SAamMPLE CHAPTER

INACT

Covers Unity 5

Joseph Hocking

Foreworn BY Jesse Schell

/III MANNING

Unity in Action
Multiplatform game development in C#
by Joseph Hocking

Chapter 10

Copyright 2015 Manning Publications

brief contents

1 Getting to know Unity 3

2 Building a demo that puts you in 3D space 21

3 Adding enemies and projectiles to the 3D game 46

4 Developing graphics for your game 69

PART 2 GETTING COMFORTABLE ...cccceeerrmmmnnnneeeeeeeenananaasannnnns 93

5 Building a Memory game using Unity’s new 2D
functionality 95

6 Putting a 2D GUl in a 3D game 119

7 Creating a third-person 3D game: player movement
and animation 140

8 Adding interactive devices and items within the game 167

PART 3 STRONG FINISH ..cceceeereececerercecesercacecesescscesessssscesesesee 193

9
10
11
12

Connecting your game to the internet 195

Playing audio: sound effects and music 222

Putting the parts together into a complete game 246
Deploying your game to players’ devices 276

Playing audio:
sound effects and music

This chapter covers

Importing and playing audio clips for various sound
effects

Using 2D sounds for the Ul and 3D sounds in the
scene

Modulating the volume of all sounds when they play
Playing background music while the game is going on

Fading in and out between different background
tunes

Although graphics get most of the attention when it comes to content in video
games, audio is crucial, too. Most games play background music and have sound
effects. Accordingly, Unity has audio functionality so that you can put sound effects
and music into your games. Unity can import and play a variety of audio file for-
mats, adjust the volume of sounds, and even handle sounds playing from a specific
position within the scene.

This chapter starts with sound effects rather than music. Sound effects are short
clips that play along with actions in the game (such as a gunshot that plays when

222

10.1

10.1.1

Importing sound effects 223

the player fires), whereas the sound clips for music are longer (often running into
minutes) and playback isn’t directly tied to events in the game. Ultimately, both boil
down to the same kind of audio files and playback code, but the simple fact that the
sound files for music are usually much larger than the short clips used for sound
effects (indeed, files for music are often the largest files in the game!) merits covering
them in a separate section.

The complete roadmap for this chapter will be to take a game without sound and
do the following:

Import audio files for sound effects.
Play sound effects for the enemy and for shooting.
Program an audio manager to control volume.

Optimize the loading of music.

a H» W N R

Control music volume separately from sound effects, including cross-fading
tracks.

NOTE This chapter is largely independent of the project you build; it simply
adds audio capabilities on top of an existing game demo. All of the examples
in this chapter are built on top of the FPS created in chapter 3 and you could
download that sample project, but you're free to use whatever game demo
you'd like.

Once you have an existing game demo copied to use for this chapter, you can tackle
the first step: importing sound effects.

Importing sound effects

Before you can play any sounds, you obviously need to import the sound files into
your Unity project. First you’ll collect sound clips in the desired file format, and then
you’ll bring the files into Unity and adjust them for your purposes.

Supported file formats

Much as you saw with art assets in chapter 4, Unity supports a variety of audio formats
with different pros and cons. Table 10.1 lists the audio file formats that Unity supports.

Table 10.1 Audio file formats supported by Unity

File type Pros and cons
WAV Default audio format on Windows. Uncompressed sound file.
AlF Default audio format on Mac. Uncompressed sound file.
MP3 Compressed sound file; sacrifices a bit of quality for much smaller files.
0GG Compressed sound file; sacrifices a bit of quality for much smaller files.

224 CHAPTER 10 Playing audio: sound effects and music

Table 10.1 Audio file formats supported by Unity (continued)

File type Pros and cons
MOD Music tracker file format. A specialized kind of efficient digital music.
XM Music tracker file format. A specialized kind of efficient digital music.

The primary consideration differentiating audio files is the compression applied.
Compression reduces the file’s size but accomplishes that by throwing out a bit of
information in the file. Audio compression is clever about only throwing out the least
important information so that the compressed sound still sounds good. Nevertheless,
it’s a small loss of quality, so you should choose uncompressed audio when the sound
clip is short and thus wouldn’t be a large file. Longer sound clips (especially music)
should use compressed audio, because the audio clip would be prohibitively large oth-
erwise.
Unity adds a small wrinkle to this decision, though...

TIP Although music should be compressed in the final game, Unity can com-
press the audio after you’ve imported the file. Thus, when developing a game
in Unity you usually want to use uncompressed file formats even for lengthy
music, as opposed to importing compressed audio.

How digital audio works

In general, audio files store the waveform that’ll be created in the speakers when the
sound plays. Sound is a series of waves that travel through the air, and different
sounds are made with different sizes and frequencies of sound waves. Audio files
record these waves by sampling the wave repeatedly at short time intervals and saving
the state of the wave at each sample.

Recordings that sample the wave more frequently get a more accurate recording of
the wave changing over time—there’s less gap between changes. But more frequent
samples mean more data to save, resulting in a larger file. Compressed sound files
reduce the file size through a number of tricks, including tossing out data at sound
frequencies that aren’t noticeable to listeners.

Music trackers are a special type of sequencer software used to create music. Where-
as traditional audio files store the raw waveform for the sound, sequencers store some-
thing more akin to sheet music: the tracker file is a sequence of notes, with information
like intensity and pitch stored with each note. These “notes” consist of little wave-
forms, but the total amount of data stored is reduced because the same note is used
repeatedly throughout the sequence. Music composed this way can be efficient, but
this is a fairly specialized sort of audio.

Because Unity will compress the audio after it’s been imported, you should always
choose either WAV or AIF file format. You’ll probably need to adjust the import set-

10.1.2

Importing sound effects 225

tings differently for short sound effects and longer music (in particular, to tell Unity
when to apply compression), but the original files should always be uncompressed.

There are various ways to create sound files (for example, appendix B mentions
tools like Audacity that can record sounds from a microphone), but for our purposes
we’ll download some sounds from one of the many free sound websites. We're going
to use a number of clips downloaded from www.freesound.org and get the clips in
WAV file format.

