
3

1Welcome to Mac OS X

■ Origins of Mac OS X
■ Macintosh user interface
■ Mac OS user interface
■ Mac OS X UNIX underpinnings
■ Mac OS X system architecture



4 CHAPTER 1
Welcome to Mac OS X

You’re never too old to become younger.

—Mae West

The Macintosh burst onto the personal computing scene in January 1984,
instantly changing the way people view and interact with personal computers.
Arguably, no other product has affected our perception of personal computers,
or how we expect them to look and operate, more than the Macintosh. 

 In this chapter, we’ll look at the Mac OS X at the user and architectural levels.
This introduction provides some background on the Macintosh user interface, dis-
cusses the Mac OS X interface, and concludes with a discussion of the Mac OS X
architecture and system components. Section 1.4 contains some terms and con-
cepts associated with operating systems. Appendix D, “A brief history of UNIX,”
gives a brief overview of UNIX and operating system concepts.

1.1 Introduction

The Macintosh was separated from other personal computers of the day by its
uncomplicated graphical user interface (GUI) and ease of use. The designers of
the Macintosh accomplished this differentiation by using real-world metaphors for
user interface elements, direct feedback for user actions, and a consistent user
interface shared between and among applications. A central theme of the Macin-
tosh is that the user is in charge of the computer, not the other way around; the
system should always respond to the user’s needs and actions. These design prin-
ciples have spawned a user community that is vehemently loyal to the Macintosh
and expects its applications to behave in a consistent manner.

 From a user’s point of view, the Macintosh has always been an elegant system
that is simple to use and easy to understand. This is no accident: Macintosh
developers have a highly acute sense of computer-user interaction and user inter-
face design, and take great pride in producing software that respects the way
people work and use their computers. Macintosh programmers are as concerned
about user interfaces issues as program features or the computational aspects of
a program. If users love Macintoshes for their elegance and simplicity, program-
mers love them because they are uncomplicated, well designed, and great deal of
fun to program.



Introduction 5

1.1.1 Origins of Mac OS X

In March 2001, Apple released a new generation operation system for the Mac-
intosh platform called Mac OS X (X is pronounced “ten”). Many innovations and
developments led to its creation. In the mid-1990s, Apple began work on its next
generation operating system, called Copland. Copland attempted to address some
of the problems associated with Apple’s then-current operating system, Mac OS.
The Mac OS had always excelled in its user interface and ease of use, but it was
falling behind other personal computer operating systems in performance, fea-
tures, and stability. For various reasons, Copland never panned out; in 1996 the
project was cancelled.

 Also in 1996, Apple purchased NeXT computer and began work on another
operating system named Rhapsody. The foundation of Rhapsody was NeXTSTEP,
the operating system Apple acquired from NeXT computer. NeXTSTEP was a
BSD-like operating system based on a Mach kernel, which Apple engineers mod-
ified for Rhapsody. Over time, Rhapsody’s design and features evolved first into
Mac OS X Server and then Mac OS X.

 Mac OS X represents a fundamental departure from past Apple operating sys-
tems, merging the best features of the traditional Mac OS with the rock-solid reli-
ability of UNIX. At the core of the system is Darwin, an open source UNIX-based
operating system built on Mach 3.0 and 4.4BSD; it supplies the UNIX underpin-
nings for Mac OS X. On top of Darwin, Apple engineers layered various Macintosh
services that give the system its Macintosh character and functionality. On top of
all this sits a brand new user interface, called Aqua. 

 At one level, the system is a UNIX box, providing access to all the familiar
command-line tools and commands, as well as a wealth of open-source software
and programs including Apache, MySQL, Perl, and GNU software. In addition,
free implementations of X Window can be run under OS X, permitting local and
remote access to a wealth of X Window–based systems and applications. At
another level, the system is a Macintosh; you can run native Mac OS X as well as
older Macintosh application.

 Figure 1.1 shows an OS X machine running a variety of Mac OS X, UNIX, and
older Macintosh software.

 Another interesting feature is the renewed viability of the Macintosh platform
within the scientific, engineering, and research communities. Many people in
these areas have had a bias toward using a Macintosh, but because of the limita-
tions of the Mac OS, have moved to other platforms to run simulations and con-
duct research. You can now run simulations and develop computationally



6 CHAPTER 1
Welcome to Mac OS X

intensive software on the platform; in many cases, you only need to recompile
the source code for the UNIX-based program under Mac OS X. 

 These are truly interesting times for Macintosh users, as well as those moving
to Mac OS X from other UNIX-based platforms.

