
M A N N I N G

Ashish Sarin

Covers Portlet 2.0, Spring 3.0 Portlet MVC,
WSRP 2.0, Portlet Bridges, Ajax, Comet,

Liferay, GateIn, Spring JDBC and Hibernate

IN ACTION

S A M P L E C H A P T E R

Portlets in Action

by Ashish Sarin

 Chapter 1

 Copyright 2011 Manning Publications

v

brief contents
PART 1 GETTING STARTED WITH PORTLET DEVELOPMENT1

1 ■ Introducing portals and portlets 3

2 ■ The portlet lifecycle 48

3 ■ Portlet 2.0 API—portlet objects and
container-runtime options 86

4 ■ Portlet 2.0 API—caching, security,
and localization 132

5 ■ Building your own portal 167

6 ■ Using the portlet tag library 207

PART 2 DEVELOPING PORTLETS USING SPRING
 AND HIBERNATE ...231

7 ■ Getting started with Spring Portlet MVC 233

8 ■ Annotation-driven development with Spring 281

9 ■ Integrating portlets with databases 334

BRIEF CONTENTSvi

PART 3 ADVANCED PORTLET DEVELOPMENT373

10 ■ Personalizing portlets 375

11 ■ Communicating with other portlets 405

12 ■ Ajaxing portlets 437

13 ■ Reusable logic with portlet filters 494

14 ■ Portlet bridges 510

15 ■ Web Services for Remote Portlets (WSRP) 533

3

Introducing portals
and portlets

When the internet first came about, “content” reigned supreme. Then the “user
experience” took over. If you’ve been an internet user for the last couple of
years, this transformation didn’t go unnoticed. During this transformation, most
websites got a facelift intended to enrich the user experience by providing user-
customizable themes and features that allow users to control what content is pre-
sented and how it’s presented.

 The lack of a standard approach and technology to address user-experience
requirements, such as personalization, customization, and content aggregation in
web applications, led to ad hoc ways of implementing these features. The result was
maintenance nightmares, lost developer productivity, and longer turnaround time
for incorporating new features. With the arrival of the Java portlet technology, this

This chapter covers
■ An overview of portals and the Java portlet

technology
■ Installing and using Liferay Portal
■ Setting up the Eclipse IDE and creating the

project structure
■ Developing a Hello World portlet

4 CHAPTER 1 Introducing portals and portlets

has changed. The Java portlet technology provides a standard approach to incorporat-
ing user-experience features in web applications.

 The Java portlet technology isn’t a standalone technology, and using JSPs and
servlets (along with portlets) in portal development is common. The Java portlet
technology not only helps you quickly build a web portal but also provides service
orchestration, in which distinct services can be integrated seamlessly at the user
interface layer, allowing businesses to quickly adapt to changes.

 This chapter will first introduce you to web portals and the portlet technology, and
to the infrastructure you need to deploy a web portal that uses portlet technology.
Most of the latter half of this chapter is dedicated to quickly getting started with Life-
ray Portal and setting up the Eclipse IDE. Towards the end of this chapter, you’ll see
how to deploy a Hello World portlet on Liferay Portal.

 The concepts behind portlets can be best understood through deploying example
portlets on a portal server and adding them to a portal page. We use Liferay Portal in
this book because of its ease of installation, intuitive interface, low memory footprint,
and more importantly, you can download and use the Community Edition of Liferay
Portal for free. This book touches upon some of the features of Liferay Portal at a
high level, but it shouldn’t be considered a reference or user guide for Liferay Portal.

NOTE Even though this book uses Liferay Portal for deploying and running
portlets, the concepts covered in the book are generic and can be used for
developing portlets for any Portlet 2.0–compliant portal server.

If you’re already familiar with the concepts behind portals and portlet technology, you
may want to skim or skip this chapter. If you’re new to portlets, this chapter will give
you a solid foundation for the rest of the book.

 As portals and portlet technology go hand in hand, we’ll first look at what a web
portal is and how portlets can be used to develop a web portal.

1.1 What is a portal?
Everyone who’s been using the internet knows something about portals. It’s not a new
concept, but there was no formal definition until recently.

 A portal is a collection of mini web applications, called portlets. A portal supports
features like personalization, content aggregation, authentication, and customization.
Portlets act as windowed web applications within the portal, and each window in a por-
tal web page (called a portal page) represents a portlet.

 To get a feel for portals, you can visit the iGoogle portal (http://www.google
.com/ig). Figure 1.1 shows the iGoogle portal home page after a user logs into it.
You can see portlets showing emails from Gmail, headlines from CNN, content
from YouTube, and so on. The portlets can be personalized by users to change the
number of emails displayed in the portlet, the number of CNN headlines they
want to view, the location they want to receive RSS feeds from, and so on. Users
can drag and drop these portlet windows on the portal page to customize the way

5What is a portal?

information is organized. They can also choose to add more portlets or remove
one or more of them from the portal page.

 The take-away from figure 1.1 is that the user gets a unified view of information
from different sources. This is similar to a TV showing different channels in distinct
windows on the screen.

NOTE I’ve referred to portlets as mini web applications because they provide
limited information and features to the user compared to the original web
applications they represent. For example, in figure 1.1, the Gmail portlet dis-
plays email and provides options to compose or delete emails, but it doesn’t
provide an option to add emails to your tasks list, which is provided by the
original Gmail web application.

The core business functionality provided by a portal is no different from what a set of
distinct web applications would provide. In figure 1.1, the content (information or
service) provided by the Gmail, YouTube, and CNN portlets is also provided by the
Gmail, CNN, and YouTube applications.

 But if the business functionality remains the same, what’s the business value in
creating a portal? In figure 1.1, the information displayed to the user comes from
disparate data sources (as depicted in figure 1.2), and the portal aggregates the
information to provide a consolidated view to the user.

 The use of portals to aggregate content from different sources results in increased
efficiency for the user, and an enriched user experience, because the user doesn’t
need to go to distinct web applications to access the content. In figure 1.2, the portlets

Figure 1.1 The iGoogle home page containing portlets that show information from different sources:
CNN, YouTube, Gmail, and so on. The portlets display the most relevant content and provide limited
features to the user, in contrast to full-fledged web applications.

6 CHAPTER 1 Introducing portals and portlets

on the iGoogle portal page display the most frequently accessed information or fea-
tures from the applications they represent.

NOTE Developing a web portal makes good business sense if you need to
gather and present information from various data sources, applications, and
systems to users based on their identity. It’s expected that the user experience
will be enhanced by a single point of entry to the information, and by the flex-
ibility to customize and personalize the information that’s provided.

Now that you know about portals, let’s take a look at the benefits of using portals,
compared to web applications, for content aggregation and personalization.

1.2 Benefits of web portals
Web portals provide benefits beyond those of a group of distinct web applications that
serve content. In this section, we’ll look at how end users access content from differ-
ent information sources using distinct web applications, and how web portals and web
applications can coexist to take the user experience to new heights.

 For instance, a user might access content from different sources by directly access-
ing different web applications, or by accessing those web applications from an intra-
net website, or by using a combination of web portals and web applications.

1.2.1 Enriched user experience

Let’s say that as an employee of an organization you need to frequently access
organization-specific business-to-employee (B2E) applications (like time card, help
desk, knowledge management, and service request applications) so you can keep
track of missing time cards, recently published articles, closed help desk tickets, and
so on. These different web applications have their own data sources, and you’d usually

Figure 1.2 Portals aggregate content from different information sources.
The portlets on the iGoogle portal page generate content for the page by
retrieving information from the CNN, YouTube, and Gmail applications.

7Benefits of web portals

need to go to each of these different applications to access this information. This
interaction between employee and B2E applications is represented in figure 1.3.

 This isn’t an optimal way of accessing information and services, because you need
to go to different web applications and authenticate each time. An intranet site that
provides a single sign-on feature and access to all these different applications would
be a better solution.

 Suppose the organization takes a step ahead and provides a single sign-on solution
and access to the different web applications from an intranet site, as represented in
figure 1.4. By providing the single sign-on feature, the organization has provided easy
access to the B2E applications, but you still need to filter the information that interests
you. For example, if you’re interested only in automobile-related articles, you’ll have
to search for the articles in the knowledge management application; if you’re only
interested in your open help desk tickets, you’ll need to search for them in the help
desk application; and so on.

 These individual B2E applications may provide some level of personalization and
customization based on your identity and preferences, but this approach still fails to
provide a unified view of information and easy access to services offered by different
B2E applications. For instance, you still need to go to the help desk application to
access its information and services.

 The ideal scenario for an employee is to view information and access the most
commonly used services from distinct B2E applications in a single application. This
scenario is represented in figure 1.5 and is achieved using intranet portals. Here, the

Figure 1.3 In this scenario, the user interacts with multiple web applications
to access content. A separate web application exists to access content from
each of the distinct sources of information.

8 CHAPTER 1 Introducing portals and portlets

Figure 1.4 The organization’s intranet makes it easy for users to access different web
applications by redirecting users to the original web applications. In this scenario, the
user is still interacting with individual web applications for information and services.

