
3

1Bitter tales

This chapter covers
� A programming horror story
� Techniques for finding and fixing antipatterns
� Examples of antipatterns in other industries

4

On a cold day in Eastern Tennessee, my kayak is perched precariously atop a
waterfall known as State Line Falls. The fall has a nasty reputation among kay-
akers. One of our team is walking this one. He was injured and shaken up last
year at the same spot. This time around he wants no part of it.

 From the top, there is no clue of the danger that lurks around the bend, but
we know. We have been thinking ahead to this rapid for several days. We have
read about what I cannot yet see. Five truck-sized boulders guard four slots. The
water rushes through the slots and plunges to the bottom of the fall. I will see the
entire waterfall only seconds before I go over it. Most of the water lands on boul-
ders barely covered by two feet of water. Three of the four slots are reputed to be too
violent and dangerous for your mother-in-law. Through the fourth, the river rips
into the narrows and picks up speed. It drops sharply over the lip and crashes onto
the jagged rocks 16 feet below. I am a programmer by trade, a father of two, and
a kayaker of intermediate skill. I have no business going over a Class V waterfall
described in guidebooks as “marginal.” But here I am, looking for the land-
marks. I pick my slot, sweep left, and brace for the soft landing—or the crash. I
am in free fall.

1.1 A Java development free fall

The sales team was strong. They got all the right sponsors, lined them up, and
marched them into the executive’s office. They all said the same thing. The
development cycle times were outrageous. Each project was longer than the
last, and the best project overshot deadlines by 85 percent. It did not take the
CIO long to add up the numbers. The cost overruns ran well into seven figures.

 The answer was Java. The lead rep presented a fat notebook showing refer-
ences from everywhere: the press, the news, and three major competitors. The
proposed tools won awards and added to the outrageous productivity claims
promised by even the most conservative vendors. They never cited the down-
side or training requirements. In early 1996, hardly anyone did. The sales
team brought in the big gun: a proof-of-concept team that quickly hammered
out an amazingly robust prototype in a short time. The lead rep had practiced
the close many times, but in this case, the deal was already sealed. She was able
to get even more of the budget than she expected. After all, a product and lan-
guage this easy and this similar to C++ should not require much training, so
she got most of that allocated budget too.

 But a year and a half later, the lead programmer was sitting behind a desk
in the middle of the night while the sales rep celebrated her third National Cir-
cle sales award in Hawaii. In truth, the programmer seemed genuinely happy

A Java development free fall 5

to be there. He knew that he was in over his head, and he needed help badly.
He could see that clearly now. When the project started, the programming
team had just enough time to learn the syntax of the new language. They had
been using an object-oriented language for four years without ever producing
an object-oriented design. Their methodology called for one large develop-
ment cycle, which provided very little time to find all of the mistakes—and
even less time to recover. The insane argument at the time was that there was
no time for more than one iteration.

 As a member of the audit team dispatched to help the customer pick up the
pieces, I was there to interview the programmer. My team had composed a
checklist of likely culprits: poor performance, obscure designs, and process
problems. We had written the same report many times, saving our customers
hundreds of thousands of dollars, but the interviews always provided addi-
tional weight and credibility to back up our assertions.

 “Is your user interface pure HTML, then?” I asked.
 “Yeah,” the programmer replied. “We tried applets, but that train crashed

and burned. We couldn’t deal with the multiple firewalls, and our IT depart-
ment didn’t think they would be able to keep up with the different browser
and JVM configurations.”

 “So, where is the code that prints the returning HTML?”
 He winced and said, “Do you really want to go near that thing?” In truth, I

didn’t want any part of it. I had done this long enough to know that this baby
would be too ugly for a mother to love, but this painful process would yield
one of the keys to the kingdom. As we reviewed the code, we confirmed that
this was an instance of what I now call the Magic Servlet antipattern, featured
in chapter 3. The printout consisted of 30 pages of code, and 26 were all in a
single service method. The problem wasn’t so much a bad design as a lack of
any design at all. We took a few notes and read a few more pages. While my
partner searched for the code fragment that processed the return trip, I looked
for the database code. After all, I had written a database performance book, and
many of the semiretired database problems were surfacing anew in Java code.

