L \‘

INACTIOR

Arnaud Cogoluéqnes
Thierry Templier
Andy Piper

Forrworn BY PeTEr KRiENS

SAMPLE CHAPTER

/lll MANNING

1.
L
Y g

k|
i

Spring Dynamic Modules
in Action

by Arnaud Cogoluégnes,
Thierry Templier,
and Andy Piper

Chapter 6

Copyright 2011 Manning Publications

brief contents

PART 1 SPRING DM BASICS.ueeereecereereecescescacescessscescessssessessssessesonses 1

1 = Modular development with Spring and OSGi 3
2 = Understanding OSGi technology 24
3 = Getting started with Spring DM 63

PART 2 CORE SPRING DM ..uueueieiereieinrerierereserescecesescscesesssonsnns 101

4 = Using Spring DM extenders 103

5 = Working with OSGi services 133

= OSGi and Spring DM for enterprise applications 164
= Data access in OSGi with Spring DM 199

Developing OSGi web components with Spring DM and
web frameworks 236

o g O

PART 3 ADVANCED TOPICS teeteerercescescacessescscescessscessessssessessssescnse 281

9 = Advanced concepts 283
10 = Testing with Spring DM 323
11 = Support for OSGi compendium services 351
12 = The Blueprint specification 374

OSGt and Spring DM

Jor enterprise applications

This chapter covers

m Using the traditional Java EE framework in OSGi
environments

m Creating OSGi bundles from existing Java artifacts
m Designing OSGi-based enterprise applications
® Handling OSGi’s dynamic nature

You saw in the previous chapter that OSGi lets its modules communicate only by
way of services. This helps decouple them and promotes a more modular program-
ming model than in standard Java. Modularity is good for applications, but, as
enterprise application developers, we’ve become negligent when developing enter-
prise applications in the last few years. These applications grew big and monolithic,
did not have particularly strict dependency management, and sometimes used Java
introspection or classloaders in fancy ways. Now that we have discovered OSGi and
want to build our enterprise applications on top of this wonderful platform, we
need to eliminate these bad habits. There is no place for approximation in OSGi.

164

6.1

6.1.1

Building an OSGi repository for enterprise applications 165

Don’t feel guilty or desperate: OSGi is a welcoming world, even for enterprise appli-
cation developers. Throughout this chapter, we’ll show you how to adapt your develop-
ment to OSGi by choosing good frameworks and libraries that are OSGi-compliant, by
getting existing Java artifacts ready for use in OSGi environments, and by designing your
own applications to leverage the features of OSGi. This may look like a tortuous path,
but you’ll be surprised at how much OSGi has already become part of day-to-day devel-
opmentwork. You may well discover that you’ve been using OSGi-compliant frameworks
for months without knowing it.

In this chapter, we’ll guide you along the OSGi path. We’ll start by showing you that
you can still use your favorite libraries and frameworks in OSGi: some of them are
already OSGi bundles, and you’ll learn how to make the others compatible. Because
OSGi brings a new modularity paradigm to Java, we’ll also show you how to leverage it
and design applications with OSGi, backed up by Spring DM.

This may seem off topic in a Spring DM book, but it will show you that introducing
OSGi in enterprise applications isn’t difficult. Spring DM will be the bridge between
your applications and the OSGi runtime; we’ll discuss this in section 6.3, which pro-
vides guidelines about application design with OSGi. Spring DM can help you follow
and implement these guidelines. You’ll learn how Spring DM can assemble and com-
municate with your OSGi bundles easily, and how it can help you handle the powerful
but tricky dynamic aspect of OSGi.

Let’s start by looking at how traditional Java libraries and frameworks react within
an OSGi environment.

Building an OSGi repository for enterprise applications

The deployment unit in OSGi is the bundle, which is a standard JAR file, enhanced
with metadata that (among other things) informs the OSGi platform of the bundle’s
dependencies and what it can provide to other bundles in terms of Java packages.
Having all of your libraries, frameworks, modules, and applications packaged as bun-
dles is essential for successfully using OSGi.

In sections 6.1.1 and 6.1.2, we’ll look at how to use these kinds of Java frameworks
and libraries, and in section 6.1.3 we’ll see how to get them easily from repositories
dedicated to OSGi. Note that this section isn’t specific to Spring DM; the information it
covers is valid for any OSGi-based application.

Using Java and Java EE frameworks in O0SGi environments

As a developer of enterprise applications, you’ll know that you never start a new proj-
ect from scratch. You know you can rely on your pet frameworks, which relieve some
of the recurrent technical concerns. Indeed, that’s what enterprise application devel-
opment is all about—not reinventing the wheel, and reusing existing code as much as
possible. But in developing OSGi applications, you’ll soon notice that not all Java and
Java EE libraries or frameworks are packaged as OSGi bundles. Even worse, some
aren’t OSGi-friendly in their use and execution.

166

6.1.2

CHAPTER 6 OSGi and Spring DM for enterprise applications

Fortunately, some projects are aware of the growing popularity of OSGi in Java
enterprise middleware and applications, so becoming OSGi-compliant, from their
design to their packaging, became one of their priorities. Don’t abandon OSGi
because you’re afraid you’ll have to start your project from scratch. There are a lot of
enterprise frameworks and libraries that work in OSGi environments. If you decide to
develop OSGi applications, the biggest changes will be in the structure of your applica-
tions rather than in the frameworks you use.

If you're lucky, your favorite frameworks and libraries will work out of the box. If
you aren’t so lucky, you’ll have to make their packaging OSGi-aware. We’ll cover both
cases, starting by describing what’s known to work in an OSGi environment.

Choosing the right frameworks for OSGi

So you’re an enterprise application veteran and you want to try out OSGi? Or you’'re
an old hand at OSGi and are eager to exercise your skills in large-scale enterprise
applications? In any case, you’ll have to make both the OSGi and enterprise-applica-
tion worlds work together, and you know that some Java libraries and frameworks are
more suited to OSGi than others. For example, Jakarta Commons Logging (JCL)is
known to be OSGi-unfriendly because of its dynamic discovery process (see the sidebar
for more details). Some functions like dynamic loading of classes are sensitive within
OSGi, so you should ensure that your favorite libraries and frameworks handle them
in a safe and reliable way before using them in an OSGi environment.

Jakarta Commons Logging and OSGi

JCL is probably the most popular logging facade, but despite its large adoption, JCL
is very 0OSGi-unfriendly. How can a good library become a bad egg in 0SGi?

JCL is a thin wrapper around several logging implementations, Log4j being the most
popular. This means you can use the JCL API in your applications and simply plug in
your favorite implementation, as long as it’s supported.

JCL initializes itself when the first call to the logging system is made. This initializa-
tion consists of dynamically finding which implementations are available on the class-
path, choosing one, and redirecting all subsequent calls to it. In theory, this sounds
simple: you drop JCL and Log4j JAR files into your applications and the latter will be
used automatically in most cases. If you’re unlucky, you won’t get any log messages
and will fight for hours trying to diagnose cryptic classloader issues.

JCL’s discovery process is dynamic and relies on the use of the TCCL. Corresponding
JCL implementation classes (such as Log4jLogger) are also loaded by the TCCL, but
when it comes to instantiating one of these logging objects, JCL uses the current
classloader, which doesn’t always see the same implementation classes (because
it can be different from the TCCL). This dynamic discovery process can be problematic
in some servlet containers, and it makes the use of JCL in an OSGi environment very
difficult, if not impossible.

Building an OSGi repository for enterprise applications 167

(continued)

To learn more about the pitfalls of JCL’s discovery process, you should read the arti-
cle, “Taxonomy of class loader problems encountered when using Jakarta Commons
Logging” (http://www.gos.ch/logging/classloader.jsp), by Ceki Gllcu, the founder of
Log4j, SLF4J, and Logback.

You must now be wondering how Spring DM and the Spring Framework both use the
Jakarta Commons Logging API. Recall that we also deploy SLF4J bundles when we
use Spring DM. SLF4]J is another logging facade, which strives to address JCL’s pitfalls
by using a static discovery process. Using SLF4J is quite similar to using JCL: you use
its API, and you drop into its classpath the API's JAR, the JAR of one (and only one!)
of its bindings (the bridge between SLF4J and the target logging framework), and the
JAR of the logging implementations. Unlike JCL, SLF4J)’s discovery process is static:
the SLF4J APl just expects a binding class, StaticLoggerBinder, which is made avail-
able by the sole SLF4J binding JAR that you generally should provide on the classpath.

But still, Spring and Spring DM use Jakarta Commons Logging! Yes, they do, and that’s
why we also deploy a special JCL bundle, which is a library provided by SLF4J. It defines
the exact same APl as JCL but it’s backed up by SLF4J. This library has the appearance
and smell of JCL, but it's actually SLF4J. That’s the trick for making Spring and OSGi
happy about logging.

To help you find appropriate libraries and frameworks, table 6.1 offers a nonexhaus-

tive list of those that are known to be OSGi-compliant.

Table 6.1 0SGi-compliant enterprise frameworks and libraries

Name

Spring Framework

Spring Portfolio
projects

Google Guice

Groovy

Jetty

Apache Commons

EclipseLink

OpenEJB

Type

Lightweight container and
dependency-injection frame-
work, enterprise support

Miscellaneous (security, web,
batch, integration, ...)

Lightweight dependency-
injection framework

Java-based dynamic language

Web container

Reusable Java components

ORM

EJB 3.0 container

Note

The Spring Framework binaries have been pack-
aged as OSGi bundles since version 2.5. For use
in OSGi, prefer the “A” versions.

All binaries are OSGi bundles, and most of the
projects have been tested in OSGi environments.

Distributed as OSGi bundles since version 2.0.

Distributed as an OSGi bundle.

Distributed as an OSGi bundle and used as an
implementation of OSGi’s HTTP service.

Most of the projects are 0SGi-compliant thanks
to the Felix Commons effort.

Distributed as OSGi bundles.

