
303

C H A P T E R 1 9

Using ASP to generate
dynamic WAP content
19.1 Introduction 303
19.2 Creating a dynamic WAP

application 304
19.3 Testing using WAP emulators 305
19.4 Sending and retrieving data 309
19.5 Retrieving values sent to the

server 311
19.6 Session support in WAP

devices 312

19.7 Using environment variables 313
19.8 Detecting web and WAP

browsers 314
19.9 Detecting WAP devices 317
19.10Testing using a real handset 319
19.11Size constraints of WAP

devices 320
19.12Controlling page caching 320
19.13Summary 324

19.1 INTRODUCTION

In chapter 17, “Introduction to Microsoft Active Server Pages,” you learned how to
use ASP to create dynamic web applications, and in chapter 18, “Database Connec-
tivity with ADO,” you learned how to simplify back-end database access using some
of the current database technologies, ADO and OLE DB.

In this chapter, you will use your new skills to create a dynamic WAP application.
This chapter will also compare the development processes used to create web and
WAP applications.

304 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

19.2 CREATING A DYNAMIC WAP APPLICATION

Let’s now develop our first WAP application using ASP.

Firstwap.asp
<% Response.ContentType = "text/vnd.wap.wml" %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="Card 1">
<p>

It is now <% =time %> and this is my first dynamic WAP application!
</p>

</card>
</wml>

Code comments

Saves our file with a .asp extension. Since this is a dynamic WAP application, we cre-
ate an ASP document so that the web server can process the scripts in the document.

All .wml files are associated with the WML MIME type (text/vnd.wap.wml) so that
the WAP browser can display.

Uses the time() function to return the current time.

This is accomplished by the Response.ContentType property:

<% Response.ContentType = "text/vnd.wap.wml" %>

The only thing that is truly dynamic in this application is the line:

It is now <% =time %> and this is my first dynamic WAP application!

Here, we are calling the time() function in VBScript, then inserting the value into
the WML <p> element.

Where is the development environment for devel-
oping WAP applications? If you are a Visual Basic or
Visual C++ developer, you are accustomed to seeing the
helpful integrated development environment (IDE).
There aren’t many development environments to use for
developing WAP applications (though the Nokia WAP
Toolkit and the Ericsson WAP IDE provide something
similar to an IDE). Our recommendation is to use your
favorite text editor to key in the codes.

Depending on the time you run this application,
you will see something like figure 19.1.

�
�

�

�

�

�

Figure 19.1 Dynamic

WAP application

TESTING USING WAP EMULATORS 305

19.3 TESTING USING WAP EMULATORS

How to use WAP emulators is the most frequently asked question on many of the
WML mailing lists. Because we have received numerous emails asking how to run a
WAP application using one or more emulators, we are going to go through the pro-
cess of creating a dynamic application, from editing to success—where you can sit
back and enjoy watching your application as it runs beautifully in the emulator.
Chapter 2, “WAP Application Development Platforms,” covers some of the emulators
that you can use for your development purposes.

You’ll need to complete four steps before you get to the success stage:

• Create and edit an ASP document

• Save the ASP document to the appropriate directory

• Install and run the emulator

• View your application from the perspective of multiple emulated WAP devices

19.3.1 Step 1: editing an ASP document

You may be accustomed to your favorite ASP development tool, such as Microsoft
Visual Interdev 6.0. But my favorite is still Notepad (figure 19.2). In any case, edit
your ASP document in a text editor (any text editor capable of saving your file in
plain text format will do; do not use a word processor such as Microsoft Word to type
in your codes) and save it to your web-publishing directory (see step 2).

19.3.2 Step 2: saving to the web-publishing directory

To execute ASP scripts, you need a web server (see appendix D). For my development
use, I like Microsoft Internet Information Server 4.0. My default web publishing
(home) directory is c:\inetpub\manningWap\. For the examples in this chapter, I will
save all my .wml and .asp documents in my home directory. You may configure your

Figure 19.2 Editing a WAP application in Notepad

306 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

home directory to some other physical directory. In this case do save your files in that
particular directory.

Be sure that you have selected the Script permissions (figure 19.3) for this direc-
tory; otherwise, the web server will not be able to process the ASP document.

If you are not sure how to set this permission, refer to your web server documentation.

Figure 19.3

Selecting the Script

permissions

TESTING USING WAP EMULATORS 307

19.3.3 Step 3: using the emulators

Once your ASP document is saved to the proper
directory, test it using the emulators. There are
quite a number of emulators available; for this
section, I am going to use Phone.com’s
UP.Simulator to test our application.