Figure 1.5 The organization’s intranet portal gathers content from different
data sources, which means that users don’t need to access different web
applications for information or services. In figure 1.4, the intranet website
simply redirected users to the original web applications, but when using portals,
the user is taken to the original web application only if little-accessed
information or services are requested by the user.

9Benefits of web portals

user mostly interacts with the portal, and in some cases also with the original web
application. For instance, the portal directs the user to the knowledge management
web application if certain features or details are requested by the user.

 Usually, portals provide users with the most-used features of the original web appli-
cation, and when less-used features are requested, the portal redirects the user to the
original application. The portal may not even display the least-used features but may
instead provide an option to visit the original application.

 Some of the web portal’s functionality may be built into the portal itself, so that no
external web applications or systems are involved. For instance, if you don’t have a
separate content management system available, you could develop it as part of your
web portal.

NOTE The design of existing systems greatly affects how quickly a business
can start using portals. In figure 1.5, information for the knowledge manage-
ment and time card applications comes from the databases that were used by
these applications, which requires rewriting the business logic. In contrast,
the help desk application’s business logic is accessed using Web Services
because the application was designed as a set of services that can be reused by
other applications—a service-oriented architecture (SOA) approach. It’s rec-
ommended that applications make use of SOA internally, because it allows
you to expose business functionality as a service in the future, saving you the
effort of redoing the business logic.

Portlets in a web portal provide limited content compared to the dedicated web appli-
cations they represent, which means portals have to be used along with web applica-
tions to provide content to the user.

1.2.2 Unified information view

Web applications generally target a part of the business process and not the complete
business. For example, there would be separate web applications for customer man-
agement, inventory, order processing, and so on. These web applications give a dis-
jointed view of the business, because the inventory application doesn’t know about
orders placed, and the customer management application doesn’t know about the
inventory status.

 These web applications don’t need to know about information managed by other
web applications, but a business user might need a unified view of the business. A

Portals complement web applications
Portals aren’t a replacement for web applications but are meant to extend the func-
tionality of existing web applications. Portals gather relevant content from the
existing information systems and display it to users based on their identity and
preferences. When certain information or features are requested by the user, the
portal redirects the users to the original web applications.

10 CHAPTER 1 Introducing portals and portlets

web portal can bridge the information gap between these individual web applica-
tions by bringing information together from the different data sources used by these
web applications, and presenting it to a business user, providing the unified view
that’s required.

 The portlets in a web portal are dynamic, and they may interact with each other to
show relevant information in response to user actions. For instance, in a Weather por-
tal (which contains Location and Weather portlets), if a user selects a city from the
Location portlet, the Weather portlet updates the content to display the weather fore-
cast for the selected city. In contrast, web applications communicate with each other
using databases or messaging middleware. The result of such communication isn’t
immediately visible and requires users to access the web applications separately to view
the effects of the communicated information.

A portal consists of multiple portal pages, just as web applications consist of multiple
web pages. The only way content can be added to a portal page is via portlets.

1.3 What is a portlet?
A portlet is a pluggable user interface component that provides specific content, which
could be a service or information from existing information systems. Portlets provide
the user interface of the portal by accessing distinct applications, systems, or data
sources and generating markup fragments to present their content to portal users.
Some examples of portlets are a Weather portlet that provides weather information
for a city by accessing a Yahoo! Weather RSS feed, or a Help Desk portlet that displays
the pending help desk tickets from a database.

 The primary responsibility of a portlet is to generate a markup fragment (such as
HTML, XML, or WML), which is then displayed on a portal page within a window,
called a portlet window. A portal page usually displays multiple portlets in distinct port-
let windows, each with its own title and set of buttons to change its look and feel, set its
preferences, and maximize, minimize, or remove the window.

 Figure 1.6 shows what a portlet window looks like when rendered on a portal page.
The options available for a portlet, such as changing window state, preferences, and

One size doesn’t fit all
Portals aren’t the answer to every business requirement; organizations should con-
sider carefully whether there is a business case for developing a portal. If the busi-
ness requirement doesn’t require gathering content from distinct information
systems to loosely integrate disparate systems, the business should consider
developing independent web applications to meet the business requirement.

The personalization and customization features of portals are important from the
user’s perspective. From the business’s perspective, the most important require-
ment to consider is content aggregation.

11What is a portlet?

configuration, may vary based on the user’s permissions and the configuration of the
portlet in the portal.

 Portlets are pluggable user interface components, which means a portlet is responsible
for generating the user interface specific to that component, unlike servlets, where
the user interface isn’t componentized. So what makes portlets pluggable user inter-
face components?

 A portlet generates a markup fragment, and not the complete portal page. The
responsibility of displaying the complete portal page rests with the portal server, which
aggregates fragments generated by portlets and displays them in the portlet windows
on the portal page. This division of responsibility makes it possible for a portlet to
focus on generating its own user interface.

 Like any software component, portlets can be combined with other portlets to cre-
ate a web portal, bringing pluggability to the user interface. For instance, a News port-
let that shows news from the CNN website can be used in any web portal that intends
to show news from CNN.

NOTE A web application that contains portlets is referred as a portlet applica-
tion. In the rest of the book, I’ll use web application to refer to applications con-
sisting of servlets and JSPs and portlet application to refer to a web application
consisting of portlets (which may also contain servlets and JSPs). A portlet
application usually also contains servlets and JSPs.

Portlets generate user interfaces and so do servlets. It’s possible to create a web portal
using Java servlet technology, but there are limitations. In the next section, we’ll look
at the reasons for choosing portlets over servlets and widgets or gadgets. We’ll also
look at why portlets are best suited for creating mashups.

Figure 1.6 An Articles portlet with buttons to configure, minimize, maximize, and
close the portlet window. The options shown for a portlet will vary depending upon
its configuration and the user’s access permissions.

12 CHAPTER 1 Introducing portals and portlets

1.4 Why use portlets?
In the service-oriented architecture (SOA), service orchestration (or collaboration)
makes it possible to develop applications from existing services. As portlets represent
services and are pluggable components, you can get plug and play behavior using
portlets. Because portlets can interact with each other at the user interface layer (a
process referred to as inter-portlet communication), they play a crucial role in developing
SOA applications.

 If the services represented by portlets in a portal need to interact with each other
to orchestrate a service, the portlets need to communicate. The portlet specification
enables this inter-portlet communication using events and public render parameters. The
portlet container is responsible for handling the communication between portlets, keep-
ing communicating portlets and the distinct services they represent independent of
each other.

NOTE The integration between services is only at the presentation layer; ser-
vices don’t interact directly with each other, but through the presentation
layer provided by the portlets.

One of the most important features of portlets is inter-portlet communication, which
is built into the portlet architecture.

1.4.1 Inter-portlet communication vs. inter-servlet communication

Inter-portlet communication makes it possible to develop web portals in which port-
lets can update their content based on actions taken by users in other portlets.

 Let’s say there are three portlets:

■ Location portlet—Allows users to search for and select a city
■ Weather portlet—Provides weather information service for a city
■ Businesses portlet—Provides information about businesses in a city

The location, weather, and businesses services are distinct services, and each of the
portlets wrapping these services generates a user interface specific to the service, as
shown in figure 1.7. For instance, the Location portlet will generate a user interface
that allows users to search for and select a city, and the Businesses portlet will display
information about a business based on predefined categories. The Location portlet

The Portlet 1.0 vs. Portlet 2.0 specification
The two versions of the Java Portlet Specification that currently exist are 1.0
(described by JSR 168) and 2.0 (described by JSR 286). The 2.0 specification
addresses most of the frequently required features of portlets that were missing
from the 1.0 specification, such as resource serving (discussed in chapter 12),
inter-portlet communication (chapter 11), and portlet filters (chapter 13). Most
portlet containers support both specifications, and the 2.0 specification is back-
ward compatible with the 1.0 specification.

13Why use portlets?

can interact with the Weather and Businesses portlets via the inter-portlet communica-
tion mechanisms provided by the portlet container, resulting in seamless integration
of the services.

 Servlets generate complete web pages, not markup fragments, and they can’t work
in collaboration with other servlets to generate a complete web page. A servlet can be
designed to encapsulate a service, but it will be a standalone service because the web
container doesn’t allow communication between servlets unless they’re directly
dependent upon each other.

 Let’s now look at how widgets compare to portlets.

1.4.2 Portlets vs. widgets

Widgets (commonly also called gadgets) are similar to Java portlets in the sense that
they’re used to aggregate content from distinct data sources on a web page, and they
provide some level of personalization of content and behavior. You can quickly
develop a widget if you know JavaScript and XML; there’s a steeper learning curve
involved with the Java portlet technology.

 Portlets, in contrast, are well suited for medium to complex application require-
ments, which are often seen in enterprise portals. Portlets provide a sophisticated API
to standardize inter-portlet communication, request processing, and server-side session
management. The portal infrastructure, which includes a portlet container and portal
server, provides portlet instance lifecycle management, instance pooling, content cach-
ing, security, a consistent look and feel, and single sign-on features to your web portal.