WARNING “Free” sounds are offered under a variety of licensing schemes, so
always make sure that you’re allowed to use the sound clip in the way you
intend. For example, many free sounds are for noncommercial use only.

The sample project uses the following public domain sound effects (of course, you
can choose to download your own sounds; look for a 0 license listed on the side):

= “thump” by hy96

= “ding” by Daphne_in_Wonderland
= “swish bamboo pole” by ra_gun

= “fireplace” by leosalom

Once you have the sound files to use in your game, the next step is to import the
sounds into Unity.

Importing audio files

After gathering together some audio files, you need to bring them into Unity. Just as
you did with art assets in chapter 4, you have to import audio assets into the project
before they can be used in the game.

The actual mechanics of importing files are simple and are the same as with other
assets: drag the files from their location on the computer to the Project view within
Unity (create a folder called Sound FX to drag the files into). Well, that was easy! But
just like other assets, there are import settings (shown in figure 10.1) to adjust in the
Inspector.

Leave Force To Mono unchecked. That refers to mono versus stereo sound; often
sounds are recorded in stereo, where there are actually two waveforms in the file, one

Should stereo sounds be (@ nspector L a s
converted to mono? ~ dingImport Settings # Ready the sound by loading
it ahead of time and/or
(s T (ot g behind the scenes while
Data format to store the) Load In Background (] other code is running?
(possibly compressed) audio Preload Audio Data [8

in. Choose PCM or Vorbis.

. . . Default s §
(A slider for Quality will = ®|s |0 ¢
if h Load Type | Decompress On Load
appe'ar I you choose > Compression Format | PCM

Vorbis format.) Sample Rate Setting | Preserve Sample Rate

Load all at once or
stream this audio?

Figure 10.1 Import settings for audio files

www.freesound.org

226

10.2

10.2.1

CHAPTER 10 Playing audio: sound effects and music

each for the left and right ears/speakers. To save on file size, you might want to halve
the audio information so that the same waveform is sent to both speakers rather than
separate waves sent to the left and right speakers.

Next are check boxes for Load In Background and Preload Audio Data. The pre-
load setting relates to balancing playback performance and memory usage; preload-
ing audio will consume memory while the sound waits to be used but will avoid having
to wait to load. Loading audio in the background of the program will allow the pro-
gram to keep running while the audio is loading; this is generally a good idea for long
music clips so that the program won’t freeze. But this means the audio won’t start play-
ing right away; usually you want to keep this setting off for short sound clips to ensure
that they load completely before they play. Because the imported clips are short sound
effects, you should leave Load In Background off.

Finally, the most important settings are Load Type and Compression Format. Com-
pression Format controls the formatting of the audio data that’s stored. As discussed
in the previous section, music should be compressed; choose Vorbis (it’s the name of
a compressed audio format) in that case. Short sound clips don’t need to be com-
pressed, so choose PCM (Pulse Code Modulation, the technical term for the raw, sam-
pled sound wave) for these clips. The third setting, ADPCM, is a variation on PCM and
occasionally results in slightly better sound quality.

Load Type controls how the data from the file will be loaded by the computer.
Because computers have limited memory and audio files can be large, sometimes you
want the audio to play while it’s streaming into memory, saving the computer from
needing to have the entire file loaded at once. But there’s a bit of computing overhead
when streaming audio like this, so audio plays fastest when it’s loaded into memory first.
Even then you can choose whether the loaded audio data will be in compressed form
or if it will be decompressed for faster playback. Because these sound clips are short,
they don’t need to stream and can be set to Decompress On Load.

At this point, the sound effects are all imported and ready to use.

Playing sound effects

Now that you have some sound files added to the project, you naturally want to play
the sounds. The code for triggering sound effects isn’t terribly hard to understand,
but the audio system in Unity does have a number of different parts that must work in
concert.

Explaining what’s involved: audio clip vs. source vs. listener

Although you might expect that playing a sound is simply a matter of telling Unity
which clip to play, it turns out that you must define three different parts in order to
play sounds in Unity: AudioClip, AudioSource, and AudioListener. The reason for
breaking apart the sound system into multiple components has to do with Unity’s sup-
port for 3D sounds: the different components tell Unity positional information that it
uses for manipulating 3D sounds.

Playing sound effects 227

2D vs. 3D sound

Sounds in games can be either 2D or 3D. 2D sounds are what you're already familiar
with: standard audio that plays normally. The moniker “2D sound” mostly means “not
3D sound.”

3D sounds are specific to 3D simulations and may not already be familiar to you; these
are sounds that have a specific location within the simulation. Their volume and pitch
are influenced by the movement of the listener. For example, a sound effect triggered
in the distance will sound very faint.

Unity supports both kinds of audio, and you decide if an audio source should play
audio as 2D sounds or 3D sounds. Things like music should be 2D sounds, but using
3D sounds for most sound effects will create immersive audio in the scene.

As an analogy, imagine a room in the real world. The room has a stereo playing a CD.
If a man comes into the room, he hears it clearly. When he leaves the room he hears it
more quietly, and eventually not at all. Similarly, if we move the stereo around the
room, he’ll hear the music changing volume as it moves. As figure 10.2 illustrates, in
this analogy the CD is an AudioClip, the stereo is an AudioSource, and the man is the
AudioListener.

The first of the three different parts is an Audio Clip. That refers to the actual
sound file that we imported in the last section. This raw waveform data is the founda-
tion for everything else the audio system does, but audio clips don’t do anything by
themselves.

The next kind of object is an Audio Source. This is the object that plays audio clips.
This is an abstraction over what the audio system is actually doing, but it’s a useful
abstraction that makes 3D sounds easier to understand. A 3D sound played from a spe-
cific audio source is located at the position of that audio source; 2D sounds also must
be played from an audio source, but the location doesn’t matter.

The third kind of object involved in Unity’s audio system is an Audio Listener. As
the name implies, this is the object that hears sounds projected from audio sources.
This is another abstraction on top of what the audio system is doing (obviously the
actual listener is the player of the game!), but—much like how the position of the

AudioListener
AudioClip AudioSource

© &
o

Figure 10.2 Diagram of the three
things you control in Unity’s audio
system

228

10.2.2

CHAPTER 10 Playing audio: sound effects and music

audio source gives the position that the sound is projected from—the position of the
audio listener gives the position that the sound is heard from.