1.2 The Macintosh user interface

When people make the transition to the Macintosh from other systems like
UNIX, often the first thing they notice is how simple and logical the interface is
and how easily they can learn to use the system. As a friend, and long-time UNIX
user, pointed out to me, when he’s using a Macintosh he spends less time work-
ing the levers of the operating system and more time getting work done. The
reasons include Apple’s understanding of user needs and the company’s insis-
tence on developers following a set of interface guidelines when building Macin-
tosh applications.

Figure 1.1 An example of Mac OS X running UNIX (text and X Window based), Mac OS X, and Mac Classic 
software



The Macintosh user interface 7

 In the mid-1980s, Apple came up with some fundamental principles for how
the Macintosh and its applications should look and feel: the Macintosh Human
Interface Guidelines. The goal was to present users with a powerful, consistent
system that was easy to use and that had an uncomplicated user interface. These
design goals centered on the user being in charge of the computer and advocated
techniques such as direct feedback for user actions, use of real-world metaphors
for user interface elements, and a consistent user interface shared between and
among applications. (Remember, these were the days when most personal com-
puters ran MS-DOS and users interacted with the system using a command prompt
and text-based interfaces.)

 For example, imagine you were developing an application and working on its
user interface. One method would be to design your application’s interface from
scratch according to your own preferences, or possibly base it on a similar pro-
gram’s interface and make appropriate modifications. Now imagine if developers
built all applications this way. The result would be applications that look and
behave very differently and implement common operations in dissimilar ways.
The consequence for users would be an uneven user experience and constant
relearning of tasks when moving to new applications.

 Macintosh programmers did things differently. Instead of designing and lay-
ing out their applications’ user interface any way they wished, they followed the
guidelines Apple provided them; this process ensured that applications main-
tained the Macintosh look and feel. In addition, Apple’s toolbox routines did
much of the work of supporting that interface—for most developers, breaking
the guidelines involved more work than following them. At first this program-
ming approach was quite a shift, and it probably would not have succeeded if the
guidelines had not been well thought out or did not make sense. Luckily, Apple
employed some smart, experienced people who cared a great deal about how
users interact with computers. The Macintosh Human Interface Guidelines
became a cornerstone for user interface development on the Macintosh, and
most applications were judged and evaluated based on these principles.

 The consequences of these guidelines are applications that implement inter-
face elements and standard operations in a consistent way, enabling users to easily
translate their current knowledge to new programs. Over the years, the interface
guidelines have grown as new technologies and interface components have been
added to the Macintosh system. Today, the Aqua Human Interface Guidelines
(http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines)
describe how to construct user interfaces for Mac OS X applications. To a degree,



8 CHAPTER 1
Welcome to Mac OS X

the Aqua guidelines are another extension of the original interface guidelines,
addressing new features of the Mac OS X user interface.

 The most important lesson to take from this discussion is that Apple has put a
lot of time and thought into how Macintosh applications should look and
behave. The company has produced an excellent set of rules and recommenda-
tions for constructing contemporary user interfaces, and developers should read,
understand, and follow them when developing Macintosh applications. Try to
envision the programs you write for Mac OS X as being members of a complete,
well-thought-out system where certain rules exists to promote the user experience.
Your application should exist within this context, and not as a separate entity.

1.3 The Mac OS X user interface

The strength of the Macintosh has always been its user interface and ease of use.
The new Mac OS X Aqua interface maintains the tradition of intelligent, easy-to-use
Macintosh user interfaces, but sports a distinctive, liquid-like look, as well as many
new and advanced interface components and features. Figure 1.2 shows an example
of the Aqua user interface.

 The Aqua interface continues to use real-world metaphors to represent com-
puter resources. Navigating and using the system is simple because you are already
familiar with many of these concepts. Overall, the Aqua user interface is simple
and intuitive compared to UNIX desktops and window managers such as GNOME
(http://www.gnome.org), KDE (http://www.kde.org), and fvwm (http://www.fvwm.org).
As a result, you will require little upfront information to begin using the system.

1.3.1 The desktop

The Mac OS X desktop is analogous to a real office desk, which functions as your
primary workspace and repository of information. A program called the Finder
works with the system software to provide users with file management and process
invocation functions, and presents and manages the desktop.

1.3.2 Menus

Under Aqua, an application displays its menu bar at the top of the screen. This is
different from Windows or UNIX environments, where the menu bar appears at
the top of each application window. The items in the menu bar are ordered as
follows (from left to right): Apple menu, application menu, application-defined
menus, window menu, help menu, and menu status bar items (see figure 1.3).



The Mac OS X user interface 9

Figure 1.2 Aqua, the user interface for Mac OS X, builds on many features of the original Macintosh user 
interface. However, it has an entirely new look and feel, as well as many new features.