 “Is this the only place that you connect to the database?” I asked.
 “No,” he answered. “We actually connect six different times: to validate

the form, to get the claim, to get the customer, to handle error recovery, to
submit the claim, and to submit the customer.” I suppressed a triumphant
smile and again reviewed the code. Connection pooling is often neglected but
incredibly powerful. In chapter 7, the Connection Thrashing antipattern
shows how a method can spend up to half of its time managing connections,
repeating work that can usually be done once.

6 CHAPTER 1

Bitter tales

 I also jotted down a note that the units of work should be managed in the
database and not the application. I noticed that the database code was sprin-
kled throughout, making it difficult to change this beast without the impact
rippling throughout the system. I was starting to understand the depth of the
problem. Even though most of these audits were the same, at some point they
all hit me in the face like a cold glass of water.

 Over the next four hours, we read code and drew diagrams. We found that
the same policy would be fetched from 4 to 11 times, depending on the usage
scenario. (The caching antipatterns at this customer and others prompted dis-
cussions in chapter 5, where you’ll learn about the caching and serialization
techniques that can make a huge difference.) We drew interaction diagrams of
the sticky stuff and identified major interfaces. We then used these diagrams to
find iteration over major interface boundaries and to identify general chatty
communications that could be simplified or shifted.

 We left the customer a detailed report and provided services to rework the
problem areas. We supplied a list of courses for the programmers and sug-
gested getting a consulting mentor to solidify the development process. When
all was said and done, the application was completed ahead of the revised
schedule and the performance improved tenfold. This story actually combines
three different customer engagements, each uglier than this one. I changed
some details to protect the names of the guilty, but the basic scenario has been
repeated many times over the course of my career. I find problems and provide
templates for the solutions. While most of my peers have focused on design
patterns, I find myself engaged with antipatterns.

1.1.1 Antipatterns in life
On the Watauga River, with all of the expectations and buildup, the run through
State Line is ultimately anticlimactic. I land with a soft “poof” well right of the
major turbulence. The entire run takes less than 20 seconds. Even so, I recognize
this moment as a major accomplishment.

How could a journeyman kayaker successfully navigate such a dangerous
rapid? How could I convince myself that I would succeed in light of so many
other failures? I’d learned from the success and failure of those who went
before me. The real extremists were those that hit rock after rock, breaking
limbs and equipment, while learning the safest route through the rapid. I see a
striking similarity between navigating rivers and writing code. To make it
through State Line Falls, I simply did three things:

Using design patterns accentuates the positive 7

� I learned to use the tools and techniques of the experts. As a programmer, I
attend many conferences to learn about best practices, and to find the
new frameworks and tools that are likely to make a difference on my
projects.

� I did what the experts did. I learned the easiest line and practiced it in my
mind. We can do the same thing as programmers, by using design pat-
terns detailing successful blueprints to difficult architectural problems.

� I learned from the mistakes before me. The first time down a rapid, it’s
usually not enough to take a good plan and plunge on through, torpe-
does be damned. Good plans can go bad, and it’s important to know
how to react when they do. As a programmer, I do the same thing. I am
a huge fan of “merc talk,” or the stories told around the table in the caf-
eteria about the latest beast of a program. This is the realm of the
antipattern.

When I was told how to run State Line Falls, I asked what-if questions. What
should my precise angle be? How can I recover if I drift off that angle? How far
left is too far? What’s likely to happen if I miss my line and flip? I got answers
from locals who had watched hundreds of people go down this rapid with
varying degrees of success. The answers to these questions gave me a mental
picture of what usually happened, what could go wrong, and what places or
behaviors to avoid at all cost. With this knowledge, I got the confidence that it
took to run the rapid. I was using design patterns and antipatterns.

1.2 Using design patterns accentuates the positive

Design patterns are solutions to recurring problems in a given context. A
good example is the Model-View-Controller design pattern introduced in
chapter 3. It presents a generic solution to the separation of the user interface
from the business logic in an application. A good design pattern should repre-
sent a solution that has been successfully deployed several times. At State Line
Falls, when I read about the successful line in guidebooks and watched experi-
enced kayakers run the rapid, I was essentially using design patterns. As a pro-
grammer, I use them for many reasons:

� Proven design patterns mitigate risk. By using a proven blueprint to a
solution, I increase my own odds of success.

� Design patterns save time and energy. I can effectively use the time and
effort of others to solve difficult problems.

