
SAMPLE CHAPTER

iBATIS in Action
by Clinton Begin
Brandon Goodin

Larry Meadors
Chapter 1

Copyright 2007 Manning Publications

iii

PART I INTRODUCTION .. 1

1 ■ The iBATIS philosophy 3

2 ■ What is iBATIS? 33

PART II IBATIS BASICS .. 55

3 ■ Installing and configuring iBATIS 57

4 ■ Working with mapped statements 80

5 ■ Executing nonquery statements 105

6 ■ Using advanced query techniques 122

7 ■ Transactions 145

8 ■ Using Dynamic SQL 163

brief contents

iv BRIEF CONTENTS

PART III IBATIS IN THE REAL WORLD 193

9 ■ Improving performance with caching 195

 10 ■ iBATIS data access objects 217

 11 ■ Doing more with DAO 242

 12 ■ Extending iBATIS 267

PART IV IBATIS RECIPES ... 285

 13 ■ iBATIS best practices 287

 14 ■ Putting it all together 303

appendix ■ iBATIS.NET Quick Start 329

3

The iBATIS philosophy

This chapter covers
■ iBATIS history
■ Understanding iBATIS
■ Database types

4 CHAPTER 1

The iBATIS philosophy

Structured Query Language (SQL) has been around for a long time. It’s been
over 35 years since Edgar F. Codd first suggested the idea that data could be nor-
malized into sets of related tables. Since then, corporate IT has invested billions
of dollars into relational database management systems (RDBMSs). Few software
technologies can claim to have stood the test of time as well as the relational data-
base and SQL. Indeed, after all this time, there is still a great deal of momentum
behind relational technology and it is a cornerstone offering of the largest soft-
ware companies in the world. All indicators suggest that SQL will be around for
another 30 years.

 iBATIS is based on the idea that there is value in relational databases and SQL,
and that it is a good idea to embrace the industrywide investment in SQL. We have
experiences whereby the database and even the SQL itself have outlived the appli-
cation source code, and even multiple versions of the source code. In some cases
we have seen that an application was rewritten in a different language, but the
SQL and database remained largely unchanged.

 It is for such reasons that iBATIS does not attempt to hide SQL or avoid SQL. It
is a persistence layer framework that instead embraces SQL by making it easier to
work with and easier to integrate into modern object-oriented software. These
days, there are rumors that databases and SQL threaten our object models, but
that does not have to be the case. iBATIS can help to ensure that it is not.

 In this chapter, we will look at the history and rationale for iBATIS, and discuss
the forces that influenced its creation.

1.1 A hybrid solution: combining the best of the best

In the modern world, hybrid solutions can be found everywhere. Taking two seem-
ingly opposing ideas and merging them in the middle has proven to be an effective
means to filling a niche, which in some cases has resulted in the creation of entire
industries. This is certainly true of the automotive industry, as most of the innova-
tion in vehicle designs has come from mixing various ideas. Mix a car with a cargo
van and you have the ultimate family minivan. Marry a truck with an all-terrain
vehicle, and you have an urban status symbol known as a sport utility vehicle. Cross
a hotrod and a station wagon and you have a family car that Dad isn’t embarrassed
to drive. Set a gasoline engine side by side with an electric motor, and you have the
answer for a great deal of the North American pollution problem.

 Hybrid solutions have proven effective in the IT industry too. iBATIS is one
such hybrid solution for the persistence layer of your application. Over time, vari-
ous methods have been developed to enable applications to execute SQL against a

A hybrid solution: combining the best of the best 5

database. iBATIS is a unique solution that borrows concepts from several other
approaches. Let’s start by taking a quick look at these approaches.

1.1.1 Exploring the roots of iBATIS

iBATIS takes the best attributes and ideas from the most popular means of access-
ing a relational database, and finds synergy among them. Figure 1.1 shows how
the iBATIS framework takes what was learned through years of development using
different approaches to database integration, and combines the best of those les-
sons to create a hybrid solution.

 The following sections discuss these various approaches to interacting with the
database and describe the parts of each that iBATIS leverages.

Structured Query Language
At the heart of iBATIS is SQL. By definition, all relational databases support SQL as
the primary means of interacting with the database. SQL is a simple, nonproce-
dural language for working with the database, and is really two languages in one.

 The first is Data Definition Language (DDL), which includes statements like
CREATE, DROP, and ALTER. These statements are used to define the structure and
design of the database, including the tables, columns, indexes, constraints, proce-
dures, and foreign key relationships. DDL is not something that iBATIS supports
directly. Although many people have successfully executed DDL using iBATIS, DDL
is usually owned and controlled by a database administration group and is often
beyond the reach of developers.

iBATIS
Stored

Procedures

Dynamic

SQL

Inline

SQL

Object

Relational

Mapping

Figure 1.1
Some of the ideas that iBATIS
pulls together to simplify the
development process

6 CHAPTER 1

The iBATIS philosophy

The second part of SQL is the Data Manipulation Language (DML). It includes
statements such as SELECT, INSERT, UPDATE, and DELETE. DML is used to manipulate
the data directly. Originally SQL was designed to be a language simple enough for
end users to use. It was designed so that there should be no need for a rich user
interface or even an application at all. Of course, this was back in the day of
green-screen terminals, a time when we had more hope for our end users!

 These days, databases are much too complex to allow SQL to be run directly
against the database by end users. Can you imagine handing a bunch of SQL state-
ments to your accounting department as if to say, “Here you go, you’ll find the
information you’re looking for in the BSHEET table.” Indeed.