Figure 1.3
An example of a Mac OS X 
application’s (Address Book) 
menu bar and menu items



10 CHAPTER 1
Welcome to Mac OS X

First is the Apple menu, a system-wide menu whose contents do not change. Its
commands permit users to perform tasks that operate on the system as a whole
and are independent of any particular application. Commands support access-
ing system preferences, restarting and shutting down the computer, and logging
off the current session. 

 Next is the Application menu, which holds items that apply to a specific appli-
cation. Menu items include the application’s preferences, services provided by other
applications, and the Quit option. The menu name is bold, so it stands out from
the other menus.

 The next set of menus is application defined, but it typically includes the fol-
lowing menus, in this order: File and Edit, application-defined menus (possibly
including View), Window and Help. They perform these functions:

■ The File menu implements operations for document management such as
opening, creating, and printing documents.

■ The Edit menu contains commands for editing application documents and
sharing application data over the clipboard.

■ The View menu holds commands enabling users to change or alter the
view of an application’s current window.

■ The Window menu lists currently open windows as well as window opera-
tions.

■ The Help menu provides access to application help.
■ Status items appear as the final, rightmost menu item and display informa-

tion about system services, enabling quick access to system settings.

NOTE Clipboard is a Macintosh term for a common shared data holder used by
the applications to temporarily hold data or to transfer data from one
application to another. On the Macintosh, terms like copy, cut, and paste
describe editing operations. For example, after you highlight an item in
a document, you can perform a cut, which moves the selected item from
the document to the clipboard; a copy, which copies the selected item to
the clipboard; or a paste, which copies the item on the clipboard to the
desired location.

1.3.3 The Dock

The Dock, located at the bottom of the screen in Figure 1.2, is a small toolbar that
provides a standard, system-supplied location for you to organize commonly



The Mac OS X user interface 11

accessed items such as applications, documents, and other information. It also
aids in maneuvering between running applications.1

 You add items by dragging their icons to the Dock; you remove items by drag-
ging them off the Dock. Clicking an icon will bring it to the foreground, launching
it first if it is not already running. A triangle next to an application icon indicates
that the application is running. The Dock also holds the familiar Macintosh Trash
icon, which collects files waiting to be deleted from the system. You can customize
the Dock’s appearance and behavior through the System Preference program,
located in /Application.

1.3.4 Window layering

The original Mac OS imposed a window-layering scheme that placed all applica-
tion windows conceptually on a single layer. This meant that if you were using one
application and you clicked a window from another application, all of that applica-
tion’s windows came to the foreground. Mac OS X implements a different window-
layering model: windows within an application are independent of one another,
and can therefore be interleaved with windows from different applications.

 Imagine you have two applications running, each with several visible windows.
Under Mac OS X, only the window you click comes to the foreground, enabling
windows from different applications to be interspersed. The result is more infor-
mation simultaneously visible at a time and fewer visible transitions between
applications. Perceptually, the new window-layering scheme blurs the boundaries
between applications, causing you to feel as if you are interacting with the system as
a whole, rather than with individual applications. (By the way, clicking the applica-
tion’s icon on the Dock will bring all of the application’s windows to the foreground.)

1.3.5 Dialog boxes

Past Macintosh operating systems used two main types of dialog boxes: modal and
modeless. A modal dialog box forces you to work within the mode of the dialog
box only; once the dialog box is open, the only way to interact with another part
of the system is to close the dialog box. Conversely, a modeless dialog box does
not force you to interact only with it; you can simultaneously use the modeless
dialog box and other parts of the system. 

1 Bruce Tognazzini, a noted expert on user interfaces design, has written an interesting column called
“Top 10 Reasons the Apple Dock Sucks” that discusses his objections to the Dock. Check it out at http://
www.asktog.com/columns/044top10docksucks.html.



12 CHAPTER 1
Welcome to Mac OS X

A Sheet is a Mac OS X implementation of a modal dialog box. When an application
displays a Sheet, it appears attached to the application’s document or window (see
figure 1.4). Because it attaches to its creator, you can always tell what program ele-
ment the Sheet belongs to. See the Aqua Human Interface guidelines for more
information about Sheets (http://developer.apple.com/techpubs/macosx/Essentials/
AquaHIGuidelines/AHIGDialogs/index.html).

1.3.6 Drawers

Drawers are child windows that appear to slide out from their parent. This is
another interface element that permits you to access frequently used application
features or information without requiring the application to display the Drawers
throughout the life of the application. To see Drawers in action, open the Mail
application (located in /Applications) and click the Mailbox icon. The mailboxes
for your mail accounts will slide in and out from the parent window as you click
the icon (see figure 1.5).