After installing the emulator, launch it and
open your ASP document. You should see some-
thing like figure 19.4.

To view a WML deck or ASP document in
the emulator, enter the URL in the Go textbox
(figure 19.5).

It’s so easy, isn’t it? You are on your way to
professional WAP development.

19.3.4 Step 4: testing the look and feel

Although this step is optional, I strongly suggest performing it if you are developing
applications to be deployed on a variety of devices. One of the nice things about emu-
lators is that they allow you to choose from numerous emulated devices for testing. At
the moment, Phone.com provides different browser “skins” to emulate the behavior
of different devices. It is good practice to run your application on different devices to
see how the look and feel differs.

Figure 19.6 shows how our application looks in various emulated devices:

Figure 19.4 Using an emulator

Figure 19.5 The Go textbox

308 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

Ericsson

Motorola

Motorola IDEN

Mitsubishi

Figure 19.6 Same application, different emulators

SENDING AND RETRIEVING DATA 309

You might not notice much difference among the devices for this application.
However, if you have a much more complex application, the differences become
very noticeable.

Other emulators that you can try are:

• Nokia WAP Toolkit 2.0

• Ericsson WAP IDE 2.1

• Motorola Mobile ADK (MADK)

For more information about downloading and installing emulators, see chapter 2.

19.4 SENDING AND RETRIEVING DATA

A useful WAP application requires participation and input from the user. You may
need the user to supply his logon password, or you may need the user to key in a
quantity for an item that he is buying using a WAP handphone. In this case, your
WAP application must be able to retrieve the data sent from the WAP browser and
process it.

19.4.1 Passing values from client to server

Chapter 5 explained entering information using the WML <input> element. How-
ever, information that is entered must be sent to the web server for processing before
the application can be considered useful.

This WML code allows the user to enter his loginID and password:

Login.wml
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="card1" title="Card 1">

<p>
LoginID: <input type="text" name="Login" maxlength="8"/>
Password: <input type="password" name="Password" maxlength="8"/>
<do type="accept" label="Login!">

<go method="post" href="Authenticate.asp">
<postfield name="Login" value="$Login" />
<postfield name="Password" value="$Password" />

</go>
</do>

</p>
</card>
</wml>

Code comments

Maps a function to a soft key using the <do> element.

Indicates that the information be sent to the server using the POST method.

Uses the
<input>

elements for
text input

�
�

�

�

�

310 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

Once the loginID and password are entered, use the WML <postfield> element to
send the information to the ASP document named Authenticate.asp (figure 19.7).

19.4.2 Using the POST method

The POST method sends data to the server in a separate transmission. The client first
contacts the document listed in the href attribute of the WML <go> element, in
this case, authenticate.asp, and then it sends the data across. To see what goes
on behind the scenes when this transmission occurs, you can use the UP.Simulator to
test the application and examine the results in the Phone Information window
(figure 19.8).

From the Phone Information window, you can see that the client first requests
the document Authenticate.asp and then sends the data, Login=lwm&Password=
secret, in a separate transmission.

19.4.3 Using the GET method

Let’s modify this application so that it uses the GET method to send data:

<go method="get" href="Authenticate.asp">

�

Figure 19.7

Entering the loginID

and password

RETRIEVING VALUES SENT TO THE SERVER 311

Notice that this time (figure 19.9), the data to be sent is appended to the URL:

HTTP GET Request:
HTTP://LOCALHOST/Authenticate.asp?Login=lwm&Password=secret

ERROR 404 Do not worry about the HTTP Error: 404 message in figure 19.9. This
error occurs because the Authenticate.asp document could not be found
in the web-publishing directory.

19.4.4 A common pitfall using the GET method

HTML programmers who are familiar with the GET method often neglect to encode
special characters as in:

Action="Authenticate.asp?Name=lwm&Password=secret"

You might be tempted to do the same in WML:

<go href="Authenticate.asp?Name=lwm&Password=secret">

If you do, your code will fail. In WAP, the ampersand (&) must be encoded with the
special code: &

So your code must be modified as follows:

<go href="Authenticate.asp?Name=lwm&Password=secret">

19.5 RETRIEVING VALUES SENT TO THE SERVER

Depending on the method you use to send data to the server, you can either use
the Request.Form or the Request.QueryString collection to retrieve the values
from the server.