Distributed as OSGi bundles and used in several
application servers.

http://www.qos.ch/logging/classloader.jsp

168

6.1.3

CHAPTER 6 OSGi and Spring DM for enterprise applications

Table 6.1 0SGi-compliant enterprise frameworks and libraries (continued)

Name Type Note
SLF4) Logging facade Distributed as OSGi bundles and tested in OSGi
environments.
Logback Logging implementation 0SGi-compliant; intended to be successor to
Log4j.
Wicket Web framework Wicket binaries have been packaged as OSGi

bundles since version 1.4.

MINA NIO framework MINA binaries have been packaged as 0SGi bun-
dles since version 2.0. Apache server-based proj-
ects use MINA for their NIO layer.

H2 Pure Java database engine Distributed as an 0SGi bundle.

In the next section, we’ll introduce you to several repositories where you can down-
load ready-to-use OSGi bundles.

Getting 0SGi-ready artifacts

We saw that some projects distribute their binaries as OSGi bundles. If one of your
dependencies happens to not be a part of these projects, there’s still a small chance
you won’t end up wrapping it yourself, because there are some projects targeted at
making OSGi bundles available. Here is a list of some of these OSGi repositories:

= OSGi Bundle Repository (http://www.osgi.org/Repository/HomePage)
Maintained by the OSGi Alliance, this repository hosts more OSGi-centric bun-
dles than OSGi-ified versions of enterprise frameworks. You can search bundles
by keyword or category and get precise information from the web interface. The
format of the repository follows a standard described in the “OSGi RFC 112 Bun-
dle Repository,” making the repository usable remotely by any OSGi container.

= Apache Felix Commons (http://felix.apache.org/site/apache-felix-commons.
html) This isn’t exactly a repository, but a community effort to popularize the
distribution of Java projects as OSGi bundles. Some volunteers OSGi-ify standard
Java artifacts and make them available, hoping original developers will then
include the OSGi-ification process in the build of their frameworks and libraries.
Contributions include most of the Apache Commons projects, ANTLR, and cglib.

= Eclipse Orbit (http://www.eclipse.org/orbit/) This repository includes bundles
that have been used and approved in one or more projects from the Eclipse

Foundation. These bundles can contain some Equinox-specific metadata
because they’re meant to be used with this particular OSGi container.

= SpringSource Enterprise Bundle Repository (http://www.springsource.com/
repository/app/) This repository hosts hundreds of open source enterprise
libraries, usually OSGi-ified by SpringSource employees. It features a search

engine and precise information about bundles. Artifacts are made available
for use with Maven 2 and Ivy.

http://www.osgi.org/Repository/HomePage
http://felix.apache.org/site/apache-felix-commons.html
http://felix.apache.org/site/apache-felix-commons.html
http://www.eclipse.org/orbit/
http://www.springsource.com/repository/app/
http://www.springsource.com/repository/app/

6.2

6.2.1

OSGi-ifying libraries and frameworks 169

You should find what you need from among these repositories. But if you don’t find a
library, you’ll have to do the dirty work yourself, and in the next section we’ll describe
techniques that make this relatively painless.

OSGi-ifying libraries and frameworks

Before diving into the design of enterprise applications with OSGi and Spring DM
(which we’ll do in section 6.3), we need to have all our dependencies be OSGi-
compliant. Developing applications for an OSGi environment should not prevent
you from using your favorite Java and Java EE libraries and frameworks. More and
more libraries are now OSGi-friendly, because packaging them as an OSGi bundle is
part of their build; but bad things happen, and perhaps one day you’ll find that your
best-loved Java framework is packaged as a normal JAR and is absolutely useless in
your OSGi application.

This isn’t a desperate situation. You’re about to learn everything you need to know
about transforming a non-OSGi JAR file into a 100 percent OSGi-compliant bundle, a
process that we decided to qualify with the barbarism “OSGi-ification” for brevity. We’ll
start with a little bit of theory, and then we’ll dive into the transformation. We’ll first
try to do it by hand and then use tools like Bnd. We’ll do our experimenting on the
Apache Commons DBCP library.

How to create OSGi-ified versions of libraries

The main issue in the OSGi-ification of an existing library is visibility. From the
library’s point of view, it means being able to see external dependencies but also mak-
ing its own classes visible to other bundles if necessary. You may have figured out that
we’ll have to juggle the Import-Package and Export-Package manifest headers.
When a library is built upon other libraries, it uses their classes and imports some
of their packages into its own classes. In a standard Java environment, you can add
these libraries on the classpath, and any class can import their packages and use their
classes. The story is different in an OSGi environment: libraries must explicitly export
the packages they want to share, and modules that want to use them must explicitly
import these packages. The whole export/import process is managed by the OSGi plat-
form with metadata contained in the bundle’s manifest file.
IMPORTING PACKAGES
Let’s talk first about the process of importing: a library needs to use some classes
defined in another library (we’ll assume the other library properly exports these
classes, making them visible to other bundles). As an example, consider the ORM
module in the Spring Framework: this module includes support for popular ORM
tools such as Hibernate, iBATIS, and OpenJPA. If we focus on Hibernate, the Import-
Package of the ORM module might look like the following:
Import-Package: org.hibernate,org.hibernate.cache,org.hibernate.cfg
(..0)
Hibernate has a lot of packages, and Spring ORM uses most of them, so we didn’t
include the whole list.

170

CHAPTER 6 OSGi and Spring DM for enterprise applications

The previous snippet is fine regarding what Spring ORM can see (some of Hiber-
nate’s packages) but it isn’t precise enough regarding versions. In its 2.5.6.A version,
Spring ORM’s Hibernate support is only tested against Hibernate 3.2, so this should
appear in the manifest. The Import-Package header can use the version attribute to
specify the exact version or version range the bundle needs. This attribute defaults to
the range [0.0.0, ?), and because we didn’t use the version attribute in our first mani-
fest declaration, the ORM module would use any available version installed in the
OSGi container. This could make a 3.0 Hibernate bundle eligible for use, whereas the
ORM module isn’t compatible with Hibernate 3.0.

As you can see, when OSGi-ifying a library, good practice consists of indicating the
version of each package in the Import-Package header. Spring ORM declares that it
works with Hibernate from version 3.2.6.ga, inclusive, to 4.0.0, exclusive:

Import-Package: org.hibernate;version="[3.2.6.ga,
4.0.0)",org.hibernate.cache;version="[3.2.6.ga, 4.0.0)",
org.hibernate.cfg;version="[3.2.6.ga, 4.0.0)"

(...)

NOTE The “ga” version qualifier stands for “General Availability” and
denotes a stable, production-ready version of the software.

Spring ORM not only includes support for Hibernate, but also for iBATIS, amongst
others, so the Spring ORM bundle can apply the same pattern for declaring depen-
dencies on iBATIS:

Import-Package: org.hibernate;version="[3.2.6.9a,
4.0.0)",org.hibernate.cache;version="[3.2.6.ga, 4.0.0)",
org.hibernate.cfg;version="[3.2.6.ga, 4.0.0)",

(...)

com.ibatis.common.util;version="[2.3.0.677, 3.0.0)",
com.ibatis.common.xml;version="[2.3.0.677, 3.0.0)",
com.ibatis.sqglmap.client;version="[2.3.0.677, 3.0.0)"

(...)

Nice, but let’s imagine you’re working on an application that uses Hibernate and the
support provided by Spring ORM. You provision your OSGi container with the corre-
sponding bundles, but you soon notice that if you want the Spring ORM bundle to be
resolved, you need all of its dependencies in your container, like iBATIS or OpenJPA,
even if you only use Hibernate. That’s a real pain, because you’ll have to get all these
dependencies as OSGi bundles and deal with their dependencies—all for nothing
because you don’t even use them!

Don’t panic, there’s a solution: these kinds of dependencies can be marked as
optional in the manifest, by using the resolution directive. This directive defaults to
mandatory, meaning that the bundle won’t be able to resolve successfully if the
imported package isn’t present in the container. The resolution directive can also
take the optional value, to indicate that the importing bundle can successfully resolve
even if the imported package isn’t present. Of course, if some code that relies on the
missing import is called at runtime, it will fail.

OSGi-ifying libraries and frameworks 171

Spring ORM declares its dependencies on ORM tools as optional, because there is
little chance that all these libraries will be used at the same time in an application:

Import-Package: org.hibernate;version="[3.2.6.ga,
4.0.0)";resolution:=optional,
org.hibernate.cache;version="[3.2.6.9a,
4.0.0)";resolution:=optional,org.hibernate.cfg;version="[3.2.6.g9a,
4.0.0)";resolution:=optional,

(...)

com.ibatis.common.util;version="[2.3.0.677, 3.0.0)";resolution:=optional,
com.ibatis.common.xml;version="[2.3.0.677, 3.0.0)";resolution:=optional,
com.ibatis.sglmap.client;version="[2.3.0.677, 3.0.0)";resolution:=optional

(...)

To sum up, when OSGi-ifying libraries or frameworks, you should remember the fol-
lowing guidelines with respect to the Import-Package header:

= Import the packages that the library or framework uses, and don’t import
unused packages, which would tie the bundle to unnecessary dependencies.

= Specify the version of the packages, so the library or framework won’t use
classes that it isn’t meant to use, which could lead to unexpected behavior.

= Specify the difference between mandatory and optional dependencies by using
the resolution directive.

That’s enough about importing from other bundles; let’s see now how a library can
make its classes visible in the OSGi platform.

EXPORTING PACKAGES

Which packages need to be exported by a library depend on its design. Some libraries
clearly make the distinction between their API and their implementation classes,
through some kind of special structuring of their packages. For example, interfaces
(the API) may be located in one package and internal classes (implementation, utili-
ties) in an impl or internal subpackage.

NOTE Generally speaking, splitting API and implementation packages is a
good design practice, not only in OSGi.

Nevertheless, the export declarations will usually end up exporting all the packages of
a bundle because even if we follow the programming through interface pattern, we’ll
usually need an implementation that’s provided by the same library as the API.