Advanced sound control using Audio Mixers

Audio Mixers are a new feature added in Unity 5. Rather than playing audio clips direct-
ly, audio mixers enable you to process audio signals and apply various effects to your
clips. Learn more about AudioMixer in Unity’s documentation; for example, watch this
tutorial video: https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-
beta/audiomixer-and-audiomixer-groups

Although both audio clips and AudioSource components have to be assigned, an
AudioListener component is already on the default camera when you create a new
scene. Typically you want 3D sounds to react to the position of the viewer.

Assigning a looping sound

All right, now let’s set our first sound in Unity! The audio clips were already imported,
and the default camera has an AudioListener component, so we only need to assign
an AudioSource component. We’re going to put a crackling fire sound on the Enemy
prefab, the enemy character that wanders around.

NOTE Because the enemy will sound like it’s on fire, you might want to give it
a particle system so that it looks like it’s on fire. You can copy over the particle
system created in chapter 4 by making the particle object into a prefab and
then choosing Export Package from the Asset menu. Alternatively, you could
redo the steps from chapter 4 here to create a new particle object from
scratch (drag the Enemy prefab into the scene to edit it and then choose
GameODbject > Apply Changes To Prefab).

Usually you need to drag a prefab into the scene in order to edit it, but you can edit
the prefab asset directly when you're just adding a component onto the object. Select
the Enemy prefab so that its properties appear in the Inspector. Now add a new com-
ponent; choose Audio > Audio Source. An AudioSource component will appear in the
Inspector.

Tell the audio source what sound clip to play. Drag an audio file from the Project
view up to the Audio Clip slot in the Inspector; we’re going to use the “fireplace”
sound effect for this example (refer to figure 10.3).

Skip down a bit in the settings and select both Play On Awake and Looping (of
course, make sure that Mute isn’t checked). Play On Awake tells the audio source to
begin playing as soon as the scene starts (in the next section you’ll learn how to trig-
ger sounds manually while the scene is running). Looping tells the audio source to
keep playing continuously, repeating the audio clip when playback is over.

https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-beta/audiomixer-and-audiomixer-groups
https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-beta/audiomixer-and-audiomixer-groups

10.2.3

Playing sound effects 229

v] [Audio Source -3
The AudioClip AudiaClip °
to play. Output @
Mute -
e g Should this audio
Bypass Listener Effect —
Bypass Reverb Zones E/—\ Play as soon as the
Play On Awake scene starts?
Loop <
Spatial Blend can set Priarity Hg"—o—m\
this audio source to Volume S |
either 2D or 3D "] Should the
. Pite ——
- playback loop?
— —
Stereo Pan — e o]
Spatial Blend ﬁl:l
Reverb Zone Mix —_—1
¥ 3D Sound Settings

Figure 10.3 Settings for the AudioSource component

You want this audio source to project 3D sounds. As explained earlier, 3D sounds have
a distinct position within the scene. That aspect of the audio source is adjusted using
the Spatial Blend setting. That setting is a slider between 2D and 3D; set it to 3D for
this audio source.

Now play the game and make sure your speakers are turned on. You can hear a
crackling fire coming from the enemy, and the sound becomes faint if you move away
because you used a 3D audio source.

Triggering sound effects from code

Setting the AudioSource component to play automatically is handy for some looping
sounds, but for the majority of sound effects you’ll want to trigger the sound with code
commands. That approach still requires an AudioSource component, but now the
audio source will only play sound clips when told to by the program, instead of auto-
matically all the time.

Add an AudioSource component to the player object (not the camera object). You
don’t have to link in a specific audio clip because the audio clips will be defined in
code. You can turn off Play On Awake because sounds from this source will be trig-
gered in code. Also, adjust Spatial Blend to 3D because this sound is located in the
scene.

Now make the additions shown in the next listing to RayShooter, the script that
handles shooting.

Listing 10.1 Sound effects added in the RayShooter script

[SerializeField] private AudioSource soundSource;
[SerializeField] private AudioClip hitWallSound; References the two sound
[SerializeField] private AudioClip hitEnemySound; files you want to play

230

10.3

10.3.1

CHAPTER 10 Playing audio: sound effects and music

If target is not null, the

if (target != null) { qf player has hit an enemy, so...

target .ReactToHit () ;
soundSource.PlayOneShot (hitEnemySound) ;

} else {
StartCoroutine (SphereIndicator (hit.point)) ;

soundSource.PlayOneShot (hitWallSound) ;
...call PlayOneShot() to play the Hit
) N y () to play

A Wall sound if the player missed.

q\ ...call PlayOneShot() to play the
Hit An Enemy sound, or...

The new code includes several new serialized variables at the top of the script. Drag
the player object (the object with an AudioSource component) to the soundSource
slot in the Inspector. Then drag the audio clips to play onto the sound slots; “swish” is
for hitting the wall and “ding” is for hitting the enemy.

The other two lines added are PlayOneShot () methods. That method causes an
audio source to play a given audio clip. Add those methods inside the target condi-
tional in order to play sounds when different objects are hit.

NOTE You could set the clip in the AudioSource and call Play () to play the
clip. Multiple sounds would cut each other off, though, so we used Play-
OneShot () instead. Replace PlayOneShot () with this code and shoot a bunch
rapidly to see (er, hear) the problem:

soundSource.clip=hitEnemySound; soundSource.Play () ;

All right, play the game and shoot around. You now have several different sound
effects in the game. These same basic steps can be used to add all sorts of sound
effects. A robust sound system in a game requires a lot more than just a bunch of dis-
connected sounds, though; at a minimum, all games should offer volume control.
You’ll implement that control next through a central audio module.

Audio control interface

Continuing the code architecture established in previous chapters, you're going to
create an AudioManager. Recall that the Managers object has a master list of various
code modules used by the game, such as a manager for the player’s inventory. This
time you’ll create an audio manager to stick into the list. This central audio module
will allow you to modulate the volume of audio in the game and even mute it. Initially
you’ll only worry about sound effects, but in later sections you’ll extend the Audio-
Manager to handle music as well.