1.3.7 Keyboard navigation

The Macintosh has traditionally been a point-and-click interface: users interact
with the system using a mouse. Over the years, the system has included increas-
ing support for system navigation through the keyboard at both the Finder and
application levels. Aqua carries on this tradition by providing more keyboard
options you can use to navigate the system.

Figure 1.4
Mac OS X Sheets seem fixed, or 
attached, to an application’s document 
or window. They simplify identifying the 
owner of the Sheet.



The Mac OS X architecture 13

To take full advantage of the keyboard, open the System Preference program, select
the Keyboard pane, select the Full Keyboard Access tab, and make sure the Turn
On Full Keyboard Access checkbox is checked. The Use Control With menu enables
you to change the keys associated with each command. Now, you can use the key-
board to select interface elements such as application menus and the Dock.

1.3.8 Other interface features

Mac OS X includes lots of other interface features, including transparent windows
and menus that let you see through a window or menu to what is behind it. The
appearance of icons and lists has improved, and there’s a new help system and a
new system font.

1.4 The Mac OS X architecture

From a user’s point of view, the Mac OS X system is its user interface, applica-
tions, and services. For developers, however, the interface is simply a facade;
behind it exists the Mac OS X operating system, a complex web of software that
handles the interactions between user requests and computing resources.

Figure 1.5 Drawers slide out from their parent window, enabling access to frequently used application 
features or information.



14 CHAPTER 1
Welcome to Mac OS X

 The heart of this system software is the kernel. The kernel provides the operat-
ing system’s basic computing services such as interrupt handling, processor and
memory management, and process scheduling. Two types of kernels form the
basis for most operating systems: the monolithic kernel and the microkernel. A
monolithic kernel encapsulates nearly all the operating system layers within one
program, which runs in kernel space. A microkernel implements a subset of
operating system services, runs in kernel space, and is much smaller than the
monolithic kernel. Additional services, implemented on top of the kernel as user
programs (running in user space), export well-defined interfaces and communi-
cation semantics. To perform a service that resides outside of kernel space, the
kernel communicates with the user-level service through message passing. Gen-
erally, a monolithic kernel is faster but larger than a microkernel.

 The original Mac OS was more a collection of cooperating system services,
whose design did not divide neatly into user and kernel domains. In addition, its
handling of critical operating system tasks such as memory management and
process management was showing its age, which led Apple to look into alterna-
tives for its future OS. For example, most of us are familiar with operating sys-
tems that use preemptive multitasking and fixed-process scheduling policies.
Under UNIX, one policy is for the process scheduler to divide CPU time into time
slices, assigning each process a quantum of CPU time. If the running process has
not terminated by the end of its quantum, the operating system will switch processes
by preempting the running process and activating the next.

 Contrast this to Mac OS, which implemented a scheduling called cooperative
multitasking. It works as follows: when you run a program, the operating system
loads the program into memory, schedules it for execution on the CPU, and runs
the program only when the currently running program surrenders the CPU. It is
the responsibility of each program, not the operating system, to occasionally
hand over the CPU to allow other programs to run. As you can imagine, this
scheduling is suboptimal, because one rogue program can monopolize the CPU
and disallow others from running. Mac OS X is built on UNIX, and therefore uses
preemptive multitasking; the kernel manages process-scheduling policies.

 Another difference between Mac OS X and earlier Macintosh systems is mem-
ory management. Mac OS did not enforce memory protection of the system or
application partitions. Applications were free to write to memory outside their own
address space and could potentially take down other applications, as well as the
entire system. Under Mac OS X, this is not possible: accessing memory outside a
program’s address space will result in a segment fault and the process will dump
core, but it will not take down the operating system or other processes with it. 



The Mac OS X architecture 15

1.4.1 Architecture layers

The Mac OS X architecture is composed of several layers, each responsible for dif-
ferent system services. It’s important to keep in mind that Mac OS X is built on
top of a UNIX-based kernel, which provides the system with its plumbing (core
services) and supports the various application layers with which the user interacts.
It’s useful to view Mac OS X as two systems, one built on the other (see figure 1.6).

 At the core of Mac OS X is Darwin, an open source operating system based on
Mach 3.0 and 4.4BSD. Darwin is a complete operating system that does not
require higher-level Macintosh components to run. The Darwin system has two
overall components: the kernel environment and the BSD emulation layer. The
kernel environment provides core operating system services; the emulation layer
supplies the system with the BSD user environment, or operating system person-
ality. In fact, you can install Darwin on a PowerPC or x86 machine and use it as a
stand-alone BSD-like system. 

 Macintosh-specific system components, built on top of the Darwin kernel envi-
ronment, give Mac OS X its Macintosh character and services. Think of Darwin

Figure 1.6 Mac OS X is a series of software layers, each providing services for the layer above it.