NOTE We’ll see more about design in section 6.3, so we’ll keep things sim-
ple for now. Just remember that OSGi services are a good way to expose what
other bundles need to use. This keep implementation details from leaking
through the whole system.

In the Export-Package header, you should always specify the version of the exported
package. The following snippet shows the first line of the Export-Package header
from the Spring ORM module manifest (notice the use of the version attribute):

Export-Package: org.springframework.orm;version="2.5.6.A",

(...)

http://www.springsource.com/products/sts
http://www.springsource.com/products/sts

172

6.2.2

CHAPTER 6 OSGi and Spring DM for enterprise applications

The version value can be different for each exported package, but usually all the
exported packages will share the same version as the owning bundle. There are some
exceptions, but this generalization covers most cases.

Import-Package and Export-Package are the most important headers to specify
when OSGi-ifying libraries, but there are a few others to take note of, especially those
used to identify a bundle.

GIVING AN IDENTITY TO A BUNDLE

In an OSGi environment, a library must be properly identified, because dependency
resolution in OSGi builds on bundle-identity mechanisms. We’ve looked at many man-
ifest headers already, especially in chapter 2, so we won’t describe all of them again.
We’ll focus on three here.

The following snippet (part of the Spring Core 2.5.6.A bundle manifest) shows

these three manifest headers:

Bundle-SymbolicName: org.springframework.core

Bundle-Version: 2.5.6.A

Bundle-Name: Spring Core

The Bundle-SymbolicName header specifies a unique name for a bundle, usually based
on the reverse package (or domain) convention. The header value can’t contain any
whitespace—only alphanumeric characters, periods (.), underscores (_), and hyphens
(-). The Bundle-SymbolicName header is compulsory, it doesn’t take a default value,
and it must be set carefully because it’s the main component of your bundle identity.

The other aspect of a bundle identity is its version, set with the Bundle-Version
header. Unlike the Bundle-SymbolicName header, the version header isn’t compulsory
and it defaults to 0.0.0, but it should always be explicitly set. When setting the bundle
version, you should follow the format and semantics of OSGi versioning (major, minor,
and micro numbers, and qualifier), as explained in chapter 2. The symbolic name
and version tuple comprises the identity of your bundle: there can’t be two bundles
with the same symbolic name and version number installed at the same time in an
OSGi container.

Bundle-Name isn’t meant to be used directly by the OSGi platform but rather by
developers, because it defines a human-readable name for the bundle. Its value can
contain spaces and doesn’t have to be unique (even though it should be, to avoid con-
fusion). It needs to be explanatory enough.

Now that you’ve seen the theory behind the OSGi-ification of libraries, let’s discuss
putting this into practice and see the different ways to convert a plain JAR file into an
OSGi bundle.

Converting by hand

Because the deployment unit in OSGi is the JAR file along with some metadata, the con-
version boils down to carefully editing the MANIFEST.MF file. We’ve already discussed
the manifest headers, but we should not forget the specifics of the JAR packaging:'

I You can find more about these requirements from the JAR file specification: http://java.sun.com/j2se/1.5.0/
docs/guide /jar/jar.html.

http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

6.2.3

OSGi-ifying libraries and frameworks 173

= The META-INF/MANIFEST.MF file must be the first entry in the JAR, and the jar
command enforces this rule (so you shouldn’t try to package your OSGi bundles
manually).

= The manifest format has strict requirements. For instance, lines can’t be longer
than 72 characters and the file should end with an empty line.

Given these requirements and the sensitive needs of OSGi metadata, manually editing
an OSGi manifest can end up being anightmare. A typo or extra space can break the man-
ifest and be difficult to track down. Take a look at the manifest of each module in the
Spring Framework and imagine the daunting task of maintaining each manually. Imag-
ine doing this for a bunch of Java EE frameworks, like Hibernate or JavaServer Faces!

Manually editing manifests, without any support from tools, isn’t a realistic or
desirable undertaking. In the next section, we’ll discuss tools that can help you to reli-
ably package your OSGi bundles.

Converting using tools

You can’t deny that your life as a developer wouldn’t be the same without the tools you
rely on every day. You’ll also probably have strong opinions on tooling: developers
should not become too dependent on their tools and should know exactly what these
tools do for them under the covers.

Java and Java EE have a large set of tools, both commercial and open source: IDEs
(for content assistance, debugging, and so on), build tools, continuous integration
servers, and many more. The good news is that OSGi tooling is getting better and bet-
ter. We’ll focus in this section on tools that can help you package Java libraries into
OSGi-compliant JAR files. We’ll adopt a progressive approach: we’ll start by using a
command line tool, Bnd, and we’ll end up including the OSGi-ification process into a
Maven 2 build. The Apache Commons DBCP, the database connection pool library,
will be our candidate library.

THE BND TOOL

Bnd (http://www.aqute.biz/Code/Bnd) is a tool created by Peter Kriens to help to
analyze JAR files and to diagnose and create OSGi R4 bundles. It’s used internally by
the OSGi Alliance to create OSGi libraries for the various OSGi reference implementa-
tions and Technology Compatibility Kits (TCKs). Bnd consists of a unique JAR file but
it can be used from the command line, as an Eclipse plug-in, or from Ant (yes, a JAR
can be all of this). You already know from chapter 3 that the Felix Bundle Plugin for
Maven is based on Bnd.

Are there any other tools than Bnd?

Bnd is arguably the most popular tool for packaging JARs as OSGi bundles, but OSGi
tooling is getting more and more widespread. The latest rival for Bnd is Bundlor
(http://www.springsource.org/bundlor), a tool created by the SpringSource team to
automate the creation of OSGi bundles.

http://www.aqute.biz/Code/Bnd
http://www.springsource.org/bundlor

174

CHAPTER 6 OSGi and Spring DM for enterprise applications

(continued)

Like Bnd, Bundlor analyzes class files to detect dependencies, but it’s also able to
parse different kinds of files to detect more dependencies: Spring application context
XML files, JPA’s persistence.xml, Hibernate mapping files, and even property files.
Bundlor follows a template-based approach, which consists of giving hints for the
manifest generation in the guise of a property file (the same approach used by Bnd).
At the time of this writing, Bundlor is still quite new, but it can already be used with
Ant and Maven 2. The use of Bundlor with Maven 2 is covered in appendix B.

0OSGi also gets into your development environment: there has always been the Plug-
in Development Environment (PDE) in Eclipse (http://www.eclipse.org/pde/), which
enables the development of Eclipse plug-ins and offers some nice support for OSGi
(such as a dedicated editor for manifest files). More recent is the SpringSource Tool
Suite (STS), http://www.springsource.com/products/sts) a dedicated Eclipse distri-
bution targeting the development of Spring- and SpringSource dm Server-based ap-
plications. As SpringSource dm Server applications rely heavily on OSGi, STS offers
some support for OSGi. STS was once a commercial product but has been free
since mid-2009.

In this section, we’ll use Bnd from the command line to OSGi-ify Apache Commons
DBCP 1.2.2. So let’s get down to business! Download Bnd from http://www.aqute.biz/
Code/Bnd, DBCP 1.2.2 from http://commons.apache.org/dbcp/, and copy the two
JARs into a working directory (both JAR files are also available in the code samples for
this book).

Why Apache Commons DBCP?

Commons DBCP is a very popular database connection pool: Apache Tomcat uses it
to provide its data sources, and a lot of applications embed a DBCP connection
pool (often as a Spring bean). Unfortunately, DBCP isn’t yet among the OSGi-ified li-
braries of the Apache Commons family. Converting Commons DBCP is a good exer-
cise, and it will prove to be useful, because we’ll use our brand new OSGi-ified
version in chapter 7.

Note that you should stick to the version of DBCP (and of its dependency, Commons
Pool) that we’re using in this book, because it’s likely they will be distributed as OSGi
bundles one day!

You can’t convert a plain JAR file into an OSGi-compliant bundle without knowing a lit-
tle about it. That’s why Bnd comes with the print command:

java -jar bnd-0.0.313.jar print commons-dbcp-1.2.2.jar

Don’t be overwhelmed by the output. It’s divided into sections, and we’re going to
analyze the most important ones.

http://www.eclipse.org/pde/
http://www.springsource.com/products/sts
http://www.aqute.biz/Code/Bnd
http://www.aqute.biz/Code/Bnd
http://commons.apache.org/dbcp/

OSGi-ifying libraries and frameworks

175

The first section provides information taken from the manifest:

[MANIFEST commons-dbcp-1.2.2.jar]
Ant-Version

Build-Jdk

Built-By

Created-By
Extension-Name
Implementation-Title
Implementation-Vendor
Implementation-Vendor-Id
Implementation-Version
Manifest-Version

Package
Specification-Title
Specification-Vendor
X-Compile-Source-JDK
X-Compile-Target-JDK

Apache Ant 1.5.3

1.4.2 10

psteitz

Apache Maven

commons -dbcp
org.apache.commons .dbcp

The Apache Software Foundation
org.apache

1.2.2

1.0

org.apache.commons .dbcp
Commons Database Connection Pooling
The Apache Software Foundation
1.3

1.3

The more interesting section is the one starting with [USES], which delivers informa-
tion about the Java packages of the target JAR:

[USES]
org.apache.commons .dbcp

org.apache.commons.dbcp.cpdsadapter

java.sqgl

javax.naming
javax.naming.spi
javax.sql
org.apache.commons.jocl
org.apache.commons.pool
org.apache.commons.pool.impl
org.xml.sax

java.sqgl

javax.naming
javax.naming.spi
javax.sql

org.apache.commons.

org.apache.commons
org.apache.commons

dbcp
.pool
.pool.impl

(...)

We now know which packages our library depends on. The output ends with an error
section:

One error

1 : Unresolved references to
javax.sql, org.apache.commons.pool.im
pl, org.xml.sax.helpers] by class(es) on the Bund
le-Classpath[Jar:commons-dbcp-1.2.2.jar] : [org/apache/commons/
dbcp/datasources/PerUserPoolDataSource.class, (...)