Setting up the central AudioManager

The first step in setting up AudioManager is to put in place the Managers code frame-
work. From the chapter 9 project, copy over IGameManager, ManagerStatus, and
NetworkService; we won’t change them. (Remember that IGameManager is the inter-
face that all managers must implement, whereas ManagerStatus is an enum that
IGameManager uses. NetworkService provides calls to the internet and won’t be used
in this chapter.)

Audio control interface 231

NOTE Unity will probably issue a warning because NetworkService is
assigned but not used. You can just ignore Unity's warning; we want to enable
the code framework to access the internet, even though we don’t use that
functionality in this chapter.

Also copy over the Managers file, which will be adjusted for the new AudioManager.
Leave it be for now (or comment out the erroneous sections if the sight of compiler
errors drives you crazy!). Create a new script called AudioManager that the Managers
code can refer to (see the following listing).

Listing 10.2 Skeleton code for AudioManager

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class AudioManager : MonoBehaviour, IGameManager {
public ManagerStatus status {get; private set;}

private NetworkService network;
// Add volume controls here (listing 10.4)

public void Startup (NetworkService service) {
Debug.Log ("Audio manager starting...");

network = service; .
- Any long-running

<}f startup tasks go here.

// Initialize music sources here (listing 10.10)

status = ManagerStatus.Started;

} q\ Set status to Initializing if there
} are long-running startup tasks.

This initial code looks just like managers from previous chapters; this is the minimum
amount that IGameManager requires that the class implements. The Managers script
can now be adjusted with the new manager (see the next listing).

Listing 10.3 Managers script adjusted with AudioManager

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

[RequireComponent (typeof (AudioManager))]

public class Managers : MonoBehaviour ({
public static AudioManager Audio {get; private set;}

private List<IGameManager> _startSequence;

232

10.3.2

CHAPTER 10 Playing audio: sound effects and music

void Awake () {

Audio = GetComponent<AudioManagers () ; G\y Only list AudioManager in
this project, instead of
_startSequence = new List<IGameManagers () ; PlayerManager, and so on.

_startSequence.Add (Audio) ;

StartCoroutine (StartupManagers()) ;

}

private IEnumerator StartupManagers() {
NetworkService network = new NetworkService() ;

foreach (IGameManager manager in _startSeguence) {
manager.Startup (network) ;
}

yield return null;

int numModules

= _startSequence.Count;
int numReady = 0;

while (numReady < numModules) {
int lastReady = numReady;
numReady = 0;

foreach (IGameManager manager in _startSequence) {
if (manager.status == ManagerStatus.Started) ({
numReady++;

}

if (numReady > lastReady)
Debug.Log ("Progress: " + numReady + "/" + numModules) ;

yield return null;

}

Debug.Log ("All managers started up") ;

}

As you have in previous chapters, create the Game Managers object in the scene and
then attach both Managers and AudioManager to the empty object. Playing the game
will show the managers startup messages in the console, but the audio manager
doesn’t do anything yet.

Volume control Ul

With the bare-bones AudioManager set up, it’s time to give it volume control function-
ality. These volume control methods will then be used by UI displays in order to mute
the sound effects or adjust the volume.

You'll use the new Ul tools that were the focus of chapter 6. Specifically, you're
going to create a pop-up window with a button and a slider to control volume settings

Property

with getter
and setter
for volume

Image

Audio control interface 233

& Button
(with pop-up sprite)

Slider

N

Figure 10.4 Ul display for
mute and volume control

(see figure 10.4). I'll list the steps involved without going into detail; if you need a
refresher, refer back to chapter 6:

© 00 N O o b WO N PR

B B R R R R R R
N o a0 W N R O

18

Import popup.png as a sprite (set Texture Type to Sprite).

In Sprite Editor, set a 12-pixel border on all sides (remember to apply changes).
Create a canvas in the scene (GameObject > UI > Canvas).

Turn on the Pixel Perfect setting for the canvas.

(Optional) Name the object HUD Canvas and switch to 2D view mode.
Create an image connected to that canvas (GameObject > UI > Image).
Name the new object Settings Popup.

Assign the popup sprite to the image’s Source Image.

Set Image Type to Sliced and turn on Fill Center.

Position the pop-up image at 0, 0 to center it.

Scale the pop-up to 250 width and 150 height.

Create a button (GameObject > UI > Button).

Parent the button to the pop-up (that is, drag it in the Hierarchy).
Position the button at 0, 40.

Expand the button’s hierarchy in order to select its text label.

Change the text to say Toggle Sound.

Create a slider (GameObject > UI > Slider).

Parent the slider to the pop-up and position at 0, 15.

Those were all the steps to create the settings pop-up! Now that the pop-up has been
created, let’s write code that it’ll work with. This will involve both a script on the pop-
up object itself, as well as volume control functionality that the pop-up script calls.

First adjust the code in AudioManager according to the next listing.

Listing 10.4 Volume control added to AudioManager

public float soundvVolume {

get {return AudioListener.volume; }
set {AudioListener.volume = value;}

Implement the getter/setter
using AudiolListener.

234

CHAPTER 10 Playing audio: sound effects and music

public bool soundMute { 4\¥
get {return AudiolListener.pause;} Add a similar property to mute.
set {AudiolListener.pause = value;}

}

public void Startup (NetworkService service) f{

Debug. Log ("Audio manager starting..."); 4\ Italicized code was already in

script, shown here for reference.

_network = service;

soundVolume = 1f;

“_ Initialize the value (0 to

status = ManagerStatus.Started; I range; I is full volume).

Properties for soundvolume and soundMute were added to AudioManager. For both
properties, the get and set functions were implemented using global values on Audio-
Listener. The AudioListener class can modulate the volume of all sounds received by
all AudioListener instances. Setting AudioManager’s soundvolume property has the
same effect as setting the volume on AudioListener. The advantage here is encapsula-
tion: everything having to do with audio is being handled in a single manager, without
code outside the manager needing to know the details of the implementation.

With those methods added to AudioManager, you can now write a script for the
pop-up. Create a script called SettingsPopup and add the contents of the following
listing.