8 CHAPTER 1

Bitter tales

� Design patterns improve my skill and understanding. Through the use of
design patterns, I can improve my knowledge about a domain and find
new ways to represent complex models.

Embracing design patterns means changing the way we code. It means joining
communities where design patterns are shared. It means doing research
instead of plowing blindly into a solution. Many good sources are available.

Books
This is a sampling of books from the Java design pattern community and the
definitive source for design patterns (Design Patterns: Elements of Reusable
Object-Oriented Software). As of this writing, five or more are under develop-
ment, so this list will doubtlessly be incomplete. Amazon (http://www.ama-
zon.com) is a good source for finding what’s out there.

� Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (The Gang
of Four)

� Refactoring: Improving the Design of Existing Code, by Martin Fowler,
Kent Beck (contributor), John Brant (contributor), William Opdyke,
and Don Roberts

� Core J2EE Patterns, by John Crupi, Dan Malks, and Deepak Alur
� Concurrent Programming in Java: Design Principles and Patterns, by

Doug Lea
� Patterns in Java, Volume 3: A Catalog of Enterprise Design Patterns

Illustrated with UML, by Mark Grand
� Data Structures and Algorithms with Object-Oriented Design Patterns in

Java, by Bruno R. Preiss
� Java Design Patterns: A Tutorial, by James William Cooper

1.2.1 Design patterns online
Manning Publications has a series of author forums for discussion. These
authors discuss server-side architectures, Java programming techniques, Java
Server Pages (JSPs), Extensible Markup Language (XML), and servlets. The
author of this book also has an online community to discuss Java antipatterns.

Manning authors

� Manning author forums: http://www.manning.com/authoronline.html
� Java antipatterns: http://www.bitterjava.com

Antipatterns teach from the negative 9

Java vendors

� IBM: http://www-106.ibm.com/developerworks/patterns/
� Sun: http://java.sun.com/j2ee/blueprints/

1.2.2 UML provides a language for patterns
The design pattern community has exploded in recent years partially because
there is now a near universal language that can be used to express patterns.
Unified Modeling Language (UML) brings together under one umbrella sev-
eral of the tools supporting object-oriented development. Concepts such as
scenarios (use cases), class interactions (class diagrams), object interface inter-
action (sequence diagrams), and object state (state diagrams) can all be cap-
tured in UML. Though this subject is beyond the scope of this book, there are
many good UML books, tools, and resources as well.

Books

� UML Distilled: A Brief Guide to the Standard Object Modeling Language,
by Martin Fowler and Kendall Scott

� Enterprise Java with UML, by C. T. Arrington
� The Unified Modeling Language User Guide, by Grady Booch, et al.

Tools

� Rational: http://www.rational.com
� Resource center at Rational: http://www.rational.com/uml/index.jsp
� TogetherJ from Together Software: http://www.togethersoft.com

1.3 Antipatterns teach from the negative

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis by
William J. Brown, et al., is an outstanding book dedicated to the study of
antipatterns. The antipattern templates that follow each chapter in this book
come from Brown’s text. In it, the authors describe an antipattern as “a liter-
ary form that describes a commonly occurring solution to a problem that gen-
erates decidedly negative consequences.” The words that caught my attention
are commonly occurring solution and decidedly negative consequences. Many
others have presented some of the negative examples in this book as the right
way to do things. Some, like the Magic Servlet, are forms of programs pub-
lished in tutorials, created by wizards, or captured in frameworks. As for

10 CHAPTER 1

Bitter tales

negative consequences, anyone who has followed software engineering closely
knows that a high percentage of software projects fail. The AntiPatterns text
cites that five of six software projects are considered unsuccessful. Java
projects are not immune. Earlier this weekend, I heard about a canceled Java
project using servlets and JSPs at a Fortune 100 company that will be replaced
with a new project using CICS and C++!

 Some of the madness in our industry is caused by outright malice. Some
vendors sell software that they know isn’t ready or doesn’t work. Some man-
agers resist change and sabotage projects. Some coworkers take shortcuts that
they know they will not have to repair. Most of the time, though, it is simple
ignorance, apathy, or laziness that gets in the way. We simply do not take the
time to learn about common antipatterns. Ignorant of software engineering
history or the exponentially increasing cost of fixing a bug as the development
cycle progresses, we might kid ourselves into thinking we’ll take a shortcut
now and fix it later.