[javax.naming,
org.apache.commons.pool,
org.xml.sax,

javax.naming.spi,

With this monolithic block of text, Bnd tells us that, with respect to the current classpath,
some packages that our library needs to work are missing. We can also see that Commons
DBCP depends on the org.apache.commons.pool and org.apache.commons.pool.impl
packages. Indeed, Commons DBCP relies on the Commons Pool library to handle its
pooling algorithm and adds a thin layer on top of it for database connections.

176

CHAPTER 6 OSGi and Spring DM for enterprise applications

This dependency means that we’ll need to do two things in the OSGi-ification of
Commons DBCP:

= Properly import packages from Commons Pool
= Have Commons Pool packaged as an OSGi bundle

We can immediately start the OSGi-ification with Bnd’s wrap command:
java -jar bnd-0.0.313.jar wrap commons-dbcp-1.2.2.jar

This creates a commons-dbcp-1.2.2.bar file in the same directory, with an OSGi-com-
pliant manifest and all the defaults for OSGi manifest headers. Unfortunately, Bnd
can’t guess the proper values for some important headers, and default values aren’t
always appropriate. That’s why Bnd uses a configuration file to supply this informa-
tion: version, symbolic name, imports, and exports can be defined in a way that’s simi-
lar to the manifest format but more editorfriendly and more powerful, thanks to the
use of variable substitutions and pattern matching.

Where do the .class files come from?

Bnd isn’t a traditional packaging tool; it doesn’t need as an input a directory containing
.class files that it will compress in a JAR file. It directly locates .class files in the
classpath and packages them into a JAR file. You can potentially include in your OSGi
bundle all the .class files from the classpath you specified when launching Bnd from
the command line.

The following snippet shows the Bnd configuration file for converting Commons
DBCP into an OSGi bundle:

version=1.2.2 ‘)
Bundle-SymbolicName: org.apache.commons.dbcp i)
Bundle-Version: ${version}
Bundle-Name: Commons DBCP
Bundle-Description: DBCP connection pool
Export-Package: org.apache.commons.dbcp. *;
version=${version} {/‘)
Import-Package:org.apache.commons.pool. *;version=1.3.0,
org.apache.commons.dbcp*;version=${version}, *; \/‘B
resolution:=optional

Bnd allows variable substitution, so we use this feature for the version @ because it’s
needed at several places in the template. We then specify the bundle’s symbolic
name @ and the version @, using the version variable, with the ${variableName}
pattern. We also specify which packages the bundle will export @: notice that we use
a wildcard (*) to specify that we want to export the org.apache.commons.dbcp pack-
age and all its subpackages. We use the version variable again to specify the version
of the exported packages. Finally, we specify that the bundle imports version 1.3.0
of all the Commons Pool packages it references @. Notice that we import the

OSGi-ifying libraries and frameworks 177

Commons DBCP packages with the same version, to ensure a consistent class space.
The last wildcard refers to all the remaining packages used by Commons DBCP, and
we mark them as optional.

NOTE With Bnd, you should always define configurations from the most
specific to the most general. If an element is matched twice, the first match
always takes precedence. That’s why the instruction to mark the dependen-
cies as optional in our Import-Package header comes last.

Let’s issue the wrap command again, but now with the properties option, to specify
the Bnd configuration file:

java -jar bnd-0.0.313.jar wrap -properties commons-dbcp-1.2.2.bnd
commons-dbcp-1.2.2.jar

We can now look at the manifest file of the generated OSGi bundle. Here’s an excerpt
showing the Export -Package and Import-Package headers:

(...)

Export-Package: org.apache.commons.dbcp.cpdsadapter;uses:="javax.namin
g,javax.sqgl, org.apache.commons.pool.impl, org.apache.commons.pool, java
x.naming.spi, org.apache.commons.dbcp";version="1.2.2",org.apache.comm
ons.dbcp;uses:="org.apache.commons.pool.impl, org.apache.commons.pool,
javax.sqgl, javax.naming, javax.naming.spi,org.xml.sax";version="1.2.2",
org.apache.commons.dbcp.datasources;uses:="org.apache.commons.dbcp, ja
vax.sql,org.apache.commons.pool, javax.naming, javax.naming. spi, org.apa
che.commons.pool.impl";version="1.2.2"

(...)

Import-Package: javax.naming;resolution:=optional, javax.naming.spi;res

olution:=optional, javax.sql;resolution:=optional, org.apache.commons.d
bcp;version="1.2.2",org.apache.commons.dbcp.cpdsadapter;version="1.2.
2" ,org.apache.commons.dbcp.datasources;version="1.2.2",org.apache.com
mons.pool;version="1.3.0",org.apache.commons.pool.impl;version="1.3.0
",org.xml.sax;resolution:=optional,org.xml.sax.helpers;resolution:=0op
tional

Now you can compare the end result with the instructions we specified in the Bnd

configuration file. As you can see, Bnd is a very convenient tool. You now have an

OSGi-compliant version of Commons DBCP.

TIP Because Commons DBCP isn’t distributed as an OSGi bundle, a good prac-
tice is to include “osgi” in the filename: commons-dbcp-osgi-1.2.2 jar. If your
bundle turns out to be distributed and is used by third parties, you can also pre-
fix it with your company name: com.manning.commons-dbcp-osgi-1.2.2 jar.

We mentioned that we also need an OSGi-compliant version of Commons Pool,
because Commons DBCP is built on this library. Unfortunately, Commons Pool isn’t
distributed as an OSGi bundle either, so we have to again do the conversion ourselves.
It turns out to be fairly simple, because we can follow the same process as for
Commons DBCP. The following snippet shows the Bnd configuration file for Com-
mons Pool:

178

CHAPTER 6 OSGi and Spring DM for enterprise applications

version=1.3.0

Bundle-SymbolicName=org.apache.commons.pool

Bundle-Version: ${version}

Export-Package: org.apache.commons.pool*;version=${version}

Bundle-Name: Commons Pool

Congratulations, you can now create database connection pools with Commons DBCP
in an OSGi environment! But perhaps you’re fond of automation; we’ll look now at
how to make the OSGi-ification part of a Maven build.

THE FELIX BUNDLE PLUGIN FOR MAVEN 2

You met the Felix Bundle Plugin in chapter 3, where we used it to package our first
Spring DM bundles. We relied on Maven 2 to provision the Spring DM OSGi test frame-
work. You’ll get to know it better in this section, because we’ll repeat the OSGi-
ification of Commons DBCP, but in a 100 percent Maven 2 style this time.

The Felix Bundle Plugin provides integration between Bnd and Maven 2: the plug-
in uses Bnd under the covers, providing it with information from the POM file. By
using this plug-in, you can take advantage of all of Maven 2’s features (automation,
dependency management, standard project structure, and so on) and still package
your project as OSGi-compliant bundles. The plug-in has reasonable default behavior,
making the configuration simple for simple needs.

For the OSGi-ification of Commons DBCP, we start by creating a simple pom.xml
file:

<?xml version="1.0"?>

<projects>
<modelVersion>4.0.0</modelVersion>
<groupId>com.manning.sdmia</groupIds>
<artifactIds>commons-dbcp.osgi</artifactIds>
<versions>1.2.2-SNAPSHOT</version>
<packaging>bundle</packaging>
<name>commons -dbcp.osgi</names>
<description> Describes

0SGified version of Commons DBCP bundle

</descriptions>

Defines project
identity Sets bundle
as packaging

<dependencies>
<dependency>
<groupId>commons-dbcp</groupIds>
<artifactId>commons-dbcp</artifactIds Adds Commons
<version>1.2.2</version> DBCP dependency
<scope>provided</scope>
</dependency>
</dependencies>
</project>

Notice how we clearly state that the project is our own distribution of an OSGi bundle:

= The groupId refers to our company
= The artifactIdis postfixed with osgi

Even if Bnd is wrapped in a Maven plug-in, it still bases its search for classes on the
classpath, so we add Commons DBCP as a Maven dependency.

OSGi-ifying libraries and frameworks 179

We now need to explicitly reference the Felix Bundle Plugin; otherwise the bundle
packaging doesn’t have any meaning for Maven 2. We do this inside the build tag (just
before the dependencies tag), where we usually configure Maven 2 plug-ins. Listing 6.1
shows the configuration of the Felix Bundle Plugin for OSGi-ifying Commons DBCP.

Listing 6.1 Felix Bundle Plugin configuration for 0SGi-ifying Commons DBCP

<builds>
<pluginss>
<plugins>
<grouplds>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactIds> V Declares plug-in
<version>2.0.1l</version>
<extensions>true</extensions>

<configurations>
<instructions>
<Bundle-SymbolicName>
Y Sets bundle’s
org.apache.commons .dbcp symbolic name
</Bundle-SymbolicName> Y

<Export-Package>
org.apache.commons.dbcp*; version=${project.version}
</Export-Package>
<Import-Package> Sets packages to
org.apache.commons.pool*;version="1.3.0", export and import
*;resolution:=optional
</Import-Package>

<Embed-Dependency> Instructs how to
*;scope=provided; type=!pom;inline=true .
handle dependencies

</Embed-Dependency>
</instructions>
</configurations>
</plugin>
</plugins>
</builds>
We start by declaring the plug-in @. Never omit the version of a plug-in with Maven 2
unless you want your build to break unpredictably.

The configuration starts with the configuration and instructions elements. We
use the Bundle-SymbolicName tag to set the manifest header @®. We then use the
Export-Package instruction to define the Java packages the bundle will export €.
Notice that we can use the same syntax as in Bnd files to include subpackages. This
time, we didn’t define a variable for the version, because we can refer to the project
version directly with the ${project.version} variable. We define imported packages
the same way as in plain Bnd @. Finally, we use the Embed-Dependency tag to tell the
plug-in how to handle dependencies @: include all dependencies with provided
scope (but exclude dependencies of type POM) and copy them inline in the JAR.

All set! Any Maven packaging goal (install or package) will generate a 100 per-
cent OSGi-compliant bundle.