 It is important to note that widgets in a web page typically interact directly with
information systems to generate their content. The web page shows aggregated con-
tent because it contains different widgets, which interact with different information

Figure 1.7 The Location, Businesses, and Weather portlets interact with
each other. The city information is passed from the Location portlet to the
other portlets using the inter-portlet communication mechanism, resulting
in seamless integration of the services represented by the portlets.

14 CHAPTER 1 Introducing portals and portlets

systems, so no special mechanism is employed by a web page containing widgets to
show aggregated content. In contrast, a portal server aggregates content generated by
portlets to form a portal page.

 Figure 1.8 highlights the difference in how aggregated content is displayed using
widgets and portlets. It shows a portal page containing portlets P1 and P2 and a web
page containing widgets W1 and W2. The portal page is generated by the portal server
after aggregating content generated by the portlets. The web page doesn’t need any
special mechanism to show aggregated content because W1 and W2 generate their
content by directly interacting with their information systems.

 If you’re using portlets, that doesn’t mean you can’t use widgets in your web portal.
Portal servers like Liferay Portal and WebSphere Portal, provide built-in portlets that
integrate with Google gadgets to provide access to the services offered by the gadgets.

NOTE With the use of portlet bridges, which we’ll discuss in chapter 14, you can
also develop portlets as web applications, using well-established frameworks
like Spring MVC, JSF, Wicket, and Struts, without learning portlet technology.

Let’s now look at what a mashup is and how portlets can be used to create mashups.

Figure 1.8 A portal server aggregates content generated by different portlets to form a portal page.
Widgets in a web page interact with different information systems to obtain their content.

15Portal infrastructure

1.4.3 Creating mashups

A mashup is an application that uses data or services from distinct sources and com-
bines them to produce a new user service. Portlets can be used to create mashups by
aggregating data from different data sources and combining it.

 An important distinction between mashups and portals is that portals don’t really
combine information from different sources to provide a new user service; instead
they show information from different sources in different portlets. Mashups, on the
other hand, combine information to provide a new service. An application that
searches several different shopping engines to find the lowest price for a product is an
example of a mashup.

 Because portlets are responsible for interacting with data sources to provide infor-
mation to users, you can create portlets that interact with multiple data sources, and
combine the data to provide a new service to the user. Additionally, users can specify
preferences about the data source or the type of information they’re interested in,
resulting in a personalized mashup.

 Now that you know what a portal is and how portlets provide content for a portal,
let’s see what’s involved in deploying portals.

1.5 Portal infrastructure
When creating web applications using servlets, the web container provides the envi-
ronment that manages the servlet and the web server is responsible for serving web
pages to the web browser. Similarly, portlets are managed by the portlet container, and
the portal server is responsible for serving portal pages to the web browser. The portlet
container and portal server together form part of the portal infrastructure required
for deploying web portals.

 Let’s look at the portal server and portlet container features in detail and at how
they work together to deliver content.

1.5.1 The portlet container

A portlet on a portal page is represented by a portlet instance inside the portlet con-
tainer. Figure 1.9 shows the portal infrastructure components and how they fit together.

 A portlet container’s responsibilities include managing portlet instances and send-
ing the fragments generated by the portlets to the portal server for aggregation.

LIFECYCLE MANAGEMENT

The portlet container is responsible for invoking lifecycle methods on the portlet
instances and providing them with the required runtime environment. A portlet con-
tainer is an extension to a servlet container; it provides what a servlet container pro-
vides, and it additionally manages the portlet instances. The portlets access their
runtime environment using the PortletContext object (similar to ServletContext),
which allows portlets to share data with other portlets and with servlets in the same
portlet application.

16 CHAPTER 1 Introducing portals and portlets

PORTLET PORTABILITY

A portlet container must follow the requirements laid down by the Portlet 2.0 speci-
fication in order for portlets to be portable across portlet containers. Most portlet
containers provide extensions to the base set of requirements detailed in the specifi-
cation, and it’s the choice of the portlet developer whether to use such features or
not. Using these extensions will make the portlets noncompliant with the specifica-
tion, so they won’t be portable across different portlet containers. If you’re develop-
ing portlets targeted to a specific portlet container, and they don’t need to be
portable, you should consider using container-specific extensions.

1.5.2 The portal server

The portal server is responsible for submitting user requests received from the portal
page to the portlet container, and for aggregating responses generated by portlets to
form the portal page. A portal server is responsible for generating the portal page, so
the responsibility of providing a consistent look and feel for the portal lies with the
portal server.

NOTE You can consider a portal server as a component that sits between the
user requests from the portal page and the portlet container.

A portlet container isn’t responsible for generating the portal page; it hands over the
content generated by the portlets to the portal server, which aggregates the content
and displays the portal page. Figure 1.10 shows the interaction between portal page,
portal server, portlet container, and portlet instance when handling a portlet request.

 There are many open source portal servers (such as Liferay Portal and GateIn Por-
tal) and commercial ones (such as IBM’s WebSphere Portal) that provide a wide range
of features (administration, content management, search, single sign-on, and so on)

Figure 1.9 The portal infrastructure consists of a portal server and a portlet container. The portlet
container manages the portlet instances and hands over the markup fragments generated by the portlets
to the portal server. The portal server aggregates the markup fragments to create the portal page.

17Portal infrastructure

to portal developers, making it easy to quickly set up a fully functional portal. The
choice of portal server plays an important role in portal projects, because it can help
you reduce the development time by providing built-in portlets, integration with
external systems (LDAP, SAP, and so on), and the ability to access portal server func-
tionality from your custom portlets.

CHOOSING A PORTAL SERVER

A portal server’s biggest assets are the built-in portlets that it provides. The choice of
a portal server should be driven by comparing your portal requirements with the fea-
tures that are provided out of the box by the various portal servers. For instance, if
your portal requires a discussion forum, a document library, and announcements,
you should evaluate portal servers based on whether they have built-in portlets for
these functions.

 The requirements of a portal may change over a period of time as business
requirements evolve, and it may be difficult to implement certain functions that
weren’t considered when selecting the portal server. To take care of such scenarios,
you should also consider how easy it is to customize the behavior and information
displayed by the built-in portlets, and whether portlets can access the portal server’s
features (document storage facility, workflow services, and so on) to address new
business requirements.

 Now that you have some understanding of portals and portlet technology, let’s
install and use Liferay Portal.

NOTE If you prefer to use GateIn Portal for developing and deploying port-
lets, please refer to appendix A for details on how to install and use that por-
tal server. Separate source directories have also been provided, containing
examples tailored for deployment on GateIn Portal. You’ll find that there’s
hardly any difference in the example code for GateIn and Liferay. The exam-
ples for GateIn Portal contain a README.TXT file that highlights the changes

Figure 1.10 The portal server and portlet container roles in handling a portlet request.
The portlet container is responsible for invoking lifecycle methods and handing over the
portlet content to the portal server. The portal server assembles the content from
different portlets to generate the portal page.

18 CHAPTER 1 Introducing portals and portlets

that were made to the configuration or source code to adapt Liferay Portal
examples to work on GateIn Portal.

1.6 Getting started with Liferay Portal
Regardless of which portal server you’re using, the basic steps for creating a portlet
and setting it into action are the same:

1 Install the portal server and portlet container. In most cases, the portlet con-
tainer and portal server are packaged together as a single component.

2 Create portal pages, which you can think of as blank web pages with no content.
3 Set up your favorite IDE to create a portlet application project.
4 Write a portlet class that contains the logic to generate the markup fragment.
5 Create portlet configuration files to register the portlet with the portal server.
6 Create a portlet deployment descriptor.
7 Package portlets in a WAR file using a build tool like Ant or Maven.
8 Deploy the portlet WAR file on the portal server.
9 Add portlets to the portal page.

In this section, we’ll cover steps 1 and 2. You’ll see how to install Liferay Portal (Com-
munity Edition), and we’ll cover some of the basic Liferay Portal features. You’ll cre-
ate a portal page called “My Home Page” (which you’ll later add portlets to).

 Step 3 is covered in section 1.7, and steps 4–9 are covered in section 1.8. If you
already have a portal server installed and your favorite IDE configured, you can go
directly to section 1.8 to learn how to create a simple Hello World portlet.

1.6.1 Installing Liferay Portal 6.x

Liferay Portal comes prepackaged with widely used application servers like Glassfish,
JBoss, and Tomcat. In this book, we’ll be using Liferay Portal with Apache Tomcat,
which is a lightweight application server that’s easy to install.

 You can download the bundle containing Liferay Portal and Tomcat from the
Liferay Portal website (http://www.liferay.com/downloads/liferay-portal/available-
releases), which maintains a list of all the downloadable versions of Liferay Portal.
Download the zip file with the name Liferay-portal-tomcat-6.x, which means Liferay
Portal version 6.x bundled with Tomcat.

 Installing the prepackaged bundle involves unzipping the downloaded file in a
local directory. This will result in a single directory, liferay-portal-6.x (which we’ll refer
to as LIFERAY_HOME).

 You should familiarize yourself with the two most important directories inside
LIFERAY_HOME (both of which are shown in figure 1.11):

■ deploy—This directory is used for hot deployment of portlets. If you copy your
portlet WAR file into the deploy folder while the server’s running, the server
hot deploys the portlets, which saves you the time of restarting the server to
deploy portlets.