1.3.1 Some well-known antipatterns
As programmers, we will run across many antipatterns completely unrelated to
Java. For the most part, we will not go into too many of them, but here are a
few examples to whet your appetite:

� Cute shortcuts. We’ve all seen code that optimizes white space. Some
programmers think that the winner is the one who can fit the most on a
line. My question is, “Who is the loser?”

� Optimization at the expense of readability. This one is for the crack pro-
grammers who want you to know it. In most cases, readability in gen-
eral is far more important than optimization. For the other cases,
aggressive comments keep things clear.

� Cut-and-paste programming. This practice is probably responsible for
spreading more bugs than any other. While it is easy to move working
code with cut and paste, it is difficult to copy the entire context. In
addition, copies of code are rarely tested as strenuously as the originals.
In practice, cut-and-paste programs must be tested more strenuously
than the originals.

� Using the wrong algorithm for the job. Just about every programmer has
written a bubble sort and even applied it inappropriately. We can all find a
shell sort if pressed, and if we understand algorithm analysis theory, we
know that a bubble sort is processed in O(n2) time, and a simple shell sort
is processed in O(nlog(n)) time, which is much shorter for longer lists.

Antipatterns teach from the negative 11

� Using the wrong class for the job. In object-oriented languages, we’ve got
to choose between classes like tables and arrays that have similar func-
tion but different characteristics. If our algorithm calls for random
access of a collection, using a b-tree or hash table will be much faster
than an array. If we’re going to frequently index or enumerate the col-
lection, an array is faster.

1.3.2 Antipatterns in practice
The study and application of antipatterns is one of the next frontiers of pro-
gramming. Antipatterns attempt to determine what mistakes are frequently
made, why they are made, and what fixes to the process can prevent them.
The practice is straightforward, if tedious. The benefits are tremendous. The
trick to the study of antipatterns is to:

1 Find a problem. This might be a bug, a poor-performing algorithm, or
unreadable method.

2 Establish a pattern of failure. Quality control is a highly specialized
and valued profession in manufacturing circles. A good quality engi-
neer can take a process and find systemic failures that can cost mil-
lions. Software process can create systemic failure, too. The Y2K bug
was a systemic failure of a very simple bug that was created and copied
across enterprises hundreds of millions of times. Sometimes, the pat-
tern will be related to a technology. Most often, process problems
involve people, including communications and personalities.

3 Refactor the errant code. We must of course refactor the code that is
broken. Where possible, we should use established design patterns.

4 Publish the solution. The refactoring step is obvious but should be
taken a bit further than most are willing to go. We should also teach
others how to recognize and refactor the antipattern. Publishing the
antipattern is as important as publishing the related solution. Together,
they form a refactoring guide that identifies the problem and solves it.

5 Identify process weaknesses. Sometimes, frameworks or tools encourage
misuse. Other times, external pressures such as deadlines may encour-
age shortcuts. We must remember that a process must ultimately be
workable by imperfect humans. In many cases, education may be the
solution.

6 Fix the process. This is the most difficult, and most rewarding, step.
We effectively build a barrier between our healthy enterprise and the

12 CHAPTER 1

Bitter tales

disease. Here, we take a hard look at what’s broken. In simple cases,
we fix the problem. In more extreme cases, we might need to estab-
lish a risk/reward analysis and win sponsorship to fix the problem.

Figure 1.1 illustrates the antipattern process.

1.3.3 Antipattern resources
The antipattern community is gathering momentum, looking for things that
break in a methodical way and capturing those experiences. Some engines

Isolated
problem

Process
weakness

Protective Barrier

B

C

D

E

F

G

The same
problem

Antipattern

Refactored
solution

Refactoring
guide

Healthy

enterprise

The same
problem

The same
problem

Figure 1.1 The antipattern process involves finding a problem B, establishing a pattern and
publishing an antipattern C, refactoring the solution D, building a guide so that the problem can
be resolved and fixed en masse E, identifying process weaknesses F, and building a barrier
between the healthy enterprise and the antipattern G.

Antipattern ideas are not new 13

use pattern recognition to find bugs from software source code. Many pro-
grammers are starting to publish bug patterns for common programming
mistakes. The http://www.bitterjava.com site has some links to Eric Allen’s
series “Bug Patterns.”