16 CHAPTER 1
Welcome to Mac OS X

as the BSD-based operating system core and the Macintosh components as put-
ting the Mac into OS X. This classification enables you to see that Mac OS X is
built on top of Darwin, and that Darwin is a complete UNIX system within itself. 

 Let’s begin with a brief overview of the Mac OS X system components: 

■ The lowest layer is the Mach/BSD-based kernel, called the kernel environ-
ment. It provides the system with core operating system services such as
processor and memory management, file systems, networking, and device
access and control.

■ The Core Services layer implements a central set of non-graphical routines
that various Macintosh APIs access. This layer includes facilities for appli-
cation interaction with file systems, threads, and memory, and provides
routines for manipulating strings, accessing local and remote resources
through URLs, and XML parsing.

■ Above the Core Services layer is the Application Services layer. Application
services supply programs running within the application environment
(except BSD) with user interface, windowing, and graphical support,
including support for drawing graphical elements on the display, event
handling, printing, and window management. This layer includes the Mac
OS X window manager.

■ The Application Environment, like Applications Services, is composed of the
different application environments that give the system its user-level envi-
ronment. Currently, Carbon, Cocoa, Classic, Java, and BSD form this layer,
each as a separate application environment. Each provides a distinct runtime
environment in which to run programs and interact with the lower layers
of the operating system. For example, when you run a Mac OS X Cocoa pro-
gram, you are in the Cocoa application environment; when you run a Mac OS
program, you are interacting with the Classic application environment. 

■ Above the application environment is Aqua, the Mac OS X user interface.
Aqua gives the Mac OS X system and programs their look and feel.

Now, let’s look at each system layer and its components in more detail.

1.4.2 The kernel environment

The kernel environment supplies Mac OS X with its core operating system services.
This layer is composed of two sublayers: the Mach kernel and the BSD layer,
which encloses Mach (see figure 1.7). Within these layers are five primary com-
ponents: Mach, the I/O Kit, BSD, the file system, and networking.



The Mac OS X architecture 17

Mach
At its core, Mac OS X uses the Mach 3.0 microkernel (Mach 3.0 + OSF/Apple
enhancements). The Mach portion of the kernel environment is responsible for
managing the processor and memory (including virtual memory and memory
protection), preemptive multitasking, and handling messaging between operating
system layers. Mach also controls and mediates access to the low-level computing
resources. It performs the following tasks:

■ Provides IPC infrastructure and policies (through ports and port rights), as
well as methods (message queues, RPCs, and locks) enabling operating sys-
tem layers to communicate

■ Manages the processor by scheduling the execution and preemption of
threads that make up a task

■ Supports SMP (symmetric multiprocessing)
■ Handles low-level memory management issues, including virtual memory

Keep in mind that Mach is policy neutral, meaning that it has no knowledge of
things like file systems, networking, and operating system personalities.

 Historically, Mach implements a very small set of core system services in the
kernel address space, communicating with additional services in user space through
well-defined interfaces and communication semantics. The kernel implementation
for Darwin integrates many of these user-space services into the kernel space.

 There is a fundamental difference between how a UNIX monolithic kernel
and Mach kernel use and implement processes and threads. In a UNIX kernel,
the basic level of scheduling is the process, not the thread. All threads within the
process are bound by the scheduling priority of the process and are not seen by

Figure 1.7
The Mac OS X kernel environment supplies the 
system with its core operating system services.



18 CHAPTER 1
Welcome to Mac OS X

the kernel as schedulable entities. For example, if the operating system suspends
a process, all its threads are also suspended.

 Contrast this with Mach. Mach divides the concept of a UNIX process into two
components: a task and a thread. A task contains the program’s execution envi-
ronment (system resources minus control flow) and its threads. With Mach, the
thread is the basic unit of scheduling, as opposed to a UNIX process, which uses
the process as the scheduling unit. Under Mach, scheduling priority is handled
on a per-thread basis: the operating system coordinates and schedules threads
from one or many tasks, not on a per-process level.

I/O Kit
The I/O Kit is an object-oriented framework for developing Mac OS X drivers,
implemented in a subset of C++. Developing device drivers is a specialized task,
requiring detailed knowledge, experience, and highly specific code. The I/O Kit
attempts to increase code reuse and reduce the learning curve of driver develop-
ment by providing programmers with a framework that encapsulates basic device
driver functionality in base classes, which are extended to implement specific device
drivers. Conceptually, this approach is very similar to application frameworks and
class libraries. The I/O Kit infrastructure enables true plug and play, as well as
dynamically loaded and unloaded drivers and dynamic device management.