Listing 10.5 SettingsPopup script with controls for adjusting the volume

using UnityEngine;
using System.Collections;

public class SettingsPopup : MonoBehaviour { This button will toggle the mute

f AudioM g
public void OnSoundToggle () { <V/H property of AudioManager.

Managers.Audio.soundMute = !Managers.Audio.soundMute;

public void OnSoundvalue (float volume) {

Managers.Audio.soundVolume = volume; <h\~ TMSshderwﬂlqduwtthevdunn
} property of AudioManager.

}

This script has two methods that affect the properties of AudioManager: OnSound-
Toggle () sets the soundMute property, and OnSoundValue () sets the soundVolume
property. As usual, link in the SettingsPopup script by dragging it onto the Settings
Popup object in the UL

Then, in order to call the functions from the button and slider, link the pop-up
object to interaction events in those controls. In the Inspector for the button, look for
the panel labeled OnClick. Click the + button to add a new entry to this event. Drag

Audio control interface 235

Settings Popup to the object slot in the new entry and then look for SettingsPopup in
the menu; select OnSoundToggle () to make the button call that function.

The method used to link the function applies to the slider as well. First look for the
interaction event in a panel of the slider’s settings; in this case, the panel is called
OnValueChanged. Click the + button to add a new entry and then drag Settings
Popup to the object slot. In the function menu find the SettingsPopup script and then
choose OnSoundvValue () under Dynamic Float.

WARNING Remember to choose the function under Dynamic Float and not
Static Parameter! Although the method appears in both sections of the list, in
the latter case it will only receive a single value typed in ahead of time.

The settings controls are now working, but there’s one more script we need to address
the fact that the pop-up is currently always covering up the screen. A simple fix is to
make the pop-up only open when you hit the M key. Create a new script called UICon-
troller, link that script to the Controller object in the scene, and write the code shown
in the next listing.

Listing 10.6 UlController that toggles the settings pop-up

using UnityEngine;
using System.Collections;
References pop-u
public class UIController : MonoBehaviour { L pop-up
L : :) object in scene
[SerializeField] private SettingsPopup popup; 4/”

void Start () { 4/ Initializes pop-up hidden
popup .gameObject.SetActive (false) ;

}

void Update() { Toggles pop-up with M key
if (Input.GetKeyDown (KeyCode.M)) { <V/F
bool isShowing = popup.gameObject.activeSelf;
popup .gameObject.SetActive (!isShowing) ;

if (isShowing) ({

Cursor.lockState = CursorLockMode.Locked;
Cursor.visible = false;

} else { Also toggles cursor
Cursor.lockState = CursorLockMode.None; along with pop-up
Cursor.visible = true;

}

To wire up this object reference, drag the settings pop-up to the slot on this script.
Play now and try changing the slider (remember to activate the UI by hitting M) while
shooting around to hear the sound effects; you’ll hear the sound effects change vol-
ume according to the slider.

236

CHAPTER 10 Playing audio: sound effects and music

10.3.3 Playing Ul sounds

10.4

You’re going to make another addition to AudioManager now to allow the UI to play
sounds when buttons are clicked. This task is more involved than it seems at first,
owing to Unity’s need for an AudioSource. When sound effects issued from objects in
the scene, it was fairly obvious where to attach the AudioSource. But Ul sound effects
aren’t part of the scene, so you’ll set up a special AudioSource just for AudioManager
to use when there isn’t any other audio source.

Create a new empty GameObject and parent it to the main Game Managers object;
this new object is going to have an AudioSource used by AudioManager, so call the new
object Audio. Add an AudioSource component to this object (leave the Spatial Blend
setting at 2D this time, because the UI doesn’t have any specific position in the scene)
and then add the code shown in the next listing to use this source in AudioManager.

Listing 10.7 Play sound effects in AudioManager

[SerializeField] private AudioSource soundSource;

q\ Variable slot in the Inspector to
reference the new audio source

public void PlaySound(AudioClip clip) {
soundSource.PlayOneShot (clip) ; <k\\’ Play sounds that don’t

} have any other source.

A new variable slot will appear in the Inspector; drag the Audio object onto this slot.
Now add the UI sound effect to the pop-up script (see the following listing).

Listing 10.8 Adding sound effects to SettingsPopup

[SerializeField] private AudioClip sound; <h\v I ¢ lot t f
nspector siot to reterence

public void OnSoundToggle () { the sound clip

Managers.Audio.soundMute !Managers.Audio.soundMute;

Managers.Audio.PlaySound (sound) ;

} 4\ Play the sound effect when
the button is pressed.

Drag the UI sound effect onto the variable slot; I used the 2D sound “thump.” When
you press the UI button, that sound effect plays at the same time (well, when the
sound isn’t muted, of course!). Even though the UI doesn’t have any audio source
itself, AudioManager has an audio source that plays the sound effect.

Great, we’ve set up all our sound effects! Now let’s turn our attention to music.

Background music

You're going to add some background music to the game, and you’ll do that by add-
ing music to AudioManager. As explained in the chapter introduction, music clips
aren’t fundamentally different from sound effects. The way digital audio functions

104.1

Background music 237

through waveforms is the same, and the commands for playing the audio are largely
the same. The main difference is the length of the audio, but that difference cascades
out into a number of consequences.

For starters, music tracks tend to consume a large amount of memory on the com-
puter, and that memory consumption must be optimized. You must watch out for two
areas of memory issues: having the music loaded into memory before it’s needed, and
consuming too much memory when loaded.

Optimizing when music loads is done using the Resources.Load () command intro-
duced in chapter 8. As you learned, this command allows you to load assets by name;
though that’s certainly one handy feature, that’s not the only reason to load assets
from the Resources folder. Another key consideration is delaying loading; normally
Unity loads all assets in a scene as soon as the scene loads, but assets from Resources
aren’t loaded until the code manually fetches them. In this case, we want to lazy-load
the audio clips for music. Otherwise, the music could consume a lot of memory while
itisn’t even being used.

DEFINITION Lazy-loading is when a file isn’t loaded ahead of time but rather is
delayed until it’s needed. Typically data responds faster (for example, the
sound plays immediately) if it’s loaded in advance of use, but lazy-loading can
save a lot of memory when responsiveness doesn’t matter as much.