19Getting started with Liferay Portal

■ tomcat-6.x—This is the Tomcat
application server directory, which
contains startup and shutdown
scripts for the application server.
Because Liferay Portal runs on top
of the application server, you need
to run the Tomcat server’s startup
script to use Liferay Portal.

All portal servers (such as GateIn Portal,
Liferay Portal, and WebSphere Portal)
come with their own internal database,
which contains the initial configuration
data required by the portal server, the
portal user information, the portlet pref-
erences, and a lot more. As you add users,
portlets, portlet preferences, and web
content to your portal, the information is saved in the portal’s database. By default,
Liferay Portal comes with an embedded HSQLDB database, which is lightweight and
has a small memory footprint. HSQLDB isn’t meant to be used in production and is ide-
ally suited for development purposes only. If you’re planning to use HSQLDB for devel-
opment purposes (where multiple developers need to access the same HSQLDB
database instance), running the HSQLDB in server mode is recommended. For more
information regarding HSQLDB, see the HSQLDB website (www.hsqldb.org).

 Before running the portal server, check that Java SE 5 or later is installed on your
system and that the JAVA_HOME environment variable is set to the installation direc-
tory of Java SE 5. Verify that the installation is correct by running the startup.bat
(on Windows) or startup.sh (on UNIX) script in the LIFERAY_HOME/tomcat-6.0.26/
bin directory.

 It may take some time for the server to start the first time, because Liferay Portal
creates its internal database and populates it with the setup data required to use the
sample application that comes with it. This only happens the first time it’s run; after
this, the server startup is faster.

 If the server startup is clean—without errors—the server will start up the system’s
default browser and open the Liferay Portal home page. You can also directly access
the Liferay Portal home page at http://localhost:8080 using your favorite browser. If
you see the Liferay Portal home page (shown in figure 1.12), it indicates that you have
successfully installed Liferay Portal.

 Once the server starts, you can start playing around with the sample application
that comes with the Liferay Portal installation.

 Liferay Portal provides a feature-rich, intuitive administrator user interface for
adding users, organizations, and roles; associating roles to users; adding portlets;

Figure 1.11 The directory structure for the
Liferay-Tomcat prepackaged bundle. The deploy
directory is the hot deployment directory, and
tomcat-6.0.26 is the Tomcat home directory.

20 CHAPTER 1 Introducing portals and portlets

creating portal pages; and so on. The next few sections will familiarize you with some
of these management capabilities.

1.6.2 Registering users with Liferay Portal

A guest user (an unauthenticated user) in Life-
ray Portal will see an option to sign in at the
top-right corner of the home page, as shown
in figure 1.13.

 Clicking on the Sign In option will display a
Sign In page. Because you don’t have an
account with Liferay Portal when you access it
for the first time, you can select the Create
Account option (as shown in figure 1.14).

 You can create an account by entering all
the information that’s asked for. If the account
is created successfully, Liferay Portal displays a success message along with the initial
password assigned to the newly created user. Use the newly created userid (which is
your email ID) and password to log in to the portal.

 Let’s now look at how you can create a public portal page in Liferay Portal.

Figure 1.12 The Liferay Portal home page shows information about the portal server along with
information about the sample website and the preconfigured users.

Figure 1.13 The Sign In option on the
Liferay Portal home page

21Getting started with Liferay Portal

1.6.3 Creating a public portal page in Liferay Portal

Once you log in to Liferay Portal, it shows you a dockbar, which offers options available
to an authenticated user, as shown in figure 1.15.

 The Manage > Control Panel option allows authenticated users to manage their
account and create public or private portal pages. A public page is accessible to all
users (including anonymous users) of the portal, and a private page is accessible only
to the logged-in user who created the private page.

 A private page may be created by the user, or it may be set up for the user by the por-
tal administrator. An example of a private page set up by an administrator is the
iGoogle home page that a user sees after logging in, as shown in figure 1.16. (Figure 1.1,
earlier in this chapter, showed a customized portal page with additional portlets.)

 The content of a private page can be customized or personalized by the user. Simi-
larly, a user who creates a public page can customize or personalize the page, and the
changes will be visible to other users of the portal.

 To view the public and private pages set up by an administrator or created by you,
select Manage > Control Panel from the dockbar (see figure 1.15). The Control Panel
page shows My Account, My Pages, and other options. Figure 1.17 shows the informa-
tion displayed when the user selects the My Pages option.

Figure 1.14 The Create Account option is for
creating a user account with Liferay Portal

Figure 1.15 Authenticated users can do more things than unauthenticated users in Liferay
Portal, such as changing their account settings and managing their public and private
portal pages.

22 CHAPTER 1 Introducing portals and portlets

The Public Pages and Private Pages options provide information about the user’s pub-
lic and private pages. As you can see in figure 1.17, a public Welcome page already
exists by default. By default, Liferay Portal creates public and private Welcome pages
for each user.

Figure 1.16 The iGoogle home page that users see when they log in. By default, the portal page has
preconfigured portlets in it, which users can customize or personalize. A user-customized version of the
iGoogle home page was shown in figure 1.1.

Figure 1.17 The My Pages option allows you to manage your public and private pages. The
page information is displayed in a tree structure. You also have the option to create new
pages for the portal.

23Getting started with Liferay Portal

To create a new public page named “My Home Page,” enter My Home Page in the Name
field of the form shown in figure 1.17. Keep the Type as Portlet and leave the Hidden
check box unchecked. The newly created public page will appear in the list of public
pages, as shown in figure 1.17. Now you’re ready to look at your newly created portal
page and add portlets to it.

 The dockbar of Liferay Portal provides an
option to visit your public and private pages, as
shown in figure 1.18. To view public pages,
select Go To > My Public Pages.

 You’ll see a My Home Page tab in the Life-
ray Portal header, along with a Welcome tab,
when you first visit your public portal pages. My
Home Page will appear completely blank at the
beginning, because no content has been added
to it.

 Let’s now see how you can add a portlet to My Home Page.

1.6.4 Adding portlets to a Liferay Portal page

Liferay Portal comes with many built-in portlets that can help you quickly create your
own portal pages. To add a portlet, use the dockbar menus and select Add > More
under the Applications category, as shown in figure 1.19. Liferay Portal will display a list
of portlets registered in Liferay Portal, organized by category (Collaboration, Commu-
nity, Content Management, News, and so on). Portal administrators can create new
portlet categories and add portlets to it, or add portlets to existing portlet categories.

Figure 1.18 The My Public Pages and My
Private Pages options allow users to
access the public and private portal pages
associated with the organizations that the
user has access to.

Figure 1.19 The More option in the
Applications category allows
authenticated users to add portlets
to a portal page. Users can add
portlets to portal pages only if they
have permission to do so. By default,
users can add or remove portlets
from portal pages they created.

24 CHAPTER 1 Introducing portals and portlets

Adding a portlet to a portal page in Liferay Portal is easy: drag and drop a portlet from
the list shown in figure 1.19, or click the Add link next to the portlet in the list. To see
how this works, add the RSS portlet from the News category to the My Home Page por-
tal page, which by default shows news from Yahoo.

 Once you have added the RSS portlet to the My Home Page portal page, you’ll see
options to customize the portlet content (to change its look and feel, and to change
the location of RSS feeds), to change permissions, and to minimize, maximize, or
remove the portlet from the page. The portlet options available to a user depend
upon the user’s role and associated permissions. Figure 1.20 shows the options for the
newly added RSS portlet.

 Let’s now look at some of the roles defined in Liferay Portal and their associ-
ated permissions.

1.6.5 Roles and permissions in Liferay Portal

In Liferay Portal, the default roles associated with authenticated users are User
and Power User, and the default role associated with unauthenticated users is
Guest. A Power User role simply indicates that the user has the privileges to create
public and private portal pages.

 Liferay Portal administrators can create new roles and manage permissions associ-
ated with these roles based on the business requirements of the web portal. Adding a
portlet to a public portal page allows unauthenticated users—users with the Guest
role—to view that page and its portlets, unless the permissions for the portlet don’t
allow unauthenticated users to view it. For example, if a guest user wants to view the
public My Home Page, they could do so using the following URL:

http://<host-name>:<port-number>/web/<users-screen-name>/<portal-page-name>

For example, if you try to access My Home Page without authenticating with Liferay
Portal, the URL will be

http://localhost:8080/web/mark123/my-home-page

Figure 1.20 In most cases, portlets you add
will have configure, minimize, maximize, and
close options for customizing the portlet. The
availability of these options depends upon the
design of the portlet and the access permissions
of the user.

25Getting started with Liferay Portal

In this URL, mark123 is the screen name of the user whose public portal page you want
to view, and my-home-page is the name of the public portal page.

NOTE To create portal page URLs, Liferay Portal converts the page names to
lowercase and replaces spaces between words with hyphens, so the name of
the My Home Page portal page becomes my-home-page.

When guest users view My Home Page, they don’t by default have permission to cus-
tomize the portlet, but they can view its contents. To prevent guest users from viewing
the portlet, select the Configuration option for the portlet (as shown in figure 1.21)
and select the Permissions option.