NOTE The Commons Pool library can also be easily OSGi-ified with the Felix
Bundle Plugin.

180

6.2.4

6.3

CHAPTER 6 OSGi and Spring DM for enterprise applications

OSGi-ifying a library and making the process part of a traditional build is fairly simple,
thanks to the Felix Bundle Plugin. You just need to be careful with the generated OSGi
metadata, and Bnd will handle the rest.

We’ve now talked a lot about converting existing libraries, but what about packag-
ing our own modules and applications? We’ll discuss this topic in the next section.

Packaging your own modules as 0SGi bundles

If you understand how to OSGi-ify existing libraries, making your own Java applica-
tions and modules into OSGi bundles should not be a problem for you. You can apply
all the OSGi-ification techniques we’ve covered so far to your own modules. You can
stick to Bnd, choosing the mechanism that suits you best:

= Command line—Straight and simple, but difficult to automate

= Eclipse plug-in—Embedded in your development environment, but still diffi-
cult to automate

= Ant task—Included in your build, and perfect if Ant is your tool of choice for all
your builds (this is covered in appendix C)

= Maven 2 plug-in—Included in your build, and fits perfectly with any Maven 2—
based project

Packaging existing libraries or your own modules as OSGi bundles should not cause
you any trouble now. Nevertheless, OSGi isn’t only about packaging. It’s also about
modularity, and without good design, you’ll have a hard time packaging your modules.
That’s why we’ll discuss how to design OSGi enterprise applications and how to lever-
age Spring DM in the next section.

Designing OSGi enterprise applications

Designing OSGi enterprise applications isn’t so different from developing “standard”
enterprise applications: OSGi people don’t pretend that the world was waiting for
them in order to write modular applications. Nevertheless, anyone can learn from the
strict modular approach of OSGi.

With plain Java, we can’t really encapsulate our classes and interfaces; they can be
used as long as they’re on the classpath. The standard deployment unit in Java, the
JAR file, is a convenient kind of packaging, but Java doesn’t provide us with real
dynamic deployment capabilities. Web (WAR) and enterprise (EAR) deployment units
usually end up being monolithic, hard to split entities; they’re too coarse-grained.

We, as enterprise application developers, have learned to get along with these pit-
falls. But even if we managed to write well-designed, layered applications with Spring,
we can still improve them and even take advantage—especially at runtime—of the way
we designed them.

To see how OSGi can help to improve the design of a Java application, we’ll pro-
gressively transform a standard web application packaged as a monolithic WAR file
into a modular web application. Along the way, we’ll also see how to introduce Spring
DM into our OSGi design.

6.3.1

Designing OSGi enterprise applications 181

Organizing 0SGi components

Let’s start with a standard web application and reorganize it to obtain a truly modular,
OSGi-compliant application.
ORGANIZING THE DEPENDENCIES
In Java, web applications are packaged as WAR files. The WAR structure is quite simple:

= It’s a ZIP file

= Downloadable resources (images, JavaScript files) are located at the root of the
WAR

= Application classes (servlet, web controllers) are located in WEB-INF/ classes

= Libraries and frameworks (packaged as JAR files) are in WEB-INF/lib

Let’s focus first on libraries and frameworks; this is the first place where OSGi can
help, because the WAR packaging has some pitfalls. Web applications can embed these
JAR files or let the application server provide them, as shown in figure 6.1. If the appli-
cation server provides them, WAR files are smaller, and depending on the application
server, the global memory footprint is also smaller.

This scenario, where the application server provides the libraries and frameworks,
works well because both web applications depend on the same versions of the frame-
works they use.

Figure 6.2 shows another scenario, where the production team said to the develop-
ing team: “Spring and Hibernate are provided by the application server, so don’t
embed them in the WAR.” Unfortunately, application 2 needs different versions of
Spring and Hibernate than those provided by the application server.

What would happen in figure 6.2, when the application server provides the libraries?
Nobody knows. We’d have to cross our fingers and see. Application 1 has no reason not

Application server Application server
Web application1 Web application2 Web application1 Web application 2
WEB-INF/classes WEB-INF/classes WEB-INF/classes WEB-INF/classes
e | | [y || ||l || =]
> WEB-INF/lib WEB-INF/lib
WEB-INF/lib WEB-INF/lib

Hibernate Hibernate Uses Uses
version 3.2.6 version 3.2.6

\ 4 \ 4

version 2.5.6 version 2.5.6 Hibernate | Spring

version 3.2.6 version 2.5.6

Figure 6.1 Within an application server, web applications can embed their dependencies or let the
application server provide them.

182 CHAPTER 6 OSGi and Spring DM for enterprise applications

Application server Application server
Web application 1 Web application 2 Web application 1 Web application 2
WEB-INFiclasses WEB-INF/classes WEB-INF/classes WEB-INF/classes

i
i

Java classes | Java classes | Java classes || Java classes ||

WEB-INF/lib WEB-INF/lib

\ 4

WEB-INF/lib WEB-INF/lib

Hibernate Hibernate Uses Broken!
version 3.2.6 version 3.3.2

A A 4

Common libraries directory
version 2.5.6 version 3.0.0 Hibernate T
version 326 version 256

Figure 6.2 Application 2 uses different versions of Spring and Hibernate than those provided by the
application server. It can’t safely rely on these versions.

to work, but we can’t know about application 2: perhaps it won’t start, or maybe it’ll fail
when a user triggers an action that relies on Spring 3.0 or Hibernate 3.3.

Onstandard Java EE application servers, applications have no standard way to indicate
that they depend on a particular version of a framework; these kinds of metadata don’t
exist in Java EE standards. We could try
to check the version when the applica- Application server
tion starts, but this would be cumber- Web application 2
some, especially if we had to do the
check for all of the dependencies. We

WEB-INF/classes

could embed the libraries in the WAR (as Javaclasses |
shown in figure 6.3), but this could lead e —
to unpredictable behavior, depending -

o . WEB-INF/lib
on the application server’s classloading
strategy and the version of the WAR- Hibernate
embedded and server-provided frame- -

rin:

works: classes could be partially loaded version 300
from different JAR files, or frameworks
could try to dynamically detect some * Broken ?
libraries (Hibernate does that with

Common libraries directory

Hibernate Validator). We usually call
this “JAR hell.” Hibernate Spring
. A . version 3.2.6 version 2.5.6
With OSGi, there is no room for

approximation. Modules declare their

K R . Figure 6.3 Application 2 tries to embed its
dependencies, and the OSGi container gependencies. This can lead to unexpected

is in charge of their resolution. We behavior and hard-to-debug issues.

Designing OSGi enterprise applications 183

OSGi container
Spring
version 2.5.6
Import-Package Import-Package
Web bundle 1 Web bundle 2
Java classes |:| Java classes |:|
Import-Package Import-Package Figure 6.4 In OSGi environments,
Hibernate modules ex.pllcltly declare their
version 32.6 dependencies and don’t embed
them.

don’t need to write our own checks; the platform does it for us. If we fail to properly
declare our module dependencies, shame on us.

The OSGi world is harsh, but in the end you’ll benefit from this. Figure 6.4 shows
how the two web applications can use the same libraries in an OSGi environment.
Applications declare their dependencies, and the OSGi container does the classloader
wiring to the respective dependency bundles.

Figure 6.4 demonstrates a simple scenario, so let’s look at a more complex one,
where applications don’t rely on the same versions of frameworks, and we still want to
share the dependencies among modules. This scenario is shown in figure 6.5.

OSGi container
Spring Spring
version 2.5.6 version 3.0.0
A
Import-Package Import-Package
Web bundle 1 Web bundle 2
Java classes |:| Java classes |:|
Import-Package Import-Package Figure 6.5 In OSGi environments,
X v different versions of the same
Hibernate Hibernate modules can be deployed, and)
version 3.2.6 version 3.3.2 dependent modules declare which
version they want to use.

184 CHAPTER 6 OSGi and Spring DM for enterprise applications

Thanks to its sophisticated classloading mecha-

nisms, OSGi supports this scenario out of the box:

different versions of the same library can coexist in a
container.

urewoq

We’ve looked at dependencies, so let’s move on
and see how we can organize our application.
ORGANIZING THE APPLICATION
Enterprise applications are usually organized as a
stack of layers, where each layer has its own responsi- Y
bilities and relies on the layer immediately below.

External systems

Data access

Our application

This layer organization encourages best program-
ming practices, such as separation of concerns and Figure 6.6 Enterprise
unit testing. The so-called domain layer is an excep- applications are layered, for a
tion: it represents business entities (customers, con- better separation of concemns.
tracts, and so on), which mainly carry data across the
layers. As such, domain entities are used in all the lay-

ers. Figure 6.6 pictures a layered application.

Domain-driven design versus the anemic domain model

Saying that domain classes carry only data is a bold statement—they can also con-
tain behavior in the form of business-oriented methods. Layering applications is
good, but, applied in a simplistic way, it can lead to poorly designed enterprise appli-
cations, whose structure becomes closer to procedural programming than real OOP.
This is especially true for the domain classes, which are then limited to data-transfer
tasks. Such a domain layer is commonly referred to as an anemic domain model. Do-
main-driven design promotes rich domain models, where some parts of the business
logic are embedded in the domain classes.

0SGi, layered applications, and domain-driven design can cohabit, but comprehensive
coverage of these topics is far beyond the scope of this book. If you want to learn
more about the common pitfalls that too-strict layering can lead to, we recommend
Martin Fowler’s article about the anemic domain model (http://www.martinfowler.
com/bliki/AnemicDomainModel.html).

How can we translate the layer concept into Java? We accomplish this by using the sim-
plest constructs of Java—classes and interfaces—as shown in the UML diagram in fig-
ure 6.7. (This is about the design; at runtime, we’ll need a little help from a
lightweight container like Spring.)