 The design pattern community also has a counterpart: the antipattern
community. This group is interested in learning from common experience and
capturing that knowledge in a uniform, methodical way.

 AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis
brings these concepts together better than any other source I have seen. With
Brady Flowers, who contributed the Enterprise JavaBeans (EJB) examples for
this book, I had started to do bitter Java sessions at conferences before we
found AntiPatterns. When we found it, we immediately fell in love with the
ideas expressed in this book. Most of the book’s antipatterns went beyond
theory and explained the cultural conditions prompting a problem. The book
is extraordinarily useful to programmers who strive for excellence. We hope to
take these concepts into the Java community to continue the momentum that
AntiPatterns has created. We will go beyond generic antipatterns and dive
into those that are most prevalent to the Java community. These are some
online resources for antipatterns:

� The authors have an online source for Java antipatterns. You can find it
at http://www.bitterjava.com. On the site, we will attempt to provide
you with articles, discussion boards, and useful links.

� The http://www.antipatterns.com site has articles, events, and message
boards.

1.4 Antipattern ideas are not new

Should developers spend more time on the study of antipatterns or design pat-
terns? I will answer this with another true adventure story. Throughout the
better part of this past century, mountain climbers across the world had an ulti-
mate goal: to scale Mt. Everest, the highest summit in the world. Over time,
mountaineers tried many different approaches that would allow political pas-
sage to the mountain, solid expedition logistics, and the best chances for suc-
cess. Two routes go through Tibet. George Mallory was an early British
mountain climber, famous for saying he climbed Everest “Because it is there.”
He made his attempts on the north face, over terrain called the North Col.
The other northern route was considered much too dangerous for early moun-
taineers. Edmund Hillary, who became the first to climb Everest, eventually

14 CHAPTER 1

Bitter tales

succeeded on the southern face, through Nepal. That route is called the South
Col route. After the first ascent, expeditions climbed this dangerous mountain
with greater regularity and greater margins of safety. They began to unlock the
secrets of operating at high altitude and to find where the inevitable danger
spots were likely to be. They began to understand when the summer monsoons
directed the jet stream away from Everest to provide a window of acceptable
weather. They learned to leave their tents at midnight so that they would not
be trapped on the summit in the afternoon, when the weather frequently dete-
riorated. They were using design patterns.

 Inevitably, people started to guide trips up the mountain with increasing
success. Many debated that some of the paid clients did not have the appropri-
ate skills to be on the mountain and would not be able to handle themselves in
the event of an emergency. These criticisms turned out to be prophetic. Two
expeditions led by the strongest guides in the world got trapped at the top of
Everest through a series of poor decisions and bad luck. An afternoon storm
killed many of them, including three of the six guides and several of the cli-
ents. Jon Krakauer made this incident famous in the book Into Thin Air. The
design patterns were able to get them to the top but were unable to get them
safely back down. Good application of climbing antipatterns, like avoiding the
top of the mountain at dangerous times and holding fast to a prescribed turn-
around time, could have made the difference.

1.4.1 Learning from the industry
In many real-world situations, the principles of design patterns and antipat-
terns are combined. In heath care, aggressive preventive care (design patterns)
is combined with systematic diagnostics of health-related issues (antipatterns).
In manufacturing, quality certification programs like ISO 9000 (design pat-
terns) are combined with aggressive process analysis, problem identification,
and continuous improvement (antipatterns). Road signs are combined to point
out good driving behaviors like “Pass on left” and hazards like “Watch for fall-
ing rock.” In many other fields, the two practices go hand in hand. Software
engineers should try to combine these two approaches.

 A powerful movement in the quality industry, from the late ’70s through
the ’80s, sought to involve front-line assembly workers in the quality process.
These teams were tightly integrated with quality professionals. The teams,
sometimes with light-handed management direction, would identify problems
and contribute a block of time weekly toward solutions to those problems. My
father, Robert G. Tate, Jr., became so attached to this process that he left a
high-level position at Dover Elevators to pursue a consulting career installing

Antipattern ideas are not new 15

“quality circles” around the world. He found that something magical hap-
pened with the involvement of the actual blue-collar plant floor. The relation-
ships changed. Management, quality control, and the product builders began
to work together. The process was remarkably simple:

� Quality circles would form for the purpose of solving quality problems.
� Participants would become involved in the identification and solution of

quality problems.
� Management would empower them to deal with quality problems

directly.
� Participants were educated to perform these tasks.