BSD
Another component of the Darwin kernel environment is its implementation of
BSD, which is based on 4.4BSD. The BSD kernel component sits on top of the
modified Mach kernel, running in the kernel’s address space. This component
provides networking services, file systems, security policies, the application process
model (process management and signals), the FreeBSD kernel API, and the POSIX
API for supporting user space applications. It also provides applications with the
BSD interface into the core services of the OS by wrapping the Mach primitives.

 The traditional, or pure, microkernel design places many of these BSD compo-
nents (such as file systems and networking) within user space, not kernel space.
Darwin is not a pure microkernel. To address performance concerns, designers
modified the kernel by placing some BSD system modules within the kernel
space, traditionally reserved for Mach.

File system
Darwin’s file system infrastructure is based on an enhanced virtual file system
(VFS) and includes support for HFS (hierarchical file system), HFS+ (hierarchical
file system plus) , UFS (UNIX file system) , NFS (network file system) , and ISO 9660.



The Mac OS X architecture 19

VFS is a kernel-level component that provides an abstract view of the physical file
systems through a common interface. VFS accepts file-related system calls (open,
close, read, and write) and translates them into the appropriate calls for the target
file system (see figure 1.8). VFS is often referred to as supporting stacks of file sys-
tems (stackable), because it can interact with and add many kinds of file systems
and supports augmenting existing file systems with custom code that supplies
various services (such as encryption or mirroring).

Networking
Darwin’s networking infrastructure is based on 4.4BSD. It includes all the features
you’d expect from a BSD-derived system, such as routing, the TCP/IP stack, and
BSD-style sockets. This component lives in the BSD layer of the kernel.

Kernel Extensions (KEXTs) and Network Kernel Extensions (NKEs)
Kernel Extensions (KEXTs) give developers the ability to access internal kernel data
structures and add functionality to the kernel. KEXTs are dynamically loaded into
kernel space without recompiling or relinking the kernel. Because KEXTs run within
the kernel, a misbehaving module can potentially bring the system to its knees.

Figure 1.8
The Darwin kernel implements a Virtual File System 
(VFS) that translates a file-related system call into 
the matching call for the appropriate file system.



20 CHAPTER 1
Welcome to Mac OS X

 Network Kernel Extensions (NKEs) are a special instance of KEXTs. They permit
developers to hook into the networking layers of the kernel and implement new fea-
tures or modify existing functionality. Like KEXTs, they are dynamically loaded into
kernel space and do not require recompiling or relinking of the kernel to execute.

 Collectively, these components provide the core services for Darwin, and by
extension, Mac OS X. A complete Darwin system adds a BSD emulation or appli-
cation environment on top of this core layer, providing the userland commands
and execution environment you are accustomed to in a BSD system. A complete
Darwin system (core layer and BSD application environment) is a BSD-based UNIX
implementation that is more than capable of running as a stand-alone operating
system. You can run Darwin on a PowerPC or x86 compatible system and install
it from either source code or a binary.

NOTE Remember, Darwin is an open-source project, and it is being actively
developed; all source code for the operating system is available at no
charge. Apple also supports several mailing lists devoted to Darwin de-
velopment issues.

1.4.3 Core Services layer

The Core Services layer sits above the kernel and is responsible for non-graphical
system services (see figure 1.9). Common operations are not coded into each Mac-
intosh API (Carbon and Cocoa); instead, the Core Services layer implements a
single code base that the various Macintosh APIs access. Developers use the Carbon
and Cocoa APIs to construct Macintosh applications. These services are imple-
mented in the following components:

Figure 1.9
The Core Services layer (the software layer above 
the kernel) provides common, non-graphical routines 
for the Macintosh APIs (Carbon and Cocoa).



The Mac OS X architecture 21

■ Carbon Managers—A set of services, grouped under various managers, that
implement routines providing applications with access to system resources
and services. Managers exist for file manipulation (File Manager), text
operations (Text Encoding Conversion Manager), memory management
(Memory Management Utilities), and thread operations (Thread Manager).
For example, when an application requires memory services, it calls a
memory allocation routine located in the memory manager; this routine
subsequently invokes the kernel-level system calls to manage the actual
memory allocation.

■ Core Foundation—A library that provides many low-level system services such
as internationalization, string preferences, and XML services. A handy fea-
ture of the Core Foundation is its XML facilities, which include a full-fledged
XML parser that implements both tree (DOM) and callback (SAX) based
XML parsing.

■ Open Transport—A single set of routines that offer transport independence
and that access the underlying network protocols. Application programs
interact with Open Transport through its API to perform network opera-
tions such as connecting to and receiving data from other machines. Open
Transport uses the networking primitives supplied by the BSD kernel envi-
ronment code.