The second memory consideration is dealt with by streaming music off the disc. As
explained in section 10.1.2, streaming the audio saves the computer from ever need-
ing to have the entire file loaded at once. The style of loading was a setting in the
Inspector of the imported audio clip.

Ultimately there are several steps to go through for playing background music,
including steps to cover these memory optimizations.

Playing music loops
The process of playing music involves the same series of steps as Ul sound effects did

(background music is also 2D sound without a source within the scene), so we’re
going to go through all the steps again:

1 Import audio clips.

2 Set up an AudioSource for AudioManager to use.

3 Write code to play the audio clips in AudioManager.
4 Add music controls to the UL

Each step will be modified slightly to work with music instead of sound effects. Let’s
look at the first step.

STEP 1: IMPORT AUDIO CLIPS
Obtain some music by downloading or recording tracks. For the sample project I went
to www.freesound.org and downloaded the following public domain music loops:

= “loop” by Xythe/Ville Nousiainen
= “Intro Synth” by noirenex

www.freesound.org

238

CHAPTER 10 Playing audio: sound effects and music

Drag the files into Unity to import them and then adjust their import settings in the
Inspector. As explained earlier, audio clips for music generally have different settings
than audio clips for sound effects. First, the audio format should be set to Vorbis, for
compressed audio. Remember, compressed audio will have a significantly smaller file
size. Compression also degrades the audio quality slightly, but that slight degradation
is an acceptable trade-off for long music clips; set Quality to 50% in the slider that
appears.

The next import setting to adjust is Load Type. Again, music should stream from
the disc rather than being loaded completely. Choose Streaming from the Load Type
menu. Similarly, turn on Load In Background so that the game won’t pause or slow
down while music is loading.

Even after you adjust all the import settings, the asset i 1 (oS - [T

files must be moved to the correct location in order to
load correctly. Remember that the Resources.Load()
command requires that the assets be in the Resources

folder. Create a new folder called Resources, create a

folder within that called Music, and drag the audio files Lo jooe
into the Music folder (see figure 10.5). Figure 10.5 Music audio
That took care of step number 1. clips placed inside the

Resources folder
STEP 2: SET UP AN AUDIOSOURCE FOR AUDIOMANAGER TO USE

Step 2 is to create a new AudioSource for music playback. Create another empty
GameODbject, name this object Music 1 (instead of just Music because we’ll add Music
2 later in the chapter), and parent it to the Audio object.

Add an AudioSource component to Music 1 and then adjust the settings in the com-
ponent. Deselect Play On Awake but turn on the Loop option this time; whereas sound
effects usually only play once, music plays over and over in a loop. Leave the Spatial
Blend setting at 2D, because music doesn’t have any specific position in the scene.

You may want to reduce the Priority value, too. For sound effects, this value didn’t
matter, so we left the value at the default 128. But for music you probably want to
lower this value, so I set the music source to 60. This value tells Unity which sounds are
most important when layering multiple sounds; somewhat counterintuitively, lower
values are higher priority. When too many sounds are playing simultaneously, the
audio system will start discarding sounds; by making music higher priority than sound
effects, you ensure the music will keep playing when too many sound effects trigger at
the same time.

STEP 3: WRITE CODE TO PLAY THE AUDIO CLIPS IN AUDIOMANAGER
The Music audio source has been set up, so add the code shown in the next listing to
AudioManager.

Listing 10.9 Playing music in AudioManager

[SerializeField] private AudioSource musiclSource;

Load main
music from
Resources.

Background music 239

[SerializeField] private string introBGMusic;

[SerializeField] private string levelBGMusic; Write music names in these strings.

public void PlayIntroMusic() {
PlayMusic (Resources.Load ("Music/"+introBGMusic) as AudioClip) ; <F\\\
} Load intro
public void PlayLevelMusic() { music from
PlayMusic (Resources.Load ("Music/"+levelBGMusic) as AudioClip) ; Resources.

}

private void PlayMusic (AudioClip clip) {

musiclSource.clip = clip; <h\- Play music by setting

musiclSource.Play () ; AudioSource.clip.

}

public void StopMusic() {
musiclSource.Stop () ;
1

As usual, the new serialized variables will be visible in the Inspector when you select
the object Game Managers. Drag Music 1 into the audio source slot. Then type in the
names of the music files in the two string variables: intro-synth and loop.

The remainder of the added code calls commands for loading and playing music
(or, in the last added method, stopping the music). The Resources.Load () command
loads the named asset from the Resources folder (taking into account that the files are
placed in the Music subfolder within Resources). A generic object is returned by that
command, but the object can be converted to a more specific type (in this case, an
AudioClip) using the as keyword.

The loaded audio clip is then passed into the PlayMusic () method. This function
sets the clip in the AudioSource and then calls Play (). As I explained earlier, sound
effects are better implemented using PlayOneShot (), but setting the clip in the
AudioSource is a more robust approach for music, allowing you to stop or pause the
playing music.

STEP 4: ADD MUSIC CONTROLS TO THE Ul
The new music playback methods in AudioManager won’t do anything unless they’re
called from elsewhere. Let’s add more buttons to the audio UI that will play different
music when pressed. Here again are the steps enumerated with little explanation
(refer back to chapter 6 if needed):

Change the pop-up’s width to 350 (to fit more buttons).

Create a new UI button and parent it to the pop-up.

Set the button’s width to 100 and position to 0, -20.

Expand the button’s hierarchy to select the text label and set that to Level Music.
Repeat these steps twice more to create two additional buttons.

Position one at-105,-20 and the other at 105, -20 (so they appear on either side).

N 0O a b~ WN B

Change the first text label to Intro Music and the last text label to No Music.

240

104.2

CHAPTER 10 Playing audio: sound effects and music

Now the pop-up has three buttons for playing different music. Write a method (shown
in the following listing) in SettingsPopup that will be linked to each button.

Listing 10.10 Adding music controls to SettingsPopup

public void OnPlayMusic (int selector) ({
Managers.Audio.PlaySound (sound) ;

q\ This method gets a number
parameter from the button.

switch (selector)
case 1:

4\ Call a different music function in

Managers.Audio.PlayIntroMusic () ; AudioManager for each button.

break;

case 2:
Managers.Audio.PlayLevelMusic () ;
break;

default:
Managers.Audio.StopMusic () ;
break;

Note that the function takes an int parameter this time; normally button methods
don’t have a parameter and are simply triggered by the button. In this case, we need
to distinguish between the three buttons, so the buttons will each send a different
number.