 The Permissions table (shown in figure 1.22) shows that the Guest role has View
permission but not Configuration permission for the RSS portlet, which means Guest
users can view the content of the portlet but can’t customize the portlet’s content, look
and feel, permissions, and so on. Uncheck the View permission for the Guest user, and
click the Save button. If you now go to My Home Page (http://localhost:8080/web/
mark123/my-home-page) as a Guest user, you’ll receive a message indicating that you
don’t have the role required to access the portlet.

Figure 1.21 The Configuration
option for portlets in Liferay Portal
allows you to set the access
permissions for the portlet.

Figure 1.22 Permissions assigned to the RSS portlet. View permission allows the user to view the
content generated by the portlet, and Configuration permission allows the user to configure the portlet’s
look and feel and permissions.

26 CHAPTER 1 Introducing portals and portlets

Now that you’ve installed Liferay Portal and created a portal page, it’s time to set up
the development environment for creating portlets.

1.7 Setting up the development environment
In this section, you’ll learn how to set up the development environment and see the
structure of the ch1_HelloWorld Eclipse project in the book’s source code. The con-
figuration steps described in this section will help you quickly build, deploy, and
debug the example portlets that accompany this book. If you’re using Eclipse IDE, the
setup described here should be sufficient to quickly get you started with developing
your own portal project.

1.7.1 Configuring Eclipse IDE

First you need to download the Eclipse IDE for Java EE Developers from www
.eclipse.org. Installing the Eclipse IDE is a simple matter of unzipping the contents
of the downloaded zip file to a directory.

NOTE Eclipse Galileo was used during the writing of this book, but the steps
described in this section are also applicable to the Eclipse Helios IDE.

Now import the ch1_HelloWorld Eclipse project, which accompanies this book. To
import an existing Eclipse project, select the File > Import menu option and select the
Existing Projects into Workspace option under the General category.

 The ch1_HelloWorld project contains the Hello World portlet class, the configura-
tion files, and the Ant buildfile. An Ant build tool comes bundled with Eclipse IDE, so
you don’t need to separately download and install it.

 To configure the Eclipse IDE to work with Liferay Portal (which you installed in
section 1.6.1), you need to do the following:

1 Create a new server profile in Eclipse.
2 Specify the installation directory of the Tomcat server.
3 Configure the server.

You should also configure the Eclipse IDE to use JDK 5.0 or later and to check the
source code for Java 5 compatibility, in order to work with the examples in this book.
We’ll look at each of these steps in turn.

CREATING A NEW SERVER PROFILE IN ECLIPSE

Start by opening the Eclipse IDE’s Servers view by selecting Window > Show View >
Servers. Right-click in the Servers view and choose the option to create a new server;
this will open the New Server dialog box.

 In the Define a New Server dialog box, shown in figure 1.23, select the version of
Tomcat that your Liferay Portal bundle is using (the Tomcat version is 6.0.26 if you’re
using Liferay Portal 6.x). Then click Next.

27Setting up the development environment

SPECIFYING THE INSTALLATION DIRECTORY OF THE TOMCAT SERVER

The next step is to specify the installation directory of the Tomcat server, which I’ll
refer to as TOMCAT_HOME in the rest of this chapter. In the Tomcat Server page of
the New Server dialog box, shown in figure 1.24, specify the Tomcat installation direc-
tory and the JDK that you want to use for running the Tomcat server.

Figure 1.23 In the New
Server dialog box, select the
Tomcat version used by your
Liferay Portal installation. If
you’re using Liferay Portal 6.x,
Tomcat v6.0 Server should be
selected.

Figure 1.24 Specify the
Tomcat home directory and
the JDK for the server. The
Tomcat home directory is
located inside the Liferay
Portal home directory.

28 CHAPTER 1 Introducing portals and portlets

It’s important to select an installed JDK as the value for the JRE option, to help with
compilation of Java sources, debugging, and so on. To select JDK 1.5 or later, click the
Installed JREs button and configure a JDK to use with the Eclipse IDE.

 Click Finish to complete the server definition in Eclipse. If the server is successfully
created, it will be displayed in the Servers view, as shown in figure 1.25.

 Now, you’re ready to configure the server.

CONFIGURING THE SERVER

The newly created server needs to be configured so the ch1_HelloWorld project can
be deployed on the Tomcat server and debugged at runtime.

 Select the server in the Servers view, right-click, and select Open, which shows the
server configuration information. On the server configuration page, on the Server
Locations tab, select Use Tomcat Installation (Takes Control of Tomcat Installation),
and set Deploy Path to be webapps, as shown in figure 1.26.

 To ensure that enough memory is available to the server at runtime, click the
Open Launch Configuration hyperlink in the General Information tab of the server
configuration page to open the Edit Configuration dialog box, where you can edit the
server launch configuration properties, and on the Arguments tab, add the following
virtual memory arguments, as shown in figure 1.27:

-Xms128m -Xmx512m -XX:MaxPermSize=256m

Next, select the Classpath tab, and add servlet-api.jar, el-api.jar, and jsp-api.jar to the
Bootstrap Entries from the TOMCAT_HOME\lib directory. Add all the JAR files from
the TOMCAT_HOME\lib\ext directory to User Entries, as shown in figure 1.28.

Figure 1.25 The Servers view shows the newly created server
definition in Eclipse.

Figure 1.26 On the Server Locations tab, the Use Tomcat Installation
option must be selected, and the Deploy Path setting must be webapps,
which corresponds to the webapps directory inside the Tomcat installation.

29Setting up the development environment

Select the Source tab and add the ch1_HelloWorld Java project that you imported
into the Eclipse IDE at the beginning of this section (as shown in figure 1.29). You
need to add the source so that you can debug the source code during development.

 If you start the server now, you’ll probably receive a timeout error because, by
default, the server configuration in Eclipse expects the server to start within 45 sec-
onds. Depending on your machine’s configuration, it may be possible for Tomcat to

Figure 1.27 Specifying additional virtual memory arguments in the launch configuration properties. If
these additional arguments aren’t set, chances are good that you’ll get an out-of-memory error when you
start Liferay Portal.

Figure 1.28 Adding libraries in the Edit Launch Configuration Properties page of the
Edit Configuration dialog box. The libraries added here are used by Eclipse IDE to launch
the server.

30 CHAPTER 1 Introducing portals and portlets

start within 45 seconds, but it’s safer to increase the startup and shutdown times for
Tomcat server to around 180 seconds and 120 seconds respectively.

 To increase the startup and shutdown times of the server, select the server in the
Servers view, right-click, and select Open. This will show the server configuration
page. Now, go to the server configuration and select the Timeouts tab, as shown in fig-
ure 1.30.

 To verify the setup, start the server and check if it starts cleanly and opens the
home page of Liferay Portal.

Figure 1.29 Adding the ch1_HelloWorld source in the Edit Launch Configuration
Properties page of the Edit Configuration dialog box. This ensures that you can debug
the source code.

Figure 1.30 Specifying timeouts for the server. If the timeout has a lower time limit than it
takes to start the portal server, an exception will be thrown during server startup.

31Setting up the development environment

CONFIGURING ECLIPSE FOR JDK 5 OR LATER

The examples in this book make use of Java SE 5 features like annotations and gener-
ics, so your Eclipse IDE should be configured to use JDK 5.0 or later, and the source
code compliance should be set to 5.0.

 To configure the JDK that should be used by Eclipse IDE, select the Window > Pref-
erences menu option. In the Preferences dialog box, select the Java > Installed JREs
option from the list, as shown in figure 1.31.

 Figure 1.31 shows the JREs that are available to the Eclipse IDE. If JDK 5 or later is
available in the list, make sure that it’s checked. If JDK 5 or later isn’t in the list, click
the Add button to start the wizard for adding a new JDK.

 Figure 1.32 shows the JRE Type page of the Add JRE wizard. Select the Standard VM
option and click Next.

 In the JRE Definition wizard page, select the home directory of the JDK that you
want to add, as shown in figure 1.33. Click Finish to complete the process of adding a
new JDK.

Figure 1.31 The Installed JREs preference allows you to set the JDK that will be used by the Eclipse
IDE for all projects. The Add button allows you to add a new JDK to the Eclipse IDE.

32 CHAPTER 1 Introducing portals and portlets

Figure 1.32 The Add JRE wizard
will help you add a new JDK to the
Eclipse IDE.

Figure 1.33 The Compiler
preferences let you specify
compliance level for source code
and generated class files.

33Setting up the development environment

The newly added JDK will now be available in the list of installed JREs shown earlier in
figure 1.31.

 The examples in this book make use of Java SE 5 features, so you also need to
instruct the Eclipse IDE to check the source code for compatibility with Java 5, and
that the generated class files are compatible with Java 5.

SETTING SOURCE AND GENERATED CLASS FILE COMPLIANCE

To set the compliance level for all the projects to Java 5, select the Window > Prefer-
ences menu option in the Eclipse IDE, and select the Compiler option, as shown in fig-
ure 1.34.

