining a continuous flow, usually by
controlling the level of work in process (WIP) and using techniques adapted
from the Lean school of thought.

All real-world processes are based primarily on one of these four reference models
and include elements from one or more of the remaining three. You can usually use
metrics that apply to the reference model that is closest to the actual process you’re
using. As this is written, the iterative model is the most widely used and has the largest
range of variations in practice.

 If your organization is typical, then a couple of things are probably true:

 More than one process model is in use.
 Each process model in your organization is a hybrid model.

Software organizations of any appreciable size almost always apply different processes
to different types of work, depending on the nature of the work. For example, you
might use a linear process for highly predictable, routine projects; an iterative or
time-boxed process for work that has to do with creating or maintaining competitive
advantage; and a continuous-flow process for production support and infrastructure
support.

 In addition, only a vanishingly small number of organizations use any given pro-
cess exactly as it’s defined in books. Processes are almost always customized to the
needs of the particular organization. Sometimes the modifications are well-reasoned

7Name of the metric

adjustments that take into account the local realities of the organization. Other times
they’re the result of misunderstanding how a process is meant to work, particularly
when it’s a relatively new process that’s just becoming popular.

 This book takes no sides on those issues. As a practical matter, the important thing
for you is to be able to recognize how your work really flows and which metrics might
help you steer.

1.2.2 Delivery mode

Software is built, delivered, and supported in one of two ways: as discrete projects or as
ongoing development and support. A project has a start date and an end date.
Between those dates, a team strives to achieve one or more goals—delivering a set of
application features or standing up an IT asset. Some organizations form a new team
for each project, whereas others assign projects to stable teams. Projects are often
treated as capital investments and budgeted accordingly.

 In an ongoing development and support mode, application or infrastructure fea-
tures are delivered incrementally on an ongoing basis. Applications or technical assets
are usually supported by the same team that enhances them. Ongoing work is often
treated as an operating expense and budgeted accordingly.

 In a corporate IT department, production support and operations are usually man-
aged as ongoing support, whereas application development and new infrastructure
features are usually managed as discrete projects. But ongoing delivery is also feasible
for application development. Many internet-based email services, online catalog sales
systems, social media sites, and other types of applications are developed and sup-
ported in an ongoing mode that has no planned ending date, sometimes called con-
tinuous beta. Some companies are finding this mode works well for all kinds of IT work
and are moving away from discrete projects altogether.

 Some metrics are sensitive to this factor and are meaningful with only one of these
two options. The largest challenge when choosing metrics for steering work is the case
when the same team has ongoing support responsibilities combined with project
work—not unusual for infrastructure teams.

1.3 How the metrics are presented
Chapters 2 and 3 deal with individual metrics in isolation. We’ll cover the purpose,
mechanics, enabling factors, and common anti-patterns (inappropriate uses) of each
metric. This is the format I’ll use to describe each metric:

Name of the metric
Question(s) answered
 What does this metric tell us? It tells us this and that.

Description
 A brief description of the metric Value
 The value we can obtain by using the metric

8 CHAPTER 1 Making metrics useful

Dependencies
 Approach: traditional or adaptive
 Process model: linear, iterative, time-boxed, continuous flow, or any
 Delivery mode: discrete project or continuous development

Success factors
 Special considerations above and beyond the basic dependencies

1.4 Summary
In this chapter, you learned the following:

 A measurement is a point-in-time observation of a single data point, whereas a
metric comprises recurring measurements organized in a way that’s designed to
provide information useful for making decisions about your work.

 You use metrics for two purposes: to help steer work in progress and to help
monitor the effectiveness of process-improvement efforts.

 Metrics have three functions or effects: informational, diagnostic, and motiva-
tional. Any metric can perform more than one of these functions simultane-
ously. Metrics often have a motivational effect even when you don’t intend it.

 Your choice of metrics depends on three general factors: the approach (tradi-
tional or adaptive), the process model (linear, iterative, time-boxed, or continuous
flow), and the delivery mode (discrete project or continuous evolution/support).

 The definition of success in traditional software development is to conform
closely to a project plan developed in the past, sticking to the originally defined
scope, schedule, and budget. Because the target lies in the past, to track pro-
gress you must use backward-facing metrics.

 The definition of success in adaptive software development is to deliver the
business value that stakeholders require at the time they need it, at the appro-
priate level of quality, and at the right price point. Because the target lies in the
future, to track progress you must use forward-facing metrics.

David Nicolette

W
hen driving a car, you are less likely to speed, run out
of gas, or suffer engine failure because of the measure-
ments the car reports to you about its condition. De-

velopment teams, too, are less likely to fail if they are measur-
ing the parameters that matter to the success of their projects.
This book shows you how.

Software Development Metrics teaches you how to gather, ana-
lyze, and effectively use the metrics that defi ne your organiza-
tional structure, process models, and development methods.
The insights and examples in this book are based entirely on
fi eld experience. You’ll learn practical techniques like build-
ing tools to track key metrics and developing data-based early
warning systems. Along the way, you’ll learn which metrics
align with different development practices, including tradi-
tional and adaptive methods.

What’s Inside
● Identify the most valuable metrics for your team
 and process
● Differentiate “improvement” from “change”
● Learn to interpret and apply the data you gather
● Common pitfalls and anti-patterns

No formal experience with developing or applying metrics is
assumed.

Dave Nicolette is an organizational transformation consultant,
team coach, and trainer. Dave is active in the agile and lean
software communities.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/software-development-metrics

$47.99 / Can $55.99 [INCLUDING eBOOK]

Software Development Metrics

SOFTWARE ENGINEERING

M A N N I N G

“A real boon to those
making the transition from a
traditional serial development

model to an agile one.”—From the Foreword by
 George Dinwiddie

“Provides a solid foundation
for how to start measuring

 your development teams.”—Christopher W. H. Davis
Nike, Inc.

“Measurement is the key
to making and consistently
hitting scheduling targets.
This book will help you

confi dently build a
schedule that is accurate

 and defensible.”
—Shaun Lippy

Oracle Corporation

SEE INSERT