Figure 19.9 The Phone Information window using the POST method

312 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

19.5.1 Using the Request.Form collection

If you use the POST method to send data, use the Request.Form collection to retrieve
the values:

<%

Dim Name, Password
Name =Request.Form("Name")

Password = Request.Form("Password")
...

%>

If you use the GET method, use the Request.QueryString collection:

<%

Dim Name, Password
Name =Request.QueryString("Name")

Password = Request.QueryString ("Password")
...

%>

POST ERROR Before you deploy your application, test it on a real device to ensure that
the handset supports the send method that you are using.

19.6 SESSION SUPPORT IN WAP DEVICES

If you are an ASP web developer, you are familiar with the Session object discussed in
chapter 17. The Session object allows the web server to maintain state between itself
and the client. As we also saw in chapter 17, the Session object requires cookie support.

Unfortunately, the current generation of WAP phones does not support cookies.
Fortunately, there are simple ways to test whether a WAP device supports cookies.

The first application attempts to set a cookie on the WAP device. The second then
attempts to retrieve the cookie value.

<% Response.ContentType = "text/vnd.wap.wml"

Response.Buffer = true
%>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="Cookie">
<p>

Setting a cookie...
<% Response.Cookies("Test")= "123" %>

Check Cookie Support
</p>

</card>
</wml>

If the cookie value can be retrieved, the WAP device supports cookies (figure 19.10).

Sets the web server
buffering to true

Sets a cookie
using the
Cookies
collection of the
Response object

Sets an
anchor to
link to
another ASP
document

USING ENVIRONMENT VARIABLES 313

<% Response.ContentType = "text/vnd.wap.wml" %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="Cookie">
<p>

<%
if Request.Cookies("Test") = "123" then

Response.Write "Cookies Supported!"
Else

Response.Write "No Cookie-Support!"
end if

%>
</p>

</card>
</wml>

WAP GATEWAYS Before you lament the lack of cookie support on current WAP devices, fret
not! Some of the WAP gateways actually do the job of supporting cookies
for the devices. The WAPlite gateway, discussed in more detail in
chapter 27, supports session and persistent cookies. The rule-of-thumb for
developing WAP applications at the moment is to forget about cookies!

Emulators often support cookies, so don’t be fooled if your application using the Ses-
sion object seems to work well on an emulator. Test it on a real device!

Once you have verified cookies support, you can use the Session object as dis-
cussed in chapter 17.

19.7 USING ENVIRONMENT VARIABLES

When developing applications for your services, it is essential that you make an
attempt to detect the correct browser type. For example, if you try to access a WAP
application from a web browser, you may see something like figure 19.11.

It would be far better if your application could first detect that the user is using
a web browser, then redirect him to a web page that explains the error. Using specific
environment variables, you can add this functionality to your WAP application.

If the Cookies
collection “Test”
contains the value
“123”, cookie is
supported, else
cookie not
supported

Figure 19.10

Checking for cookie support

314 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

19.8 DETECTING WEB AND WAP BROWSERS

A very simple detection method is to check the value of either HTTP_USER_AGENT
or HTTP_ACCEPT.

Getting the value of HTTP_USER_AGENT

This code detects whether the user is using a WAP or a web browser based on the
value of the HTTP_USER_AGENT environment variable.

<% Response.ContentType = "text/vnd.wap.wml"
Response.Buffer = True %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="Detecting...">
<p>

<% if Instr(Request.ServerVariables("HTTP_USER_AGENT"), "Moz") then
Response.Redirect "nonWML.html"

Else
Response.Write "Welcome to the Wireless World!"

end if
%>

</p>
</card>

</wml>

Figure 19.11

Accessing a WAP application

from a web browser

If the HTTP_USER_AGENT
variable contains the word

“Moz”, redirect him to
nonWML.html, else write

a welcome message

DETECTING WEB AND WAP BROWSERS 315

If the user is using a WAP browser (in this case, an emula-
tor), a card like the one illustrated in figure 19.12 appears.

If the user is using a web browser, he will be redi-
rected to another page as illustrated in figure 19.13:

Getting the value of HTTP_ACCEPT

Another method of differentiating a WAP browser from a web browser is to use the
environment variable HTTP_ACCEPT.

This is the call via Detect.asp:

<% Response.ContentType = "text/vnd.wap.wml"
Response.Buffer = True %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="Detecting...">
<p>

<% if Instr(Request.ServerVariables("HTTP_USER_AGENT"), "Moz") then
Response.Redirect "HTMLaccept.asp"

else
Response.Write "Welcome to the Wireless World!"