Many of the quality groups showed staggering returns. Other programs, such
as Zero Defects, also thrived. Awards and accreditations, like Malcolm Bald-
rige and ISO 9000, gathered steam. The United States again discovered the
value of quality.

 In a very real sense, this book represents the same ideas that we see in
other areas and places them in the context of Java application development.
We are taking responsibility for bringing quality code to the desk of the com-
mon programmer. We want to identify places where our assembly line is bro-
ken. We want to spot holes in process and procedure that can cripple our
customers or even ourselves down the road. We want to know when major sys-
tematic problems, like the routinely late turnaround times on Everest, occur.
We then want to systematically solve them and save others from repeating our
mistakes. Most of this book deals with antipatterns that are already well
entrenched in Java programs, processes, and programmers. We should now
talk briefly about the discovery process.

1.4.2 Detective work
Experienced, conscientious programmers find most antipatterns. While teaching
the instincts of a detective may be difficult, I can provide some rules of thumb
from my consulting experience. These tips represent the places and methods
that I use to find antipatterns hiding in a customer’s process, or my own.

Bug databases contain a bounty of wealth
Most organizations already track quality metrics in the form of bug databases.
We can look to establish patterns based on keyword searches and spot checks.
Are we seeing a pattern of memory leaks? If so, misconceptions or frameworks
could be a source of bad behavior. Are the change lists for view-related main-
tenance particularly long? If so, this could point to tight coupling. Are certain

16 CHAPTER 1

Bitter tales

objects or methods particularly vulnerable to bugs? If so, they might be refac-
toring targets.

Early performance checks can point out design flaws
Sanity checks for performance early in a process can point to design flaws.
Some of these might be isolated incidents. Some, even at an early stage, are
likely to be common enough to warrant special attention. Internet applications
are particularly vulnerable to communication overhead. Several of the antipat-
terns in this book deal with round-tripping, or making many communications
do a relatively isolated task. Sloppy programming, including many of the issues
in chapter 9, can also cause performance problems, especially in tight loops.

Frequent code inspections and mentors help
Beginners and early intermediates can be a common source of antipatterns.
Pairing them with more experienced programmers and architects for code
reviews and mentoring can head off many bad practices before they start. At
allmystuff, the engineering department did a nice job of mentoring the solu-
tions development staff, which typically consisted of weaker developers with
better customer skills. Even a five-minute code inspection can reveal a surpris-
ing amount of information. Are the methods too long? Is the style readable
and coherent? Are the variable names appropriately used? Does the program-
mer value her intelligence above readability?

End users are unusually perceptive
Later in my career, I began to appreciate the impact of end-user involvement at
all stages of development. I found that end users can be brutally honest, when
we allow them to be. When I began to truly listen to feedback, I could tell very
early if my team would need to bear down or change direction. Too often, we
ask for the questions and listen only if we hear what we want or expect.

Outsiders can use interviews
The most powerful tool for someone outside a development organization is
the interview. People are put off when we try to propose answers without ask-
ing questions. Getting them to open up in an interview is usually not difficult
but may occasionally be troublesome. When we are digging for trouble, peo-
ple are much more perceptive if they perceive that we are helping to solve
problems and not looking for someone to blame. Interviews are most useful if
we can script at least a set of high-level questions, as well as anticipate some
low-level questions.

Why Bitter Java? 17

Establishing a pattern
By itself, a problem is only a bug. We should already have processes and proce-
dures for identifying and fixing bugs. Indeed, many of my father’s customers
had adequate measures for detecting and removing bad products from the
line. The problems with these reactive approaches are twofold. First, we will
never find all of the bugs. Second, if we do not fix the machinery or the pro-
cess, we will create more bugs! After we have established a pattern, we need to
elevate it from bug to antipattern.

1.4.3 Refactoring antipatterns
After we find a problem and establish a pattern, our strategy calls for refactor-
ing it to form a better solution and process. Here, we are overlapping the
realms of design patterns and antipattern. My intuition is that this combina-
tion is part of what is missing in the software quality industry. The combina-
tion of design patterns and antipatterns is practical and powerful. Poor
solutions can be identified through antipatterns and redesigned into more
proven and practical alternatives using design patterns. The process of contin-
ually improving code through restructuring for clarity or flexibility and the
elimination of redundant or unused code is called refactoring.