 In figure 1.34, select 1.5 as the value for the Compiler Compliance Level, and
select the Use Default Compliance Settings check box. Click OK to save the changes.
This instructs Eclipse to ensure that the source code of Eclipse projects and their class
files are Java 5 compatible.

 Now it’s time to create a project structure in Eclipse, which will help organize your
portlet project files.

Figure 1.34 Specifying the home directory of the JDK you want to add to the Eclipse IDE

34 CHAPTER 1 Introducing portals and portlets

1.7.2 Setting up the project structure

The project structure that we’ll discuss in this sec-
tion is for the Hello World portlet application, but
the structure is generic, and we’ll use the same
structure in the rest of the book for other examples.
You’ve already imported the ch1_HelloWorld
Eclipse project in section 1.7.1. Figure 1.35 shows
the project structure and some of the files that
form the Hello World portlet application.

 The project structure presented here is generic
and can be used in most portal projects with little
or no modification. Let’s go through the directo-
ries in the project:

■ src—Contains the source code of the project,
which includes portlet and utility classes.

■ test—An empty directory in which you can
create your test classes for the project.

■ build—The build directory is created when
you first run the Ant build for the project. It
contains the WAR file that’s generated when
the project is built using Ant.

■ css—Contains CSS files for the project to
define the look and feel for the portlets. You
can also use the look and feel feature pro-
vided by the portal server to change the look
and feel of the portlet.

■ images—Contains the images that are used by the portlets in the project.
■ js—Contains the JavaScript files used by the portlet. Portlets may also make use

of JavaScript libraries like DWR, Dojo, and jQuery, which are normally packaged
in a JAR file and accessed directly by the portlets. In most cases, portlets consist
of multiple pages of information, and the JavaScript may be required for creat-
ing HTML widgets on the fly or using Ajax.

■ lib—Contains the JAR files required at build time but that don’t need to be
packaged with the generated WAR file, such as JUnit and portlet JAR files. The
JUnit JAR file is required to run unit tests at build time, and a portlet JAR file is
required for compiling the portlet classes.

■ WEB-INF/jsp—Contains the JSP files used in the project. We’ll be using JSP as the
view technology in this book, but you can use other view technologies like
Velocity and Facelets to create portlet pages.

■ WEB-INF/lib—Contains JAR files required by the portlets at build time and
at runtime.

Figure 1.35 The ch1_HelloWorld
project structure is a generic project
structure that we’ll use consistently
in this book for creating portlet
applications.

35The Hello World portlet example

With the development environment set up, it’s time to look at the different files in the
Hello World portlet example.

1.8 The Hello World portlet example
We’re now ready to look at our first
portlet application, which consists of a
simple Hello World portlet, as shown
in figure 1.36. This section will famil-
iarize you with the Java source files and
configuration files that are involved in
a typical portlet application, how to
deploy and undeploy a portlet, and
how to use the Ant and Maven build tools.

 In the context of the Hello World portlet, you’ll learn how to perform the follow-
ing activities:

■ Create the necessary portlet files
■ Build the portlet project using either Ant or Maven, and deploy the portlet

application WAR file on the portal server
■ Add the deployed portlet to a portal page
■ Undeploy a portlet from the portal server

We’ll look at each of these in turn.

1.8.1 Creating a Hello World portlet

To create the Hello World portlet, you need the following files:

■ HelloWorldPortlet class—This is the portlet class.
■ portlet.xml file—This is the configuration file that defines settings for the portlet,

like the portlet request handler (the portlet class), supported modes, sup-
ported locales, supported MIME types, and the resource bundle.

■ Language-ext.properties file—This is the properties file used by the portlet to sup-
port localization. In the Hello World example, this file is used to specify the
portlet title and to assign a category under which the Hello World portlet
should be displayed in Liferay Portal (refer to figure 1.19).

■ liferay-display.xml and liferay-portlet.xml files—These are Liferay Portal–specific
configuration files for configuring the portlet. These files are optional and you
aren’t required to provide them with your project’s WAR file. In this example,
we’ll create these configuration files to keep things simple.

■ web.xml file—This is a deployment descriptor for the web resources (like serv-
lets), except for portlets.

If you’ve imported the ch1_HelloWorld project into your Eclipse workspace, these
files will already exist; otherwise you’ll need to create them. But even if you imported

Figure 1.36 A simple Hello World portlet that
displays the message “Hello World" when added to a
portal page

36 CHAPTER 1 Introducing portals and portlets

the ch1_HelloWorld project and don’t need to create the files, it’s important that you
understand their contents.

NOTE If you want to develop the Hello World portlet using the Spring Port-
let MVC framework, you can jump directly to section 7.3 in chapter 7 to create
the portlet files, and then return to this section to create the Liferay Portal–
specific configuration files and build and deploy the portlet.

THE PORTLET CLASS

A portlet class must implement the javax.portlet.Portlet interface, directly or
indirectly. The portlet API has a GenericPortlet abstract class that implements the
Portlet interface and provides a default implementation for its methods. Developers
will usually subclass the GenericPortlet class and override one or more methods to
provide a specific implementation. The HelloWorldPortlet class is an example of a
portlet class.

 The portlet class requires Portlet 2.0 API classes and interfaces, so you should add
the portlet.jar file, located in TOMCAT_HOME\lib\ext, to the project’s classpath.

 This listing shows the HelloWorldPortlet class.

package chapter01.code.listing;

import java.io.IOException;
import java.io.PrintWriter;
import javax.portlet.*;

public class HelloWorldPortlet extends GenericPortlet
{
 @RenderMode(name = "VIEW")
 public void sayHello(RenderRequest request,
 RenderResponse response) throws
 PortletException, IOException {
 PrintWriter out = response.getWriter();
 out.println("Hello World");
 }
}

At B, you import the classes needed to create the HelloWorldPortlet class. The
HelloWorldPortlet class extends the GenericPortlet abstract class of the Portlet 2.0
API C.

 The HelloWorldPortlet class defines the sayHello method E, which accepts
javax.portlet.RenderRequest and javax.portlet.RenderResponse objects as
parameters. The sayHello method writes the “Hello World” message to the output
stream. The getWriter() method of RenderResponse is similar to the getWriter()
method of HttpServletResponse, which returns a PrintWriter object. The Print-
Writer object is used by the sayHello method to write the “Hello World” character
data to the response.

Listing 1.1 The HelloWorldPortlet class

Imported classes B

HelloWorldPortlet
class

 C

Annotation for
sayHello method

 D

sayHello
method

 E

37The Hello World portlet example

 At D, the @RenderMode annotation for the sayHello method informs the Java
runtime that the sayHello method is the portlet’s render method in VIEW mode (we’ll
come back to this in chapter 2).

PORTLET SETTINGS

The portlet.xml file contains portlet settings including portlet name, portlet class,
supported locales, initialization parameters, and so on. The following listing shows the
portlet.xml file for the Hello World portlet.

<portlet-app
xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>HelloWorldPortlet</portlet-name>
 <display-name>Hello world</display-name>
 <portlet-class>chapter01.code.listing.HelloWorldPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <resource-bundle>content.Language-ext</resource-bundle>
 </portlet>
</portlet-app>

Here are some of the important elements of the portlet.xml file in listing 1.2:

■ <portlet-app>—The root element of the portlet.xml file
■ <portlet>—The element that defines a single portlet in the portlet application
■ <portlet-class>—The fully qualified name of the portlet class
■ <portlet-mode>—The supported portlet mode; possible values include VIEW,

EDIT, and HELP (the value is case insensitive)
■ <resource-bundle>—The resource bundle for the portlet

THE RESOURCE BUNDLE

The Language-ext.properties file is the resource bundle used by the Hello World port-
let. The properties defined in the file include the following:

category.chapter01.helloWorld=Chapter 01 Portlets
javax.portlet.title=My Hello World portlet

Let’s look at these properties:

■ category.chapter01.helloWorld—This specifies the name of the category
under which the portlet is displayed by Liferay Portal (as illustrated in figure 1.19).

■ javax.portlet.title—This specifies the title of the portlet. It’s important to
note that only a property named javax.portlet.title in the portlet resource
bundle is considered by the portlet container as a candidate for the portlet title.

Listing 1.2 The portlet.xml file

38 CHAPTER 1 Introducing portals and portlets

Liferay Portal has a Language.properties file, located under the content directory in
the portal-impl.jar file (which can be found in the {TOMCAT_HOME}\webapps\ROOT\
WEB-INF\lib directory), that defines the names of predefined categories in Liferay Portal
(apart from labels, messages, and portlet titles). But if you don’t want to use the pre-
defined categories or override the names of predefined categories, you can create a
Language-ext.properties file and place it in the portlet’s classpath. To localize the cat-
egory name, you can create other Language-ext files with a naming convention similar
to the resource bundles. For example, the Language-ext_pt_BR.properties file would
be used for the Portuguese language in Brazil.

LIFERAY PORTAL CATEGORY

The liferay-display.xml file allows you to specify the category under which you want
the portlet to be displayed. The content of liferay-display.xml file is as follows:

<display>
 <category name="category.chapter01.helloWorld">
 <portlet id="HelloWorldPortlet" />
 </category>
 </display>

These are the most important elements of the liferay-display.xml file:

■ <category>—The name attribute refers to a key in the Language-ext.properties
file that identifies the category under which the portlet needs to be displayed
(as illustrated in figure 1.19).