1.4.4 Application Services layer

The next layer, called Application Services, supplies the system with the graphical
services to construct user interfaces and windowed environments, as well as perform
drawing operations, printing, and low-level event forwarding (see figure 1.10).

Figure 1.10
The Application Services layer supplies Mac OS X 
applications with graphics routines and graphics 
rendering using QuickDraw, OpenGL, and QuickTime.



22 CHAPTER 1
Welcome to Mac OS X

The main component of this layer is Quartz. The term Quartz collectively defines
the primary display technologies for Mac OS X. Quartz is composed of two layers:
the core graphics services and the rendering libraries.

 Core graphics services implement the Mac OS X window server and provide
window management as well as event- and cursor-handling services. This sublayer
does not actually render objects; the graphics-rendering sublayer that sits on top
of the core services contains the following rendering libraries, which perform the
graphic-rendering operations:

■ Core Graphics Rendering library—Performs two-dimensional operations. The
Core Graphics Rendering library is used for drawing and rendering using
the PDF path (vector) based drawing model.

■ QuickDraw—Performs two-dimensional operations. QuickDraw is the fun-
damental graphics display system for the traditional Macintosh OS; it is
used to perform traditional Macintosh graphic operations.

■ OpenGL—Renders three-dimensional operations.
■ QuickTime—Renders multimedia and digital video in many encoding formats.
■ PDF—(Developed by Adobe Systems.) Specifies a file format whose files

are sharable across platforms. Because the Core Graphics Rendering
library uses PDF for vector graphics representation, Mac OS X programs
can output files in PDF format—users don’t need to buy and install Adobe
Acrobat. The printing system is based on this rendering model, as well.

Building these technologies into the Application Services layer provides applica-
tions with strong graphics support at the operating system level.

1.4.5 Application Environment layer

Next in this architecture is the Application Environment layer, which provides
Mac OS X users with a setting in which to build and run applications (see fig-
ure 1.11). This layer, sometimes referred to as the Software Emulation layer, typi-
cally contains application emulation environments for implementations of various
operating systems. In fact, you can emulate almost any operation system at this
layer, including Solaris, Windows, or MS-DOS. Currently, five application environ-
ments ship with Mac OS X: Classic, Carbon, Cocoa, Java, and BSD.

 



The Mac OS X architecture 23

Classic
The Classic application environment provides a setting for running programs
written for Mac OS 9 and earlier. Because Apple does not endorse developing
new applications for Mac OS 9, this mode’s primary purpose is to support run-
ning legacy Macintosh programs. To use Classic mode, your machine must have
Mac OS 9.1 or greater installed, which is the default on a typical Mac OS X
machine. Therefore, a conventional Mac OS X machine will have both Mac OS X
and Mac OS 9.1 installed (under Jaguar, it’s version 9.2.2).

 There are various approaches to running more than one operating system on
a single machine. One method involves setting up a dual boot machine. To set up
a dual boot machine, you install different operating systems on a single machine
and choose the operating system you wish to run at system startup. This method
is popular among users of Intel-based UNIX distributions, and it is required to
run Linux/BSD and Windows on a single machine.

 Another approach is software emulation. In this case, you run a software emulator
under the host operating system that translates calls of the emulated operating
system into the language of the host. This technique permits you to run different
operating systems on your machine as long as you have the appropriate emula-
tor. For example, on the Macintosh, a product called Virtual PC (http://www.con-
nectix.com/index_mac.html) enables you to run the Windows operating system
and software on your Macintosh. In addition, MacMAME (Multi-Arcade
Machine Emulator) is an arcade emulator that lets you run and play your older
arcade games on your Macintosh (http://emulation.net/mame). 

 Under Mac OS X, Classic mode is not emulated as described so far, because
Classic instructions are not translated. As Sánchez pointed out:

Figure 1.11
The application environment provides a setting 
for users to run programs. Mac OS X ships with 
Classic, Carbon, Cocoa, Java, and the BSD 
application environments.



24 CHAPTER 1
Welcome to Mac OS X

The Classic environment in Mac OS X creates a virtual machine
inside of Mac OS X, which boots a largely unmodified version of
Mac OS 9. Applications that are built for Mac OS 9 and have not
been “Carbonized” run in this environment. The Classic environ-
ment replaces the hardware abstraction layer in Mac OS 9 with a
series of shims that pass requests to parts of Mac OS X. For example,
a memory request in Mac OS 9 is fulfilled by a memory request in
the Darwin kernel. Mac OS 9 can thereby use resources managed by
Mac OS X.2

Carbon
Carbon is a set of APIs developers can use to write applications that run under
both Mac OS X and early versions of the Mac OS. The original intent of Carbon
was to help developers move existing applications from Mac OS to Mac OS X. 