Go through the typical steps to connect a button to this code: add an entry to the
OnClick panel in the Inspector, drag the pop-up to the object slot, and choose the
appropriate function from the menu. This time, there will be a text box for typing in a
number, because OnPlayMusic() takes a number for a parameter. Type 1 for Intro
Music, 2 for Level Music, and anything else for No Music (I went with 0). The switch
statement in OnMusic () plays intro music or level music depending on the number, or
stops the music as a default if the number isn’t 1 or 2.

When you press the music buttons while the game is playing, you’ll hear the music.
Great! The code is loading the audio clips from the Resources folder. Music plays effi-
ciently, although there are still two bits of polish we’ll add: separate music volume con-
trol and cross-fading when changing the music.

Controlling music volume separately

The game already has volume control, and currently that affects the music, too. Most
games have separate volume controls for sound effects and music, though, so let’s
tackle that now.

The first step is to tell the music AudioSources to ignore settings on AudioListener.
We want volume and mute on the global AudioListener to continue to affect all sound
effects, but we don’t want this volume to apply to music. Listing 10.10 includes code to
tell the music source to ignore the volume on AudioListener. The code in the follow-
ing listing also adds volume control and mute for music, so add it to AudioManager.

Background music 241

Listing 10.11 Controlling music volume separately in AudioManager

private float _musicVolume; Private variable that won’t be

public float musicVolume { accessed directly, only through
get { the property’s getter

return musicVolume;
set {
_musicVolume = value;

if (musiclSource != null) {

musiclSource.volume = musicVolume; <R\v Aduptvohnnepfthe
} - AudioSource directly.

}

public bool musicMute {
get {
if (musiclSource != null)
return musiclSource.mute;
}

return false;

} q\ Default value in case the

set | AudioSource is missing

if (musiclSource != null)
musiclSource.mute = value;

}

public void Startup (NetworkService service) {

Debug.Log ("Audio manager starting..."); q\ Italicized code was already in

script, shown here for reference.

_network = service;

musiclSource.ignorelListenerVolume = true; These properties tell the AudioSource
musiclSource.ignorelListenerPause = true; to ignore AudiolListener volume.
soundVolume = 1f;

musicVolume = 1f;

status = ManagerStatus.Started;

The key to this code is realizing you can adjust the volume of an AudioSource directly,
even though that audio source is ignoring the global volume defined in Audio-
Listener. There are properties for both volume and mute that manipulate the individ-
ual music source.

The Startup () method initializes the music source with both ignoreListener-
Volume and ignoreListenerPause turned on. As the names suggest, those properties
cause the audio source to ignore the global volume setting on AudioListener.

242

104.3

CHAPTER 10 Playing audio: sound effects and music

You can hit Play now to verify that the music is no longer affected by the existing
volume control. Now let’s add a second UI control for the music volume; start by
adjusting SettingsPopup according to the next listing.

Listing 10.12 Music volume controls in SettingsPopup

public void OnMusicToggle () {

Managers.Audio.musicMute = !Managers.Audio.musicMute; <h\' Repeat the mute
Managers.Audio.PlaySound (sound) ; control, only use
} musicMute instead.

public void OnMusicValue (float volume) {
Managers.Audio.musicVolume = volume;

} 4\ Repeat the volume control,
only use musicYolume instead.

There’s not a lot to explain about this code—it’s mostly repeating the sound volume
controls. Obviously the AudioManager properties used have changed from sound-
Mute/soundVolume to musicMute/musicVolume.
In the editor, create a button and slider just as you did before. Here are those steps
again:
Change the pop-up’s height to 225 (to fit more controls).
Create a UI button.
Parent the button to the pop-up.
Position the button at 0, -60.
Expand the button’s hierarchy in order to select its text label.
Change the text to Toggle Music.
Create a slider (from the same Ul menu).

0 N O a h~ W N B

Parent the slider to the pop-up and position at 0, -85.

Link up these UI controls to the code in SettingsPopup. Find the OnClick/
OnValueChanged panel in the UI element’s settings, click the + button to add an
entry, drag the pop-up object to the object slot, and select the function from the
menu. The functions you need to pick are OnMusicToggle () and OnMusicValue ()
from the Dynamic Float section of the menu.

Now run this code and you’ll see that the controls affect sound effects and music
separately. This is getting pretty sophisticated, but there’s one more bit of polish
remaining: cross-fade between music tracks.

Fading between songs

As a final bit of polish, let’s make AudioManager fade in and out between different
background tunes. Currently the switch between different music tracks is pretty jar-
ring, with the sound suddenly cutting off and changing to the new track. We can
smooth out that transition by having the volume of the previous track quickly dwindle

Background music 243

away while the volume quickly rises from 0 on the new track. This is a simple but
clever bit of code that combines both the volume control methods you just saw, along
with a coroutine to change the volume incrementally over time.

Listing 10.13 adds a lot of bits to AudioManager, but most revolve around a simple
concept: now that we’ll have two separate audio sources, play separate music tracks on
separate audio sources, and incrementally increase the volume of one source while
simultaneously decreasing the volume of the other (as usual, italicized code was
already in the script and is shown here for reference).

Listing 10.13 Cross-fade between music in AudioManager

[SerializeField] private AudioSource music2Source;

<,\ Second AudioSource

private AudioSource _activeMusic; (keep the first, too)

private AudioSource _inactiveMusic;

<,\ Keep track of which
source is active vs. inactive.

public float crossFadeRate = 1.5f;
private bool crossFading;

q\‘ A toggle to avoid bugs while

public float musicVolume { a cross-fade is happening

set {
_musicVolume = value;

if (musiclSource != null && ! crossFading) ({
musiclSource.volume = musicVolume;
music2Source.volume = musicVolume; N
} - 4\ Adjust the volume on
} both music sources.