■ <portlet>—The id attribute must be the name of a portlet, defined by the
<portlet-name> element in the portlet.xml file.

LIFERAY PORTAL–SPECIFIC FEATURES

The liferay-portlet.xml file allows you to configure Liferay Portal–specific features
for the portlet. In Hello World, this file contains a liferay-portlet-app element,
as follows:

<liferay-portlet-app>
 <portlet>
 <portlet-name>HelloWorldPortlet</portlet-name>
 <instanceable>true</instanceable>
 <remoteable>true</remoteable>
 </portlet>
 </liferay-portlet-app>

These are the important elements of the liferay-portlet.xml file:

■ <portlet-name>—The name of the portlet as defined by the <portlet-name>
element in the portlet.xml file.

■ <instanceable>—If true, the same portlet can appear on a portal page more
than once. The default value is false.

■ <remoteable>true</remoteable>—If true, the portlet can be exposed as a
remote portlet by a WSRP producer. We’ll discuss WSRP (Web Services for Remote
Portlets) in detail in chapter 15.

39The Hello World portlet example

Those are all the necessary files for the ch1_HelloWorld project. You’re now ready to
build the project.

1.8.2 Building the Hello World project with Ant

The source code of this book can be built using either Ant or Maven. If you want to
use Maven to build the examples, jump ahead to section 1.8.3.

THE ANT BUILD TOOL

Ant is an open source Java tool that provides a flexible and cross-platform build utility
for Java projects. Ant makes use of an XML configuration file (called a buildfile), con-
taining instructions about tasks to be performed while building the project.

 The tasks in the buildfile may include cleaning output directories, compiling Java
sources, copying files to appropriate directories, and creating a WAR file. These tasks
are logically grouped into targets, which may depend on other targets. For instance, there
can be a build target (which takes the Java classes and configuration files as inputs and
creates a WAR file), and it is dependent upon the clean (which removes the class files
from the output folder of the project) and compile (which compiles the Java source
files and creates the corresponding class files in the output folder of the project) targets.

 The following XML fragment shows how the build target is defined in an
Ant buildfile:

<target name="compile">
 ...tasks to compile the source code
</target>
<target name="clean">
 ...tasks to remove the class files from the output folder
</target>
<target name="build" depends="clean,compile">
 ...tasks to create the WAR file
</target>

The depends attribute of a target element specifies the dependent targets. The
execution order of targets in the depends attribute is important when creating a
build file. In the preceding code fragment, the build target depends on the clean
and compile targets, which instruct Ant to execute the clean target first, and then
the compile target, before executing the build target.

 A buildfile contains one project element and at least one target element. There
are other useful elements like fileset (for defining a group of files), property (for
defining properties, which may be read from an external properties file), and so on.

 Ant targets contain tasks, which are like instructions in a program. The targets
represent a program, and tasks represent programming instructions in that pro-
gram. Examples of tasks are war (for creating a WAR file), delete (for deleting files),
and copy (for copying files).

THE ANT BUILD SCRIPT

The build.xml file is the Ant buildfile in our ch1_HelloWorld project, and it contains
information on how to compile and build a WAR file from Java sources and other

40 CHAPTER 1 Introducing portals and portlets

resources in the ch1_HelloWorld project. This listing shows the build target in
ch1_HelloWorld’s build.xml file.

<project name = "ch1_HelloWorld"
 default="build" basedir=".">
...
<property file="build.properties" />
<property name="build.dir" value="build"/>
<target name="build" depends="clean,compile">
<mkdir dir="${build.dir}"/>
<war destfile="${build.dir}/ch1_HelloWorld.war"
 webxml="${web.xml}">
<fileset refid="war.files"/>
</war>
<copy todir="${liferay.portal.home}/deploy">
 <fileset dir="${build.dir}">
 <include name="**/*.war" />
 </fileset>
</copy>
</target>

At B, you define the project name and the default target to be used when no target is
specified for running the build script.

 In build.xml, it’s possible to define properties directly or to load properties from an
external properties file. The build.xml file defines a property with the name build.dir
and value build D. Line C instructs the Ant build tool to load the build.properties file
and use the properties defined in the file if the build.xml file references them.

 The build script specifies the creation of a WAR file named ch1_HelloWorld.war

E, and it specifies that the generated WAR file should be copied to {liferay.por-
tal.home}/deploy F, which refers to Liferay Portal’s hot deploy directory.

 The build.properties file in the Hello World project contains a single property that
refers to the home directory of the Liferay Portal installation (LIFERAY_HOME):

liferay.portal.home=C:/liferay-portal-6.0.1

NOTE Make sure that you edit the liferay.portal.home property in the
build.properties file to point to the Liferay Portal installation directory or
the build won’t work as expected.

Building the Hello World project requires you to add the necessary JAR files to the
project’s lib directory and then to run the build Ant target in the build.xml file.

ADDING JARS

The ch1_HelloWorld project’s build.xml file requires the portlet API classes to be
available when the HelloWorldPortlet class is compiled. As discussed in section 1.7.2,
the JAR files that are required at compilation time are copied to the lib directory (and
not to the WEB-INF\lib directory). You can copy portlet.jar from TOMCAT_HOME\lib\
ext to the project’s lib directory.

Listing 1.3 The build.xml file for Hello World

Defines project
and default target

 B

Loads properties from
build.properties file

 C

Defines
property D

Creates
WAR file

 E

Copies generated
WAR file

 F

41The Hello World portlet example

BUILDING THE PROJECT

Before you initiate the build process for ch1_HelloWorld, check that all the necessary
JAR files are available in the project’s lib and WEB-INF/lib directories and that the
liferay.portal.home property in the build.properties file refers to the Liferay Portal
installation directory on your system.

 To build the ch1_HelloWorld project, right-click on the build.xml file, choose Run
As > Ant Build, and select the build target from the list of available targets, as shown
in figure 1.37.

 The Ant build tool takes the following actions when the build target is executed:

1 It removes the generated WAR file from the build directory by executing the
clean target.

2 It compiles the Java source to the WEB-INF/classes directory, creates a content
directory, and copies the Language-ext.properties file to it. This is all done by
executing the compile target.

Figure 1.37 Ant targets defined in build.xml. The build target is selected by default. The compile
and clean targets can also be executed separately, if you want to compile or clean the project.

42 CHAPTER 1 Introducing portals and portlets

3 It creates the WAR file in the build directory and copies the generated WAR file
to LIFERAY_HOME/deploy (which is Liferay Portal’s hot deploy directory). This
is done by executing the build target.

4 If your Liferay Portal is already running, the build target will hot deploy the
Hello World portlet. If the server isn’t running, the portlet will be deployed
when the server is started. At deployment time, the information from liferay-
display.xml is used to register the portlet with Liferay Portal.

1.8.3 Building the Hello World project with Maven

The source code for each chapter also comes with a pom.xml file, which is meant
for readers who want to build the source code using the Maven build tool. In this
section, you’ll learn how to build source code using the Maven distribution. Keep in
mind that when you’re using Maven, you need to ensure that you’re connected to
the internet so you can download any JAR dependencies of projects and the Maven
build tool.

NOTE If you want to use the Maven Eclipse Plugin, please refer to the Apache
Maven Project (http://maven.apache.org/eclipse-plugin.html).

If you don’t already have Maven installed, the first thing you need to do is down-
load Maven from the Apache Maven Project website (http://maven.apache.org/
download.html). The current version of Maven is 3.x, and we’ll use it as the refer-
ence for developing the Hello World portlet and other portlet examples in this book.

 Once you’ve downloaded Maven, follow these steps to prepare for building the
example source code:

1 Unzip the downloaded zip file into a directory.
2 Set the JAVA_HOME environment variable to point to your Java SE 5 installa-

tion directory.
3 Add Maven’s bin directory to the PATH environment variable.

You’re now ready to build the ch1_HelloWorld source code using Maven. You can
either use the Maven Eclipse Plugin to build your project from within the Eclipse IDE,
or you can use Maven from the command prompt to build the project. If you’re using
Maven from command prompt, follow these steps:

1 Open a command prompt and go to the ch1_HelloWorld folder in your local
filesystem. Make sure that the ch1_HelloWorld folder contains a pom.xml file.

2 Run the following command: mvn clean install.

When you execute the mvn clean install command, Maven looks for a pom.xml file
in the current directory and kicks off the build process. During the build process,
many artifacts are downloaded from the internet, including dependencies specified in

43The Hello World portlet example

the pom.xml file. If the build is successful, you’ll see a “BUILD SUCCESSFUL” message
at the command prompt.

 Successful execution of the Maven build process will generate a file named
ch1_HelloWorld.war in the portlets-in-action subdirectory of the local Maven reposi-
tory. The local Maven repository is a directory in your local file system where all the rele-
vant artifacts and dependencies are downloaded by the Maven build tool. It’s
identified as <user-home>/.m2/repository, where user-home is the home directory
of the user. On UNIX this refers to the ~/.m2/repository directory and on a Windows
machine this is usually C:\Documents and Settings\<yourUserName>\.m2\repository.