 Developers write Carbon applications in C and C++. Once an application is
“Carbonized,” you can run the same binary on your Mac OS X machine as on
machines running Mac OS 8.1 or later. 

 The current Carbon API is a redesigned version of the Mac OS Toolbox. This
Toolbox, originally located in the ROM and later in a file loaded by the boot
loader in pre-Mac OS X systems, is a set of functions that programs access to con-
struct the graphical elements of a program and interact with core system compo-
nents. The Toolbox gave the Mac OS its unique appearance and feel, and was a
fundamental element of all Macintosh programming. The Carbon API adds
many new features to support the architectural changes imposed by Mac OS X.
In addition, the API is much smaller, because its designers removed many Mac
OS API calls. 

Cocoa
Cocoa is an object-oriented environment for developing native Mac OS X appli-
cations. Cocoa provides developers with a complete component framework that
greatly simplifies and facilitates the development of Mac OS X applications.
Apple recommends that developers use Cocoa when writing new applications for
Mac OS X.

 The etymology of Cocoa begins with NeXT computer and its NeXTSTEP oper-
ating system. NeXTSTEP shipped with a set of tools and libraries called frameworks

2 Wilfredo Sánchez, “The Challenges of Integrating the Unix and Mac OS Environments” (paper pre-
sented at the USENIX 2000 Annual Technical Conference, Invited Talks, San Diego, June 19, 2000),
http://www.mit.edu/people/wsanchez/papers/USENIX_2000.



The Mac OS X architecture 25

for application development. These NeXTSTEP development tools were subse-
quently called OpenStep, and are now called Cocoa. 

 Cocoa applications are currently written in one of two languages: Java and
Objective-C. This may seem strange to UNIX developers who are used to devel-
oping code in languages such as C, C++, Perl, Python, and Ruby; some may
even consider this limitation a reason not to develop Cocoa applications. Resist
this temptation. True, many of us would prefer to use Perl or C++ as our main
development language when building Cocoa applications, but any programmer
who is comfortable with C or C++ can easily get the basics of Objective-C in a
few days and be writing useful application in a few weeks.

 In addition, some projects are attempting to bring other languages to Cocoa,
including Perl, Python, and Ruby. It may just be a matter of time before your
favorite language meets Cocoa.3

Java
The Java application environment enables development and execution of Java
programs and applets. This environment supports the most recent Java Devel-
opment Kit (JDK) and virtual machine, so programs developed within this envi-
ronment are portable to virtual machines running on other systems. You can use
Java to write applications and applets as well as Cocoa-based applications,
although Objective-C is the language of choice for Cocoa development. Apple
has made a strong commitment to Java on the Macintosh, so Java developers can
rest assured that Java implementations and tools will be available under
Mac OS X for years to come.

BSD
The BSD command environment enables users to interact with the system as a
BSD workstation, typically through the Terminal application; functionally a shell.
This environment supports the BSD tool set, commands, and utilities, and cumu-
latively provides users with a BSD-derived environment. In fact, the BSD environ-
ment and kernel environment form the complete Darwin system. This
application environment enables traditional UNIX developers and users to make
a smooth transition to the Mac OS X environment by providing them with the
accustomed shell, tools, and command set. I for one spend most of my time in
the Terminal application using Mac OS X as a BSD-based workstation.

3 The PyObjC project has released a version that enables Python developers to talk to Objective-C objects
from Python (http://sourceforge.net/projects/pyobjc/). See chapter 8 for more details.



26 CHAPTER 1
Welcome to Mac OS X

1.4.6 Aqua

The top layer of the Mac OS X architecture is the Aqua user interface. Aqua is a
combination interface implementation and specification that defines recom-
mended user-interface design practices for Mac OS X applications. Think of
Aqua as providing guidelines for how applications should look and behave within
Mac OS X. These guidelines, documented in the Aqua Human Interface Guide-
lines, tell developers how to construct a Mac OS X user interface, including the
proper layout of dialog boxes and window items’ menu structures.

1.5 Summary

You now have a basic understanding of Macintosh user interface principles, as
well as Mac OS X’s user interface and design. As you can imagine, this chapter is
just the tip of the iceberg. If you are interested in this aspect of the Mac OS X system,
I encourage you to look at the references in the “Resources” section at the back
of this book, and to explore the many online and printed sources that exist on
this topic. 

 In chapter 2, you will learn more about the UNIX side of Mac OS X. You’ll see
how to accomplish common UNIX tasks under both the Mac OS X command-line
interface and the Aqua interface.

 