 Many experts advocate the rule “If it isn’t broke, don’t fix it.” In the realm
of software development, following this rule can be very expensive, especially
at the beginning of a program’s life cycle. The average line of code will be
changed, modified, converted, and read many times over its lifetime. It is folly
to view a refactoring exercise as time wasted without considering the tremen-
dous savings over time. Instead, refactoring should be viewed as an investment
that will pay whenever code is maintained, converted, read, enhanced, or oth-
erwise modified. Therefore, refactoring is a cornerstone of this book.

1.5 Why Bitter Java?

In the Java community, the study and promotion of design patterns, or blue-
prints for proven solutions, has become well established and robust. The same
is not true of the antipattern. As an architect and consultant, I have seen an
amazing sameness to the mistakes that our customers tend to make. While the
problem of the month may change slightly in a different domain or setting, the
patterns of poor design, culture, and even technology stay remarkably consis-
tent from one engagement to the next. I strongly believe that the study of anti-
patterns inherently changes the way we look at the software process. It keeps us

18 CHAPTER 1

Bitter tales

observant. It makes us communicate. It helps us to step beyond our daily grind
to make the fundamental process changes that are required to be successful.

 Most of the antipatterns in Bitter Java have a relatively limited focus com-
pared to the more general antipatterns in the AntiPatterns text. Each is
applied to the server-side programming domain, which is popular right now
and young enough to have a whole new set of common mistakes. Our hope is
that this book will continue the evolution of the study of antipatterns and
bring it into the Java community.

1.5.1 The Bitter Java approach
Bitter Java will take a set of examples, all related to a simple Internet message
board, and redesign them over many chapters. Each iteration will point out a
common antipattern and present a refactored, or redesigned, solution that
solves the problem. In many cases, there may still be problems in the refac-
tored solution. In most cases, these problems are addressed in later chapters.
The others are left as an exercise for the reader. Regardless, the focus of the
antipattern is to refactor a single problematic element.

 The focus of Bitter Java is on server-side programming. The base architec-
ture uses common server-side standards of servlets, JSPs, Java connectors, and
EJBs. Where possible, the solutions are not limited to any vendor, though EJB
implementations are currently platform specific.

1.5.2 Bitter Java tools
Based on my experience, I have chosen VisualAge for Java, WebSphere, and
DB2 because the software and support are readily available to the authors. All
of the implementations stress open Java designs and software architectures.
Free, open alternatives to our software include:

� The home page for Java, with pages for base toolkits and specifications
for J2EE extensions, can all be found at http://java.sun.com.

� A free servlet container, for the execution of servlets and JSPs either in a
stand-alone mode or with a web ser ver, can be found at http://
jakarta.apache.org/tomcat/.

� A free web server can be found at http://apache.org.

 BEA Systems’ WebLogic also supports all of the classes and constructs used
in this book, though they have been tested only on the original toolset. We do
use the IBM database drivers (and I feel that the native database driver is
almost always the best option), but we do not use the IBM-specific framework
for databeans or servlet extensions, opting for the open counterparts instead.

Why Bitter Java? 19

1.5.3 The Bitter Java organization
Bitter Java presents some background information in chapters 1 and 2, and
subsequent chapters present a series of antipatterns. The patterns are collected
into themes. Chapters 3 and 4 focus on a design pattern called Model-View-
Controller, and an associated Java design pattern called the Triangle. Chapters
5 and 6 concentrate on optimizing memory and caching. Chapters 7 and 8
concentrate on EJBs and connections. Chapters 9 and 10 address program-
ming hygiene and good performance through scalability. The chapters are
organized in the following manner:

� Background material for the chapter.
� A basic description of the antipattern, including some of the root causes

and problems.
� Sample code illustrating the use of an antipattern.
� One or more refactored solutions.
� Sample code illustrating the refactored solution.
� A summary containing the highlights of the chapter.
� A list of all antipatterns covered in the chapter.