Response.Write "The browser can accept : " &
Request.ServerVariables("HTTP_ACCEPT")

end if
%>

</p>
</card>

</wml>

This is the call via HTMLaccept.asp:

<HTML>
<TITLE>HTML Accept</TITLE>

<BODY>

Figure 19.12 Using a

WAP browser

Figure 19.13

Redirecting the HTML user

316 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

<% Response.Write "The browser can accept : " &

Request.ServerVariables("HTTP_ACCEPT") %>
</BODY>

</HTML>

The Phone.com WAP browser accepts documents of the
MIME types in table 19.1. (Note that Ericsson phones in
the U.S. use the Phone.com’s browser shown in
figure 19.14.)

Table 19.1 Phone.com WAP browser MIME types

MIME type Description

application/x-hdmlc HDML compiled

application/x-up-alert Alert for the Phone.com browser (sent to
phone’s alert inbox)

application/x-up-cacheop Clears a Phone.com browser’s cache

application/x-up-device Defines the handset requesting information

application/x-up-digestentry Obsolete, unsupported type

application/vnd.wap.wml WML compiled

text/x-wap.wml WML decks

text/vnd.wap.wml WML decks

application/vnd.wap.wmlscript WMLScript compiled

text/vnd.wap.wmlscript WMLScript uncompiled

application/vnd.uplanet.channel Obsolete, unsupported type

application/vnd.uplanet.list Obsolete, unsupported type

text/x-hdml HDML files uncompiled

text/plain ASCII text

text/html HTML files

image/vnd.wap.wbmp Image in WBMP format

image/bmp Image in BMP format (dependent on WAP
devices, not supported by all)

application/remote-printing text/x-hdml;version=3.1 HDML format version 3.1

text/x-hdml;version=3.0 HDML format version 3.0

text/x-hdml;version=2.0 HDML format version 2.0

Figure 19.14 The

Phone.com browser

DETECTING WAP DEVICES 317

The IE5 browser (figure 19.15) accepts the MIME types listed in table 19.2.

Looking for the string "text/vnd.wap.wml" in the HTTP_ACCEPT string can
help you determine if your user is using a WAP browser.

The HTTP_ACCEPT string also indicates whether a WAP device provides image
support (image/vnd.wap.wbmp).

In general, it is safer to check the HTTP_ACCEPT string as the Microsoft Mobile
Explorer is reputed to return a string containing the word “Mozilla” in the
HTTP_USER_AGENT string!

19.9 DETECTING WAP DEVICES

While identifying a WAP browser from a web browser is useful, the real challenge for
the WAP developer is detecting the various makes of handsets and devices used to
access your WML application.

While WML is a specification defined by the WAP forum, every WAP device ren-
ders WML differently. This can produce a different look and feel in your application.
As we noted in chapter 15, an application that is designed to work on one device may
behave differently on another. To make things worse, different devices have different
memory constraints (we will discuss this in a later section).

So how do we effectively identify the WAP browser in use?

Table 19.2 IE5 browser MIME types

MIME type Description

Image/gif Image in GIF format

Image/x-xbitmap Image in Xbitmap format

Image/jpeg Image in JPEG format

Image/pjpeg Image in PJPEG format

Application/msword Microsoft Word Application

Application/vnd.ms-excel Microsoft Excel Application

Application/vnd.ms-powerpoint Microsoft PowerPoint Application

/ All types accepted

Figure 19.15

The IE5 browser

318 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

Fortunately, every WAP device has a unique identifier string and this string can
be retrieved using the environment variable HTTP_USER_AGENT.

This application returns the user agent string of the device being used:

<% Response.ContentType = "text/vnd.wap.wml" %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="User Agent">
<p>

<% = Request.ServerVariables("HTTP_USER_AGENT") %>
</p>

</card>
</wml>

Figure 19.16 shows the user agent string for three devices:

The emulated devices illustrated utilize Phone.com’s WAP browser. Note that
each device has a unique user agent string. Remember that certain phones may utilize
different browsers in different countries (the Ericsson phone in figure 19.16 is using
Phone.com’s browser).