The next question is how to split our OSGi bundles, now that our design tells us
more about our dependencies? The answer is the one we usually don’t like: it
depends. It depends on various factors, such as these:

http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html

Designing OSGi enterprise applications 185

WebController
(user interface)
T ~
Uses : \\
A\ \\ Uses
Service N N
(business) \\
S ~ \
Implements 4 \\lises \\

| \\\ Ny

Servicelmpl | _Uses __; DomainEntity

(business) (domain)
. //7 o
| P 4
Uses | 7 "Uses //
A4 PR //
Dao //
(data access) // Uses
7/
A ’,
Implements | //
£ Figure 6.7 Layers communicate through interfaces to avoid being
’ Dta°'"‘|°' coupled to the underlying technology. Only the domain classes are
(data access) referenced from all the layers.

= How we organize development and teams (this isn’t related to OSGi)

= How modules are designed to evolve and be developed, updated, and
refactored

= How modules are meant to be reused by other modules

= How we want to expose services (business services, data access objects, and so
on), and how we want to encapsulate and hide inner mechanisms

= How many implementations of the same service are going to be deployed

OSGi static and dynamic features offer so much power that we have a choice of virtu-
ally unlimited combinations! Some combinations are good, but others should be
avoided, so let’s see some guidelines.

The first tip when developing OSGi applications is to separate the static compo-
nents from the dynamic components.

= Static components are bundles that define APIs by exporting interface-based Java
packages. These bundles don’t contain a Spring application context (or a
BundleActivator) and don’t register or reference any OSGi services.

= Dynamic components are bundles that import Java packages from static bundles,
provide implementations, and usually register OSGi services. As this is a Spring
DM book, these bundles are Spring-powered.

Figure 6.8 illustrates the pattern of splitting static and dynamic components.
Generally, static components should be stable, changing infrequently, whereas
dynamic components can be frequently updated and benefit from OSGi dynamic fea-
tures such as on-the-fly service updating. Section 6.4, which deals with Spring DM and
OSGi dynamic features, will explain just how using Spring DM is relevant to

186

CHAPTER 6 OSGi and Spring DM for enterprise applications

OSGi service registry

Q Q

Registers : : Registers

1 |
Implementation 1 API Implementation 2
Import-‘ ‘Import-

Java classes |I Spring Package' Java classes |I ‘Package Java classes |I Spring

Figure 6.8 Static parts of an application (such as the API) and dynamic parts (the
implementations) should always be deployed in different bundles within an 0SGi
environment. This helps the application to benefit from the dynamic features of 0SGi.

implementing those dynamic components—the framework takes care of all the dirty
work during bundle updates.

Now, let’s see how we can apply this pattern to our enterprise application. The
most extreme modular approach would consist in developing

= One bundle for each layer that has only classes (the domain and web layers)
= Two bundles for each layer that has interfaces and class implementations (the
data access and business layers)

This approach could be labeled the “So you want modularity” approach, and it’s
shown in figure 6.9.

The approach shown in figure 6.9 is the most flexible: you can update any part of
your application, and other modules can be built on top of any of yours by importing
your packages and defining other implementations. Also note that by using Spring

DAO API DAO implementation

Java classes |I Java classes |I Spring

A

A

Domain

Java classes |I

A

A

\ 4

Service implementation Service API Web

Java classes |I Spring Java classes |I Java classes |I Spring

A

Y

Figure 6.9 Organizing bundles in the “So you want modularity” way. There’s at least
one bundle for each layer, and two bundles if the layer has an APl and implementation
classes. (Arrows represent the Import-Package manifest header.)

6.3.2

Designing OSGi enterprise applications 187

Domain

Java classes |I

A

\4

A

Backend implementation Service API Web

Java classes |I Spring Java classes |I Java classes |I Spring

\ 4
A

Figure 6.10 Organizing the bundles in a SOA way, the backend bundle hides its
internal functioning. (Arrows represent the Import-Package manifest header.)

DM for implementation bundles, you benefit from dependency injection and all the
enterprise support of the Spring Framework (data access, transaction management,
and so on). One of the drawbacks of this approach is that you have to maintain of lot
of bundles, usually as separate projects.

That approach gives us flexibility, but what if we don’t want or don’t need it? Per-
haps exporting the packages of data access object (DAO) interfaces is useless, because
what we’re really interested in is the business services. Remember, OSGi is sometimes
referred to as a service-oriented architecture (SOA) in a JVM. We can still define the
service API, but the implementation can hide its inner workings. We can then reorga-
nize our bundles in a simpler way and gather the service implementation and data
access layer in the same bundle—the backend bundle.

Taking this approach doesn’t change the logical organization of our application, as
it’s still a layered application; we just changed its physical organization. Figure 6.10
illustrates this new organization.

The SOA approach is no less flexible than the extremely modular approach. If
DAOs and business services follow the same development and deployment cycles,
there is no point in splitting them into different bundles.

We know now that the way we organize bundles is a question of balance. We’ve
mainly discussed how bundles are statically linked by their dependencies, but we
haven’t considered how bundles communicate with each other using OSGi’s service
layer. That’s the topic of the next section.

Defining interactions between application bundies

In our enterprise application, Java packages can be shared between bundles because
of the Export-Package and Import-Package headers in their manifests. Nevertheless,
Java packages aren’t enough; an application needs real Java objects to run, and these
objects must be registered as services in the OSGi registry. That’s where Spring DM
comes in.

Spring DM will instantiate and wire beans in our bundles and register them in the
registry based on declarations in the context file. We’ll end up not writing a single line

188

CHAPTER 6 OSGi and Spring DM for enterprise applications

Domain DAO API Service API

Java classes |I Java classes |I Java classes |I

OSGi service registry

Registers// \\ Consumes Registers // \\Consumes
/ /

/ \ ya \

DAO implementation Service implementation Web

Java classes |I Spring Java classes |I Spring Java classes |I Spring

Figure 6.11 Spring DM helps implementation bundles to share OSGi services.

of code related to OSGi. (We’ll see later that Spring DM will even handle OSGi’s
dynamic behavior for us.)

Let’s again take our extreme modular approach from the previous section and
focus on the service dependencies—we’ll ignore dependencies related to Java pack-
ages for now. The implementation bundles are backed by Spring DM and can easily
register or consume services (see figure 6.11).

In this scenario, if other bundles need to use our DAOs, they can easily consume
them, regardless of whether or not they’re Spring-powered bundles. Remember that
our OSGi services are created by the Spring lightweight container, and as such, they can
benefit from dependency injection or AOP. They can become transactional or get auto-
matic database-connection handling
with a few lines of XML or by inserting Domain Service API
a couple of Java annotations. These Tavalclasces Javalclasses
are some of the benefits of using gl gl
Spring DM.

Now, let’s fall back to our simpler
SOA approach. It works in much the 0SGi service registry
same way, but the backend bundle has i\

a bigger Spring application context 4©k

. VANEMN
. . Registers Consumes
because it hosts DAOs and business ser- gterss AN

. . . ya \
vices. In this scenario, DAOs can’t be

Backend implementation Web

consumed by other bundles, because : :
the only entry pointis embodied by the || Tosmmg || o\ToS'Drlng

business services. The SOA scenario

from the OSGi service layer’s point of Figure 6.12 The SOA approach implies fewer
view is shown in figure 6.12. registered services and offers better encapsulation.

6.4

6.4.1

How Spring DM handles OSGi applications’ dynamic behavior 189

What should we remember about the way bundles communicate? Mainly that
there is still no simple answer and that we need to find a compromise between what
we want to offer and what we want to hide. Generally speaking, we should only expose
what is useful and is prepared to be used as a service: you should not let your system be
compromised because a poorly written service isn’t used the way it was meant to be.

In any event, Spring DM will be your friend when it comes to registering or con-
suming services. You’ll like Spring DM even more when you see in the next section
how it helps you handle dynamic behavior in OSGi.

How Spring DM handles 0SGi applications’
dynamic behavior

Within OSGi, services can appear and disappear at any time. This dynamic behavior is
specific to OSGi; it’s sophisticated and powerful but more complicated to deal with
than static services.

Tracking services using plain OSGi is quite painful and error prone. The best tool
OSGi offers for this task is the ServiceTracker, which accomplishes a lot, but we want
more! When using the ServiceTracker, we still need to write code, and we’re tied to
the OSGi API. Moreover, we have to write the same kind of tracking code over and over.

That’s where Spring DM comes in. You saw in the previous chapter that with Spring
DM you can register and consume services declaratively. This looks static at first sight,
but Spring DM handles all the dynamics for you, adopting a reasonable default behav-
ior in most cases—default behavior that you can override.

In this section, we’ll discuss typical cases related to OSGi’s dynamic behavior and
how Spring DM can help you deal properly and reliably with them. These cases range
from the appearance and disappearance of a service or collection of services to the
dynamic update of your modules.

Dealing with the appearance or disappearance of services

Spring DM’s support for referencing services comes in two flavors: individual, when
you need only one service matching a given description, and collection, when you want
to have all the services that match some criteria. In enterprise applications, the indi-
vidual case is the most common: a business service needs only one OSGi service imple-
menting a given DAO interface. Spring DM is able to transparently handle service
appearance and disappearance for both individual and collections of service refer-
ences. We’ll cover the mechanics of both flavors here.

When Spring DM’s transparent management isn’t enough, because you need to
track services more carefully, Spring DM offers a simple POJO-oriented solution to
react to the binding and unbinding of services. We’ll also cover this topic, using a
Swing application to illustrate it.