 To learn more about the Maven build tool, please refer to the Apache Maven
Project website at http://maven.apache.org.

 Let’s now add the Hello World portlet to a portal page.

1.8.4 Adding the Hello World portlet to a portal page

When a portlet is deployed in Liferay Portal 6.x, it isn’t immediately available to users.
To make the newly added Hello World portlet available to authenticated users of Life-
ray Portal so that they can add it to their portal page, you must log in as administrator
and grant Add to Page permission to the user. Let’s go step by step and grant Add to
Page permission to the User role.

 The Liferay Portal administrator can access all the portlets that are deployed in
Liferay Portal. If you want to test the Hello World portlet without granting Add to
Page permission to authenticated users, then log in as administrator, and add the
Hello World portlet by going directly to the Add > More option under the Applica-
tions category (as shown earlier in figure 1.19).

 Liferay Portal comes preconfigured with an administrator user, Bruno, as shown in
figure 1.38.

Figure 1.38 Bruno is the default administrator of Liferay Portal. Click the Login as
Bruno link to log in to Liferay Portal as the portal administrator.

44 CHAPTER 1 Introducing portals and portlets

Click the Login as Bruno link, as shown in fig-
ure 1.38, to access features that are only avail-
able to the Liferay Portal administrator. Once
you’re logged in, the dockbar will show addi-
tional options that are available to the portal
administrator. Select the Manage > Control Panel
option from the dockbar, as shown in figure 1.39,
to view the administrative features available.

 In the control panel, select the Roles option
from the left navigation bar, as shown in figure
1.40. The Roles option lets you view existing roles
in Liferay Portal, create roles, edit role permis-
sions, and so on.

 Because the User role is associated with authenti-
cated users, you should provide the User role with per-
mission to add the Hello World portlet to a portal
page. To do so, select the Actions > Define Permissions
option corresponding to the User role, as shown in fig-
ure 1.41.

 Selecting the Define Permissions option displays
the list of portlets currently deployed in Liferay Portal
for which you can define permissions. Select the My
Hello World Portlet from the Add Permissions drop-
down list (under the Applications category), as shown
in figure 1.42.

 Selecting My Hello World Portlet in figure 1.42 dis-
plays the permissions that can be specified for the port-
let, as shown in figure 1.43.

 In figure 1.43, check the Add to Page check box to
allow users with the User role to add My Hello World
Portlet to a portal page. Save the permissions, and log
out from Liferay Portal.

Figure 1.41 The Define Permissions option lets a portal administrator define permissions for a role,
including permission to add a portlet to a portal page.

Figure 1.39 The Control Panel
provides administrative options, which
include granting access to portlets to
roles defined in Liferay Portal.

Figure 1.40 The Roles option
lets the administrator view, edit,
and create roles. The
administrator can also modify
permissions associated with
different roles in the portal.

45The Hello World portlet example

Now, if you log in with the account you created in section 1.6.2 and go to the My
Home Page portal page, you’ll be able to view and add the My Hello World portlet, as
shown in figure 1.44.

 In figure 1.44, you can see that a new Chapter 01 Portlets category was added to
the list of available categories. The title assigned to the Hello World portlet is shown
under that category. When the Hello World portlet is added to the portal page, it
shows the message “Hello World.”

Figure 1.42 The Add Permissions drop-down list shows the
portlets currently deployed in Liferay Portal under the Applications
category. You can select the portlet for which you want to modify
permissions.

Figure 1.43 Permissions defined for
the My Hello World portlet. Add to
Page permission allows a user to view
and add portlets from the Add > More
option (under the Applications
category).

46 CHAPTER 1 Introducing portals and portlets

The files that you created as part of this Hello World portlet are required for creating
most portlets in real projects.

1.8.5 Undeploying a portlet application

In a typical web application scenario, removing the WAR file from the filesystem unde-
ploys the web application. In the case of portlet applications, when you add a portlet
to a portal page, the portlet instance information is saved to the portal’s internal data-
base, which also needs to be cleaned up when undeploying.

 To undeploy a portlet, you must first remove all the portlet instances from all portal
pages by using the remove icon, as you saw in figure 1.6. In the case of Liferay Portal,
when you remove the portlet from the portal page, the portlet instance information is
also removed from the internal database. After removing the portlet instance from all
the portal pages, you can delete the portlet application’s WAR file from the {TOMCAT_
HOME}/webapps directory to undeploy the portlet application.

 In this section, you saw how a typical portlet application is developed, built using
Maven or Ant, deployed on a portal server, and added to a portal page. We also
touched upon some Liferay Portal–specific configurations that you need to provide in
order to add a deployed portlet to a portal page. If you’re using a different portal
server than Liferay Portal, all you need to do is to replace the Liferay Portal–specific
configuration and steps described in this section with the configuration and steps that
apply to your portal server.

1.9 Summary
The portlet technology is promising in terms of its reach and impact. The focus on
portals has increased in recent years, and has gained momentum with the release of

Figure 1.44 The My Hello World Portlet listed under
the Chapter 01 Portlets category, and the Hello World
portlet on the portal page

Ashish Sarin

P
ortlets are the small Java applications that run within a
portal. Good portlets work independently and also
communicate fl uently with the portal, other portlets, as

well as outside servers and information sources. Using Java’s
Portlet 2.0 API and portal servers like Liferay, you can build
fl exible, stable business portals without the design overhead
required by other application styles.

Portlets in Action is a comprehensive guide to building portlet-
driven applications in Java. It teaches portlet development
hands-on as you develop a portal that incorporates most key
features of the Portlet 2.0 API. And because portals and port-
lets are so fl exible, the accompanying source code can be easily
adapted and reused. Along the way, you’ll learn how to work
with key web frameworks like Spring 3.0 Portlet MVC and DWR.

What’s Inside
Complete coverage of the Portlet 2.0 API

Spring 3.0 Portlet MVC and the Liferay portal server
Portal design best practices
Reusable source code

Written for Java developers. No prior experience with portlets
required.

Ashish Sarin has over 12 years of experience designing and
developing web applications and portals using Java EE and
portlet APIs.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/PortletsinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

Portlets IN ACTION

JAVA WEB DEVELOPMENT

M A N N I N G

SEE INSERT

“An essential handbook.” —Doug Warren
 Java Web Services

“Best coverage of Spring
 Portlet MVC anywhere.”
 —Lester Martin
 Hewlett-Packard

“An invaluable resource ...
 hands-on examples.”
 —Barbara Regan
 Centra Technology

“Finally, a good book on
 JSR 286, also featuring
 Spring MVC & Ajax.”
 —Jakub Holy, Iterate AS

“Quickly extend your Java
 and Spring skills into
 portlet development.”
 —Joshua White
 Independent Consultant

47Summary

the Portlet 2.0 specification. It’s important to understand the unique features of a por-
tal (personalization, content aggregation, customization, and authentication) to get a
feel for how Java portlet technology makes it easy to develop portals.

 In this chapter, you were introduced to portals and Java portlet technology using a
simple Hello World example. The information covered in sections 1.6 (“Getting
started with Liferay Portal”) and 1.7 (“Setting up the development environment”)
provide the foundation for developing and deploying example portlets in the rest of
this book.

 Now that you have some understanding of portals and portlets, the next chapter
introduces the portlet lifecycle and the foundation concepts of portlet technology.

Ashish Sarin

P
ortlets are the small Java applications that run within a
portal. Good portlets work independently and also
communicate fl uently with the portal, other portlets, as

well as outside servers and information sources. Using Java’s
Portlet 2.0 API and portal servers like Liferay, you can build
fl exible, stable business portals without the design overhead
required by other application styles.

Portlets in Action is a comprehensive guide to building portlet-
driven applications in Java. It teaches portlet development
hands-on as you develop a portal that incorporates most key
features of the Portlet 2.0 API. And because portals and port-
lets are so fl exible, the accompanying source code can be easily
adapted and reused. Along the way, you’ll learn how to work
with key web frameworks like Spring 3.0 Portlet MVC and DWR.

What’s Inside
Complete coverage of the Portlet 2.0 API

Spring 3.0 Portlet MVC and the Liferay portal server
Portal design best practices
Reusable source code

Written for Java developers. No prior experience with portlets
required.

Ashish Sarin has over 12 years of experience designing and
developing web applications and portals using Java EE and
portlet APIs.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/PortletsinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

Portlets IN ACTION

JAVA WEB DEVELOPMENT

M A N N I N G

SEE INSERT

“An essential handbook.” —Doug Warren
 Java Web Services

“Best coverage of Spring
 Portlet MVC anywhere.”
 —Lester Martin
 Hewlett-Packard

“An invaluable resource ...
 hands-on examples.”
 —Barbara Regan
 Centra Technology

“Finally, a good book on
 JSR 286, also featuring
 Spring MVC & Ajax.”
 —Jakub Holy, Iterate AS

“Quickly extend your Java
 and Spring skills into
 portlet development.”
 —Joshua White
 Independent Consultant