Figure 19.17 shows emulators from Ericsson and Nokia. They are currently
showing the user agent string:

Identifying the browser is simply a matter of looking for the keyword in the
HTTP_USER_AGENT string:

UAString = Request.ServerVariables("HTTP_USER_AGENT")

if Instr(UAString, "Nokia") then

Uses the
ServerVariables
collection of the
Request object to
access the value of
HTTP_USER_AGENT

Figure 19.16 User agent string on three emulations

Figure 19.17

Emulators showing the

user agent string

Keyword is “Nokia”
for Nokia devices

TESTING USING A REAL HANDSET 319

Response.Redirect "/Nokia/index.wml"

elseif Instr(UAString, "UP") then
Response.Redirect "/UP/index.wml"

else

Before you deploy your application, it is imperative to check the exact user agent
strings for the various devices.

19.10 TESTING USING A REAL HANDSET

While emulators provide a realistic feel of how users will experience your application,
nothing beats the real device.

Once you have developed your application, the best thing to do next is test your
application on as many emulators as possible. This is important if your target audience
is a large group that uses different devices. The vendor-provided emulators are essen-
tial for estimating the look and feel of your application in an actual device.

Once you have tested your application using one or more emulators, the next
level of testing should involve devices that will most likely be used to run your appli-
cation. If you are creating an in-house application (e.g., only for internal staff use), it
is less tricky since the WAP device used can be determined by company policies. If you
are developing a service for a broad group of users, it is worthwhile to get as many WAP
devices as possible for testing purposes.

Testing on a real handset can uncover numerous problems:

Keyword is “UP” for devices
using Phone.com’s browser

Problems Description

Caching If your application explicitly disables caching on the WAP device, it is
important to test this functionality on a real handset, as emulators may
not function correctly.

Cookie support The most notorious culprits in breaking your application are cookies or
sessions. Most emulators support cookies, but many actual handsets
do not. Remember that when testing for cookie support, the WAP gate-
way plays a part. For more information about WAP gateways, see chap-
ter 27.

GET and POST methods Emulators have no problem sending your data to the web server using
either the GET or POST method. But when it comes to real handsets,
some devices may not function correctly. You will only know if there is
a problem by testing your application on a real handset.

Look and feel For platforms that do not have an emulator such as the Siemens
phones (though it uses the Phone.com’s browser), testing on the real
device is the only way to ascertain the look and feel of your application.

Maximum size of WAP
binary

Testing your application on a real handset may help you to uncover the
maximum size limit of the WAP device.

Usability The most overlooked aspect of creating WAP applications. On the emu-
lator, it is easy to enter characters into the phone. Try that on a real
handset and you will appreciate this point!

320 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

19.11 SIZE CONSTRAINTS OF WAP DEVICES

As you recall, the basic unit of information transferred from the origin server to the
WAP device is known as a deck. To minimize the amount of data sent to the WAP
device, a deck is compiled into bytecode format known as WAP binary.

Very often, beginning WAP developers tend to overlook the limitations of WAP
devices. Because WAP devices have limited memory, the WAP binary that is sent to the
device must not exceed its memory capacity. Different devices have different memory
constraints. Table 19.3 describes the limitations of some popular WAP devices.

Failure to adhere to the memory constraint imposed by the device will cause the
deck to be incorrectly loaded on the device.

In general, it is useful for developers to detect the kind of devices that the user is
using and, based on that information, send different versions of a deck to suit the lim-
itations of the devices.

19.12 CONTROLLING PAGE CACHING

When you load a web page using a web browser, the page is saved to your hard disk so
that the next time you request the same page, it is accessed from your hard disk,
instead of from the origin server. This is known as browser caching.

There is another caching method known as proxy caching. Using this method, a
dedicated server acts as a go-between from the web surfer to the origin server. The ded-
icated server is known as a proxy server.

An example of proxy caching is when a proxy server caches web pages for an orga-
nization. When a user requests a page, it is saved to the proxy server’s hard disk. When
another user from the same organization requests the same page, the proxy server sat-
isfies the request (figure 19.18).

Table 19.3 Limitations of WAP devices

WAP browser Maximum WAP binary size

UP.Browser 3.2 1492 bytes

UP.Browser 4.x 2048 bytes

Ericsson R320 Approximately 3000 bytes

Ericsson R380 Approximately 3500 bytes

Ericsson MC218 More than 8000 bytes

Nokia 7110 1397 bytes

CONTROLLING PAGE CACHING 321

As you remember from chapter 1, a WAP device communicates with a WAP gate-
way. Thus in the WAP caching model, there are three levels of caching (figure 19.19):

• WAP device caching

• WAP gateway caching

• Proxy server caching

The motivation for caching is to reduce the time required to load a document
from the origin server. Once a document has been requested and cached, it can be
reused. However, if you cache time-sensitive pages, such as stock quotes and weather
reports, you are defeating the purpose of caching.