DEALING WITH AN INDIVIDUAL SERVICE REFERENCE
Let’s go back to our enterprise application, using the extreme modular approach.
Imagine it involves retrieving users from the database, so we’ll have a user DAO,

190

CHAPTER 6 OSGi and Spring DM for enterprise applications

created and wired in a Spring-powered bundle, and registered as an OSGi service by
Spring DM:

<bean id="contactDao"
class="com.manning.sdmia.directory.dao.jdbc.
ContactDaoddbc" >
<property name="dataSource" ref="dataSource" />
</bean>

Creates and
injects DAO

<osgi:service
id="contactDaoOsgi"
interface="com.manning.sdmia.directory.dao.
ContactDao"
ref="contactDao" />

Registers DAO
as 0SGi service

This contact DAO is meant to be imported and used by business services, such as the
contact business service, defined in another Spring-powered bundle:

<osgi:reference
id="contactDao" Imports DAO from
interface="com.manning.sdmia.directory.dao. 0SGi registry
ContactDao">

<bean id="contactService"
class="com.manning.sdmia.directory.service.impl.
ContactServiceImpl"s>
<property name="contactDao" ref="contactDao"
</bean>

Injects DAO into
/> business service

In this scenario, there is only one OSGi service implementing the ContactDao inter-
face, and it will be imported by the service. If there is more than one, Spring DM will
pick one by following a predetermined strategy. If the choice doesn’t suit the business
service, that’s too bad. It should have given Spring DM enough information to pick the
right service.

But what happens if there’s no OSGi service implementing the ContactDao inter-
face? This could happen if the business service bundle is deployed in the OSGi con-
tainer and the data access bundle isn’t. In this scenario, Spring DM will figure out that
the Spring application context of the business service bundle has a missing depen-
dency, and it will defer the application context startup until the dependency is satis-
fied, which means when an OSGi service implementing the ContactDao interface is
registered. If this condition isn’t met after 5 minutes, Spring DM will throw an excep-
tion. This is the Spring DM default behavior: references are mandatory, and all man-
datory references must be resolved before an application context can start. We
covered how to change this default behavior in chapter 4, by using the timeout direc-
tive of the Spring-Context header.

This is reasonable default behavior, but what if the business service bundle doesn’t
contain only the user business service but critical business services that need to be
available as soon as possible? They would be unavailable because the user business ser-
vice doesn’t have this unique dependency.

How Spring DM handles OSGi applications’ dynamic behavior 191

You can resolve this issue by making the reference to the contact DAO optional, by
using the availability attribute of the reference tag:

<osgi:reference
id="contactDao"
interface="com.manning.sdmia.directory.dao.ContactDao"
availability="optional" />
Now the business service application context will start up even if there is no contact
DAO available in the OSGi service registry.

The user business service delegates data access operations to the contactDao, so
what happens if the user business service handles an incoming request and calls the
contactDao? Well, nothing. The call will block until a contact DAO service is regis-
tered. This behavior makes sense: the overall system isn’t in a nominal state, and the
missing dependency should not be missing for long, so we can wait until it appears.

All of this is handled by Spring DM, which injected a proxy into the user business
service in place of the user DAO. This proxy blocks when someone tries to call it, but
as soon as the target OSGi service (the contact DAO, in this example) appears on the
service registry, the proxy delegates all the calls to it.

So far we’ve been talking about startup, but services can appear and disappear
after the OSGi container has been started. Let’s imagine the container reached its
steady state a long time ago and that the DAO service then disappears. Any reference
to it can be replaced on the fly if Spring DM finds a replacement for it. Finding this
replacement will depend on the filter the importing bundle declared when it
imported the DAO and on the availability of a matching service.

As you can see, in the case of an individual service reference, Spring DM handles
most of the dynamic behavior. It does provide some opportunity for tuning, but the
defaults should fit in most cases.

Let’s now discuss the case of a collection of service references.

DEALING WITH A COLLECTION OF SERVICE REFERENCES

We learned in chapter 5 that with Spring DM we can declaratively reference collec-
tions of OSGi services, thanks to the 1ist and set tags of the osgi namespace. Collec-
tions of services are interesting for the parts of an application that can be extended
with additional services or for implementing observer-based patterns like the white-
board pattern, where a central component (the whiteboard) periodically needs a
snapshot of all the available services that meet some requirements (the listeners).
What can Spring DM do about the content of these collections when services appear
or disappear?

In fact, Spring DM populates the collections as needed. It adds matching services
to the collection, and when one of the services referenced in the collection is unregis-
tered from the OSGi registry, Spring DM automatically removes the reference from the
collection. Note, though, that this is only valid for collections (java.util.List and
java.util.Set) that are managed by Spring DM. Indeed, Spring DM can’t track service
appearances and disappearances and update collections that it doesn’t totally control.

192

CHAPTER 6 OSGi and Spring DM for enterprise applications

This is good news: we can use our collections of service references as any other col-
lections. We usually use collections by iterating over them, using Iterators, but
there’s one important thing to know when iterating over a collection of service refer-
ences managed by Spring DM: even the Iterator is dynamic. Imagine you start iterat-
ing over a collection of service references, and its content changes during the
iteration because some services were unregistered and some matching services were
registered. With Spring DM, you’ll be aware of this immediately, because the Iterator
will reflect these changes dynamically.

Thanks to Spring DM’s transparent dynamic management, we’re now well pre-
pared to deal with the appearance or disappearance of services. Nevertheless, the sup-
port for the dynamic side of OSGi would be incomplete if we could not easily track
services and react accordingly.

REACTING TO THE APPEARANCE AND DISAPPEARANCE OF SERVICES

In plain OSGi, the ServiceTracker is the Holy Grail for the developer who wants to
track services. But despite its unquestionable usefulness, the ServiceTracker implies
the use of the OSGi API and needs to be registered programmatically, which means
writing a BundleActivator. This quickly becomes cumbersome, especially if we need
to track services in many bundles.

We saw in chapter 5 that, when referencing a service (either with the reference,
list, or set tags), we can attach a listener that will be warned when a matching ser-
vice is registered or unregistered. This can be done with the listener tag of the osgi
namespace. This is powerful, because an importing bundle can easily react to the
appearance or disappearance of one or more matching services.

The next question is how do we deal with the generated events? Let’s take as an
example a Swing program, the Paint application.

NOTE The Paint application is the “official” Apache Felix demonstration
application, used to illustrate how OSGi helps to create dynamic and extensi-
ble applications. It was written by Richard S. Hall, the founder of the
Apache Felix project and co-author of OSGi in Action.

The Paintapplication is a Swing appli- r S e TGO MAp aene TP a e P E e ation) ®@))
cation that allows you to choose O A I:I

shapes from a toolbar and lay them on || |

a painting area. The different kinds
of shapes are represented by the

SimpleShape interface, which hassev- ﬂ
eral implementations: CircleShape,
SquareShape, TriangleShape, and so O
on. Figure 6.13 shows the UI of the I:I A

Paint application.

The design of the Paintapplication
is simple: a DrawingFrame handles the ~ Figure 6.13 The Paint application

How Spring DM handles OSGi applications’ dynamic behavior 193

Adds and removes shapes
DrawingFrame (& === === == —— ShapeTracker
~ 7
N s’
N Ve
N 7’
Draws\ N 7 /Tracks
N 7
N s
N 7
N V4
SimpleShape Figure 6.14 The UML design of the
57 A R Paint application. The SimpleShape
)] N interface is an extension point, and
Implements, Implementsl \Implements R R .
P 1 implementations are then good candi-
e 1 N dates for being 0SGi services. The
CircleShape SquareShape TriangleShape ShapeTracker manages the appear-
ance and disappearance of shapes.

user interaction and the drawing of the shapes, and a ShapeTracker tracks the different
kinds of shapes available and notifies the DrawingFrame of their appearance or disap-
pearance. Figure 6.14 illustrates the design of the Paintapplication with a UML diagram.

The dynamic part of the Paint application rests in the availability or unavailability
of shapes. If a new shape implementation appears in the system, it should be auto-
matically added to the toolbar. Conversely, if a shape disappears from the system, it
should be automatically removed from the toolbar. Shapes can be seen as contribu-
tions to an extension point and are therefore good candidates for OSGi services. We
can easily infer the organization of our application as OSGi bundles, as shown in fig-
ure 6.15.

If a bundle wants to contribute to the Paint application, it has to define an imple-
mentation of the SimpleShape interface and publish the instance in the OSGi registry.
Here is the SimpleShape interface:

Shape API Paint application Ul :_ Trapezoid shape ll
T = |

e || (pacomer [goig |
~° | |

! I

Tracks shapes

v
OO
o 5 —

Registers | Registers | Registers |
shape | shape shape |
| l
Circle shape Square shape Trlangle shape

Java classes |I Spring Java classes |I Spring Java classes |I Spring

Figure 6.15 The Paint application as 0SGi bundles. The Shape API bundle exports essential
packages; the Paint application Ul and Shape implementation bundles are Spring-powered.

194

CHAPTER 6 OSGi and Spring DM for enterprise applications

package com.manning.sdmia.paint.shape;

import java.awt.Graphics2D;
import java.awt.Point;

public interface SimpleShape { .
Service property key

public static final String NAME PROPERTY = for the shape name
"simple.shape.name";

public static final String ICON_PROPERTY = Service Property key Method to
"simple.shape.icon"; for the shape icon implement to

public void draw (Graphics2D g2, Point p); draw shape

}

The bundle of a SimpleShape implementation leverages the Spring lightweight con-
tainer to declare the shape as a bean and Spring DM to export the bean to the service
registry. Here is an excerpt from the book’s code samples, which shows how to export
the square shape implementation as an OSGi service:

<osgi:service

ref-"squareShape" Exports squa'reSha}pe
. . . . bean to 0SGi service
interface="com.manning.sdmia.paint.shape. .

registry

SimpleShape">
<osgi:service-propertiess>
<entry key-ref="nameProperty" value="square"/>
<entry key-ref="iconProperty" .
value-ref="squareIcon"/> icon property
</osgi:service-propertiess>
</osgi:services

Defines name and

The bundle of the Paint application is interested in SimpleShape services and wants to
know when some are registered or unregistered. It then uses the list tag to import
SimpleShape services and the inner listener tag with the callback methods plugged
into its ShapeTracker:

<osgi:list

id="shapes"

availability="optional"

interface="com.manning.sdmia.paint.shape.