}

public bool musicMute {
set {
if (musiclSource != null)

musiclSource.mute = value;
music2Source.mute = value;

public void Startup (NetworkService service) {
Debug.Log ("Audio manager starting...");

_network = service;

musiclSource.ignorelListenerVolume = true;
music2Source.ignorelListenerVolume = true;
musiclSource.ignorelistenerPause = true;

music2Source.ignorelListenerPause = true;

244

CHAPTER 10 Playing audio: sound effects and music

1f;
1f;

soundVolume
musicVolume

_activeMusic = musiclSource;
_inactiveMusic = music2Source;

QX Initialize one as the
active AudioSource.

status = ManagerStatus.Started;

}

private void PlayMusic (AudioClip clip) Call a coroutine when

if (_crossFédlng) {return;}l . qu‘changmglnuﬁc
StartCoroutine (CrossFadeMusic (clip)) ;

private IEnumerator CrossFadeMusic (AudioClip clip) ({
_crossFading = true;

_inactiveMusic.clip = clip;
_inactiveMusic.volume = 0;
_inactiveMusic.Play () ;

float scaledRate = crossFadeRate * musicVolume;
while (_activeMusic.volume > 0) {
_activeMusic.volume -= scaledRate * Time.deltaTime;

_inactiveMusic.volume += scaledRate * Time.deltaTime;

yield return null;

} 4\ This yield statement
pauses for one frame.

AudioSource temp = _activeMusic; . .
4\ Temporary variable to use while
. swapping _active and _inactive.
_activeMusic = _inactiveMusic; ppIng _ -
_activeMusic.volume = musicVolume;
_inactiveMusic = temp;

_inactiveMusic.Stop () ;

_crossFading = false;

public void StopMusic() {
_activeMusic.Stop() ;
_inactiveMusic.Stop () ;

The first addition is a variable for the second music source. While keeping the first
AudioSource object, duplicate that object (make sure the settings are the same—select
Loop) and then drag the new object into this Inspector slot. The code also defines
AudioSource variables active and inactive but those are private variables used within
the code and not exposed in the Inspector. Specifically, those variables define which of
the two audio sources is considered “active” or “inactive” at any given time.

The code now calls a coroutine when playing new music. This coroutine sets the
new music playing on one AudioSource while the old music keeps playing on the old

Summary 245

audio source. Then the coroutine incrementally increases the volume of the new
music while incrementally decreasing the volume of the old music. Once the cross-
fading is complete (that is, the volumes have completely exchanged places), the func-
tion swaps which audio source is considered “active” and “inactive.”

Great! We’ve completed the background music for our game’s audio system.

FMOD: a tool for game audio

The audio system in Unity is powered by FMOD, a popular audio programming library.
The library is available at www.fmod.org, but it’s already integrated into Unity. Unity
has many features of FMOD integrated, although it lacks the library’s most advanced
features (you can visit their website to learn about those features).

Such advanced audio features are offered through FMOD Studio (a plug-in that adds
more functionality to Unity), but the examples in this chapter will stick to the function-
ality built into Unity. That core functionality comprises the most important features
fora game’s audio system. Most game developers have their audio needs served quite
well by this core functionality, but the plug-in is useful for those wishing to get even
more intricate with their game’s audio.

10.5 Summary

In this chapter you’ve learned that

= Sound effects should be uncompressed audio and music should be compressed,
but use the WAV format for both because Unity applies compression to
imported audio.

= Audio clips can be 2D sounds that always play the same or 3D sounds that react
to the listener’s position.

= The volume of sound effects is easily adjusted globally using Unity’s Audio-
Listener.

= You can set volume on individual audio sources that play music.

= You can fade background music in and out by setting the volume on individual
audio sources.

www.fmod.org

GAME PROGRAMMING

Unity
Joseph Hocking

his book helps readers build successful games with the

Unity game development platform. You will use the

powerful C# language, Unity’s intuitive workflow tools,
and a state-of-the-art rendering engine to build and deploy
mobile, desktop, and console games. Unity’s single code-base
approach minimizes inefficient switching among development
tools and concentrates your attention on making great interac-
tive experiences.

teaches you how to write and deploy games.
You'll master the Unity toolset from the ground up, add-
ing the skills you need to go from application coder to game
developer. Each sample project illuminates specific Unity
features and game development strategies. As you read and
practice, you'll build up a well-rounded skill set for creating
graphically driven 2D and 3D game applications.

e Program characters that run, jump, and interact

* Build code architectures that manage the game’s state

e Connect your games to the internet to download live data
* Deploy games to platforms including web and mobile

e Covers Unity version 5

You'll need to know how to program, in C# or a similar OO
language. No previous Unity experience or game development
knowledge is assumed.

is a software engineer specializing in interactive
media development. He works for Synapse Games and teaches
classes in game development at Columbia College Chicago.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/UnityinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

¢¢Joe Hocking wastes none
of your time and gets
you coding fast.??

—From the Foreword by
Jesse Schell, author of
The Art of Game Design

¢¢Gets you up and
running in no time. »
—Sergio Arbeo, codecantor

¢CThe text is clear
and concise, and the
examples are outstanding. »

—Dan Kacenjar, Sr.
Wolters Kluwer

¢CAll the roadblocks

evaporated, and I took
my game from concept
to build in short order.??

—Philip Taffet, SOHOsoft LLC

ISBN 13: 978-1-bklL7292-32-3
ISBN 10: 1l-LE17292-32-X

“ ‘H 5‘44 99
IMN7816171292323

	Hocking-Unity-front-SC.pdf
	ASC10
	ASCh-10
	10
	Playing audio: sound effects and music
	10.1 Importing sound effects
	10.1.1 Supported file formats
	10.1.2 Importing audio files

	10.2 Playing sound effects
	10.2.1 Explaining what’s involved: audio clip vs. source vs. listener
	10.2.2 Assigning a looping sound
	10.2.3 Triggering sound effects from code

	10.3 Audio control interface
	10.3.1 Setting up the central AudioManager
	10.3.2 Volume control UI
	10.3.3 Playing UI sounds

	10.4 Background music
	10.4.1 Playing music loops
	10.4.2 Controlling music volume separately
	10.4.3 Fading between songs

	10.5 Summary

	Hocking-Unity-ebook-back