One notable difference between the web model and the WAP model is that WAP
is commonly used for dynamic information retrieval. WAP is never intended to replace
the web browser as a device for “surfing” the web. Due to the limited size and

Web
browser

Internet
Web

browser

Web
browser

Proxy
server

Web server
(Origin server)

Figure 19.18 Caching at the web browser level and at the proxy server level

WAP device

WAP device

WAP device

Web server
(Origin server)

Wireless
network

Internet
WAP gateway

Proxy server

Figure 19.19 Caching at the WAP device level, the WAP gateway level, and proxy server level

322 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

capability of the WAP device, it is most commonly used to retrieve dynamic data, such
as stock information. As such, the information content is highly volatile and time-
sensitive. Caching WAP pages in this case makes no sense.

While caching WAP pages has its disadvantages, there are merits. For example,
given the limited bandwidth of a WAP device, it would be good to cache frequently
accessed static pages. Such pages might include the welcome screen of a site, the login
screen for a secure site, and other nonchanging screens.

19.12.1 Disabling caching

To disable caching on a WAP device, use the ASP Response.Expires property.
This WML deck is not cached when it is loaded:

<% Response.ContentType = "text/vnd.wap.wml"
Response.Expires = -1 %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="card1" title="NoCache">

<p>
This deck is not cached.
Time is now <% =time %>

</p>
</card>
</wml>

Figure 19.20 shows how the application appears using an
emulated WAP device.

To convince yourself that the deck is not cached, load
it in your WAP emulator and load the same page again (do
not use the reload/refresh function in your emulator).

PECULIARITY On the Phone.com browser, if you load the
deck and then click the Return key in the Go
textbox again, the same deck is loaded from
the cache.

To work around this problem, load the
deck in figure 19.21 (cache.asp) and then
load another independent deck. After that,
load the first deck again. This time around,
the first deck is fetched again from the ori-
gin server.

The Response.Expires property sets the time when the deck expires in the
WAP device’s cache. If you want the deck to expire five minutes after it has been
loaded, you can set:

Response.Expires = 5

Causes the deck
to expire using
the Expires
property of the
Response object

Figure 19.20 Caching

is disabled

Figure 19.21 Loading cache.asp

CONTROLLING PAGE CACHING 323

A commonly used method is to set

Response.Expires = 0

However, due to time differences between the server and the client, sometimes this
method may not work correctly. To be sure that the deck is not cached, that is, that it
expires immediately, set the property to a value of –1.

Be aware that cache control is at the deck level, rather than the card level. Con-
sider the following example:

<% Response.ContentType = "text/vnd.wap.wml"
Response.Expires = -1 %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="NoCache">
<p>

Time in card 1 is now <% =time %>
<do type="accept" label="Next">

<go href="#card2"/>
</do>

</p>
</card>

<card id="card2" title="NoCache">
<p>

Time in card 2 is now <% =time %>
</p>

</card>
</wml>

Although we used the Response.Expires property to disable caching, the caching
control applies to the deck, not individual cards. This can be seen by the fact that
both cards will display the same time (figure 19.22). The time that is inserted is the
time the ASP parser interprets the script.

META ELEMENT Caching can also be implemented using the <meta> element. For exam-
ples on caching using the <meta> element, refer to chapter 3.

19.12.2 Caching on WAP gateways, proxy servers

To control caching on a proxy server, use the Response.CacheControl property.

Figure 19.22

Two cards, same time

324 CHAPTER 19 GENERATING DYNAMIC WAP CONTENT

To prevent proxy servers from caching:

<% Response.ContentType = "text/vnd.wap.wml"
Response.CacheControl = "Private" %>

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="NoCache">
<p>

This deck is not cached by proxy servers.
</p>

</card>
</wml>

To enable proxy server caching, set the Response.CacheControl property to
Public.

Response.CacheControl = "Public"

Controlling caching on WAP gateways is the same as for proxy servers. The WAP Cach-
ing Model specification states that a WAP gateway must “faithfully implement the role
of an HTTP/1.1 proxy with respect to caching and cache header transmission.”

19.13 SUMMARY

This chapter has touched on creating dynamic WAP applications using ASP. While
developing WAP applications is similar to developing web applications, there are a
number of points to watch. Detecting the WAP device type and caching are two
important topics for any WAP developers.

In part VII of this book, we will look at using Java servlets to develop dynamic
WAP applications.

Indicates that the ASP document
should not be cached