SimpleShape" >
<osgi:listener ref="shapeTracker"

bind-method="addingShape"
unbind-method="removedShape" />

Imports SimpleShape
services

Registers shape
tracker as listener

</osgi:list>
<bean id="shapeTracker"
class="com.manning.sdmia.paint.ShapeTracker">
<property name="drawingFrame" ref="drawingFrame" />
</bean>
With this configuration, Spring DM calls the addingShape or removedShape method of
the ShapeTracker when a shape service is registered or unregistered respectively.

6.4.2

How Spring DM handles OSGi applications’ dynamic behavior 195

The ShapeTracker will have to do all the dirty work, but OSGi dynamics are no lon-
ger part of its concern; it can focus on the update of the UL Here are the two callback
methods, free from any reference to the OSGi API:

public class ShapeTracker {
(...)
public Object addingShape (
SimpleShape shape, Map properties) {
processShapeOnEventThread (ADDED, properties, shape) ; Bind method
return shape;

}

public void removedShape (
SimpleShape shape, Map properties) {
processShapeOnEventThread (REMOVED, properties, Unbind method
shape) ;

(...)
}

This means that the application will iz 'Spring DM Apache Felix Paint application:
work properly and can be tested out- O f
side of an OSGi environment, which is

very convenient. Moreover, the appli-

cation class (the ShapeTracker) is O @

relieved of the burden of OSGi =

dynamics, because Spring DM han-

dles most of the complex plumbing. ® D
Shape services can appear or disap- = A

pear, and the Ul is updated on the fly,

as shown in figure 6.16, where the

square shape service has been Figure 6.16 The square shape service has been

df th ist unregistered. It’s removed from the toolbar and

remove rlom € r.eg1.s T Y-. drawn squares are replaced by “under construction”
The Paint application is the per- icons, all of this on the fly.

fect example of using OSGi services
as an extension mechanism. With the dynamic features of OSGi and a little help from
Spring DM, tracking services becomes easy, without any references to the OSGi API.

In the next section, we’ll continue with dynamics and see how Spring DM handles
the updating of bundles.

Providing a new version of a component

One of the major features of OSGi is its capacity to dynamically update components,
without stopping the container. If we take our application in its extreme modular
form, we can stop the DAO implementation bundle, install a new version, update the
bundle, and restart it without redeploying or updating dependant bundles.

As you saw previously, if calls are made on the DAO service reference, Spring DM
lets them block until it reappears, and as soon as Spring DM registers the new version

196 CHAPTER 6 OSGi and Spring DM for enterprise applications

OSGi service registry

2

- ~

Registers _ ~ ~ ~ ~ _Consumes
o - -~
DAO implementation —I DAO API Service implementation
I —) S_rin_ |'—> -' -' Sprin
|Java classes 'l| pring Java < Java pring
|'F;?;?;?L| N ======J ======J o ©
- - - = = ™

O Updates
NEW
J&DAOimpmmenmﬁon

s gy

Figure 6.17 Updating an implementation bundle. With Spring DM, the service update happens
transparently, and dependant bundles don’t need to be restarted.

of the DAO, dependant Spring-powered bundles will import the new reference. This is
a common update operation, and the dynamic, on-the-fly service replacement works
out of the box with Spring DM. This is one benefit of following the pattern of splitting
static and dynamic parts of an application. Figure 6.17 illustrates this kind of update.

How can you update a service like this? Let’s do it with Equinox. You start by issu-
ing the ss command to find the DAO implementation bundle:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi 3.5.0.v20090520

1 ACTIVE com.manning.sdmia.ch06.directory-datasource 1.0.0

2 ACTIVE com.manning.sdmia.ch06.directory-domain 1.0.0

3 ACTIVE com.manning.sdmia.cho06.directory-modular-dao 1.0.0

4 ACTIVE com.manning.sdmia.ch06.directory-modular-dao-jdbc 1.0.0

5 ACTIVE com.manning.sdmia.ch06.directory-service 1.0.0

6 ACTIVE com.manning.sdmia.ch06.directory-modular-service-impl 1.0.0
7 ACTIVE com.manning.sdmia.ch06.directory-web 1.0.0

(..

)

As you can see, the DAO implementation bundle is bundle number 4 (shown in bold).
Let’s stop it and uninstall it:

osgi> stop 4

osgi> uninstall 4

This is the point at which Spring DM blocks calls on OSGi services that were registered
by the bundle and imported by Spring-powered bundles (the business service imple-

mentation bundle, for example). You can then install a new version of the DAO imple-
mentation bundle and start it:

How Spring DM handles OSGi applications’ dynamic behavior 197

osgis> install
file:./com.manning.sdmia.ch06.directory-modular-dao-jdbc 1.0.1.jar
Bundle id is 44

osgi> start 44

As soon as the new version of the bundle registers a contactDao OSGi service, Spring DM
will send it the blocked calls, so that the waiting incoming requests can be processed.

A less common but still relevant situation is what happens when the DAO disap-
pears but can be replaced. This means that there are one or more OSGi services that
can suit the importing bundles. In this case, Spring DM will automatically switch to the
next best replacement, observing the filters of the dependant bundles.

This kind of update works well for black-box components, meaning components
that don’t export any packages and just provide services. These are what we previously
called the dynamic components of our OSGi applications. But what about the static com-
ponents of an application? In our DAO-based example, the static part is the DAO API,
which the DAO implementation and service implementation bundles depend on. Usu-
ally, if we ship a new version of the DAO API bundle, it will come with a new version of
the DAO implementation and the service implementation bundles, which benefit
from the API updates. Simple update operations won’t be enough in this case, because
implementation bundles need to be wired to the new version of the API bundle
classes. For this wiring to happen, you need to refresh the DAO API bundle, and the
OSGi framework will handle the refresh of dependant bundles.

To summarize, when updating the DAO API bundle, we’ll have to go through these
steps:

1 Stop the DAO API, DAO implementation, and service implementation bundles.

2 Install the new versions.

3 Update the bundles.

4 Refresh the DAO API bundle (the OSGi framework will then automatically
refresh all the bundles that import Java packages exported by the DAO API
bundle).

5 Start the DAO API bundle.

Figure 6.18 illustrates this procedure.

When updating an API bundle, the precise procedure is the hardest part, because
Spring DM handles the Spring application context startup order, service registration,
and importing. If you carefully design and organize your OSGi application compo-
nents, Spring DM will manage the complex technical jobs.

That’s it for dealing with OSGi dynamics. You now know all the techniques and
tricks to benefit from this unique OSGi feature!

198

6.5

CHAPTER 6 OSGi and Spring DM for enterprise applications

OSGi service registry

Registers _ ~ ~ ~ ~ _Consumes
- <
- ~
- ~

- - = — — — - - - — — — ~ = = = — —
DAO implementation_l DAO API | Service implementationJ
FETpr—.| Soring e e | Tiava olmesee I Spring
|IlJ:va _clas_ses__,!| Spring ||—>| |.Jiva _clas_ses__':| I<_||.J:_va —ilas—ies—_'sl pring | |
— — — — | | . — = et |
S | [— - - — = ==

| O Refresh A
Update Update Update
gngwe D) e D, ivwé O
V\DAO implementation NN pao ARl NService implementation
Java classes Spring Java classes Spring Java classes Spring
T | i [favachsee] Gorng i

Figure 6.18 Updating an API bundle. It implies updating, but also refreshing, dependant
bundles to wire them with the new classes.

Summary

You should now have a good understanding of the right way to write OSGi-based enter-
prise applications.

The first step is to have OSGi-compliant JAR files. More and more libraries and
frameworks are packaged as OSGi bundles, but alternatively you can rely on OSGi
repositories or handle the OSGi-ification yourself, building your own repository or
even making your OSGi bundles available to the global OSGi-ification effort.

The second step is to properly design your OSGi applications and understand how
to benefit from OSGi specificities. If you’re on your own for the design, Spring DM is a
great help for filling in the gap between OSGi and traditional application develop-
ment. It’s able to handle transparently most of the dynamics-related issues, and it
allows you to retain a POJO-based development style.

We’ll continue with enterprise application development, as the next chapter is
dedicated to a topic without which enterprise applications wouldn’t be the same:
access to relational databases with Spring DM.

JAVA/SPRING

Spring Dynamic Modules

(ogoluégnes = Templier = Piper

pring Dynamic Modules is a flexible OSGi-based framework

that makes component building a snap. With Spring DM,

you can easily create highly modular applications and you
can dynamically add, remove, and update your modules.

Spring Dynamic Modules in Action is a comprehensive tutorial
that presents OSGi concepts and maps them to the familiar ideas
of the Spring framework. In it, you'll learn to effectively use
Spring DM. You will master powerful techniques like embedding
a Spring container inside an OSGi bundle, and see how Spring’s
dependency injection compliments OSGi. Along the way, you'll
learn to handle data access and web-based components, and
explore topics like unit testing and configuration in OSGi.

This book assumes a background in Spring but requires no prior
exposure to OSGi or Spring Dynamic Modules.

What's Inside

e An introduction to OSGi for Spring developers
* How to use Spring with Spring DM
* How to develop enterprise OSGi applications

A Java EE architect, Arnaud Cogoluégnes specializes in middle-
ware. Thierry Templier is a Java EE and rich web architect.

He contributed the JCA and Lucene to Spring. Andy Piper is

a software architect with Oracle and a committer on the

Spring DM project.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/SpringDynamicModulesinAction

$59.99 / Can $74.99 [INCLUDING eBOOK]

ﬂee eb,
SEE IN

“A crucial book.”

— From the Foreword
by Peter Kriens
OSGi Technical Director

“A uniquely informative
book and a vital reference.”
—John Guthrie, Sybase, Inc.

“Dynamic modules sans
voodoo: the best resource
out there!”

—David Dossot
Co-author of Mule in Action

“Incredibly useful and
accessible...will save you
days or weeks of effort!”

— Peter Pavlovich
Kronos Incorporated

“Right book, right time.”

— Denys Kurylenko
LinkedIn Corp.

ISBN 13:
ISBN 10: 1-9351.82-30-7

‘ “ 559“9“9
IM7819351182306

976-1-935182-30-b