Antipatterns and templates
Each antipattern is presented twice: once in the main text, and once in tem-
plate form at the end of each chapter. The templates that we have chosen, both
within the chapters and at the end of most chapters, are based on the templates
suggested in the AntiPatterns book. Those in the chapter text choose a mini-
malist organization with the keyword antipattern followed by its name in a
heading, followed by some background material. Finally, we present a refac-
tored solution following the solution keyword. At the end of each chapter is a
more formal template, following the conventions in AntiPatterns. In this way,
we make this initial contribution to the initial collection of Java antipatterns.

 If you are looking for particular technologies or techniques, this is where
to find them:

20 CHAPTER 1

Bitter tales

For the programming examples, http://www.manning.com/tate/ has the com-
plete code for all of the examples, as well as forums for discussing the topics of
the book. The code in the book will be in the Courier style:

code = new Style("courier");

Where possible, long programs will have embedded text to describe the code.
In other places, there may be in-line code that looks like this. Most of the
programming samples are based on VisualAge for Java, version 4, and Web-
Sphere Studio version 4. Most Java examples are based on JSP 1.1 and on
Java 1.2. We’ll tell you if the version is different. Some of the code examples
for the antipatterns are for instructional purposes only and are not running
programs. We have compiled and tried all of the good programming exam-
ples. They work.

Table 1.1 The technologies and techniques in Bitter Java are presented in an order that suits the
ongoing refactoring of a set of examples. This table can help you navigate to particular concepts
that might interest you.

Technologies Chapter

JSP design and composition 3, 4

Servlet design and composition 3, 4

JDBC, database programming 3, 4, 5, 6, 7

Connections framework 7

XML antipatterns 7

Web services 7

EJBs 8

Caching 5

Model-view-controller 3, 4

Performance antipatterns, tuning, and analysis 10

Antipatterns and the development process 1, 2, 11

Connection pooling 6

Coding standards and programming hygiene 9

Looking ahead 21

1.5.4 The Bitter Java audience
Bitter Java is not written like a traditional technical manual or textbook. To
keep things lively, we will mix in real-life adventure stories at the beginning of
each chapter, with a programming moral later in the chapter. We hope that the
style will engage many, and it might put off a few. If you are a reader who likes
to cut to the chase, you will probably want to skip to chapter 3, and you may
even want to skip the story at the front of each chapter. If you are looking for a
dry reference with little extraneous content, this book is probably not for you.

 The skill level for bitter Java is intermediate. If you have all of the latest Java
design pattern books and have bookmarks for all of the key design pattern
communities, this book is probably not for you. If you do not yet know Java,
then you will want to try some introductory books and then come back to this
one. If, like most Java programmers, you are an intermediate who could use
some advice about some common Java pitfalls, then this book is for you. Those
who have converted to Java from a simpler language, a scripting language, or a
procedural language like C may find this book especially compelling.

 Finally, Bitter Java is intended to be at a slightly lower level of abstraction
than project management books, or the first AntiPatterns text. We intend to
introduce code and designs that do not work and to refactor them. From
these, we will show the low-level impact of process flaws, a failure to educate,
and shortcuts. From this standpoint, architects and programmers will find
appropriate messages, but they may find following the examples challenging.
Project managers may also find some compelling thoughts, though the pro-
gramming content may be slightly advanced. For both of these communities,
antipattern summaries are listed at the end of each chapter in a concise tem-
plate based on those in the original AntiPatterns text.

1.6 Looking ahead

Bitter Java is about programming war stories. Books like The Mythical Man
Month, by Fredrick P. Brooks, have left an indelible impression in the minds of
a whole generation of programmers. We aim to do for Java programmers what
Brooks did for project managers. Bitter Java is about the quest for imperfec-
tion. We are not looking for isolated examples. We are looking for problems in
process and culture, demonstrated by technically flawed designs. We are set-
ting out to find the repeated mistakes that have bite. We are recording some of
the useful mythology of the Java programmer.

22 CHAPTER 1

Bitter tales

 In the next chapter, we will focus on the current landscape of the industry
and why it is so ripe for antipatterns. Next, we will look at basic server-side
designs and some antipatterns that plague them. Then, we will focus on com-
mon problems with resources and communication. Finally, we will look at
advanced antipatterns related to enterprise Java deployments. So, settle down
with this cup of bitter Java. We hope that when you’re done, your next cup
will be a smoother, more satisfying brew.