 SQL alone is no longer an effective interface for end users, but it is an
extremely powerful tool for developers. SQL is the only complete means of access-
ing the database; everything else is a subset of the complete set of capabilities of
SQL. For this reason, iBATIS fully embraces SQL as the primary means of accessing
the relational database. At the same time, iBATIS provides many of the benefits of
the other approaches discussed in this chapter, including stored procedures and
object/relational mapping tools.

Old-school stored procedures
Stored procedures may be the oldest means of application programming with a
relational database. Many legacy applications used what is now known as a two-tier
design. A two-tier design involved a rich client interface that directly called stored
procedures in the database. The stored procedures would contain the SQL that was
to be run against the database. In addition to the SQL, the stored procedures could
(and often would) contain business logic. Unlike SQL, these stored procedure lan-
guages were procedural and had flow control such as conditionals and iteration.
Indeed, one could write an entire application using nothing but stored proce-
dures. Many software vendors developed rich client tools, such as Oracle Forms,
PowerBuilder, and Visual Basic, for developing two-tier database applications.

 The problems with two-tier applications were primarily performance and scal-
ability. Although databases are extremely powerful machines, they aren’t neces-
sarily the best choice for dealing with hundreds, thousands, or possibly millions of
users. With modern web applications, these scalability requirements are not
uncommon. Limitations, including concurrent licenses, hardware resources, and
even network sockets, would prevent such architecture from succeeding on a mas-
sive scale. Furthermore, deployment of two-tier applications was a nightmare. In
addition to the usual rich client deployment issues, complex runtime database
engines often had to be deployed to the client machine as well.

A hybrid solution: combining the best of the best 7

Modern stored procedures
In some circles stored procedures are still considered best practice for three-tier
and N-tier applications, such as web applications. Stored procedures are now
treated more like remote procedure calls from the middle tier, and many of the
performance constraints are solved by pooling connections and managing data-
base resources. Stored procedures are still a valid design choice for implementing
the entire data access layer in a modern object-oriented application. Stored proce-
dures have the benefit of performance on their side, as they can often manipulate
data in the database faster than any other solution. However, there are other con-
cerns beyond simply performance.

 Putting business logic in stored procedures is widely accepted as being a bad
practice. The primary reason is that stored procedures are more difficult to
develop in line with modern application architectures. They are harder to write,
test, and deploy. To make things worse, databases are often owned by other teams
and are protected by tight change controls. They may not be able to change as fast
as they need to to keep up with modern software development methodologies.
Furthermore, stored procedures are more limited in their capability to imple-
ment the business logic completely. If the business logic involves other systems,
resources, or user interfaces, the stored procedure will not likely be able to han-
dle all of the logic. Modern applications are very complex and require a more
generic language than a stored procedure that is optimized to manipulate data.
To deal with this, some vendors are embedding more powerful languages like Java
in their database engines to allow for more robust stored procedures. This really
doesn’t improve the situation at all. It only serves to further confuse the bound-
aries of the application and the database and puts a new burden on the database
administrators: now they have to worry about Java and C# in their database. It’s
simply the wrong tool for the job.

 A common theme in software development is overcorrection. When one problem
is found, the first solution attempted is often the exact opposite approach. Instead
of solving the problem, the result is an equal number of completely different
problems. This brings us to the discussion of inline SQL.

Inline SQL
An approach to dealing with the limitations of stored procedures was to embed
SQL into more generic languages. Instead of moving the logic into the database,
the SQL was moved from the database to the application code. This allowed SQL
statements to interact with the language directly. In a sense, SQL became a feature

8 CHAPTER 1

The iBATIS philosophy

of the language. This has been done with a number of languages, including
COBOL, C, and even Java. The following is an example of SQLJ in Java:

 String name;
Date hiredate;

#sql {
 SELECT emp_name, hire_date
 INTO :name, :hiredate
 FROM employee
 WHERE emp_num = 28959

 };

Inline SQL is quite elegant in that it integrates tightly with the language. Native
language variables can be passed directly to the SQL as parameters, and results
can be selected directly into similar variables. In a sense, the SQL becomes a fea-
ture of the language.

 Unfortunately, inline SQL is not widely adopted and has some significant issues
keeping it from gaining any ground. First, SQL is not a standard. There are many
extensions to SQL and each only works with one particular database. This frag-
mentation of the SQL language makes it difficult to implement an inline SQL
parser that is both complete and portable across database platforms. The second
problem with inline SQL is that it is often not implemented as a true language fea-
ture. Instead, a precompiler is used to first translate the inline SQL into proper
code for the given language. This creates problems for tools like integrated devel-
opment environments (IDEs) that might have to interpret the code to enable
advanced features like syntax highlighting and code completion. Code that con-
tains inline SQL may not even be able to compile without the precompiler, a
dependency that creates concerns around the future maintainability of the code.

 One solution to the pains of inline SQL is to remove the SQL from the lan-
guage level, and instead represent it as a data structure (i.e., a string) in the appli-
cation. This approach is commonly known as Dynamic SQL.

Dynamic SQL
Dynamic SQL deals with some of the problems of inline SQL by avoiding the pre-
compiler. Instead, SQL is represented as a string type that can be manipulated just
like any other character data in a modern language. Because the SQL is repre-
sented as a string type, it cannot interact with the language directly like inline SQL
can. Therefore, Dynamic SQL implementations require a robust API for setting
SQL parameters and retrieving the resulting data.

A hybrid solution: combining the best of the best 9

 Dynamic SQL has the advantage of flexibility. The SQL can be manipulated at
runtime based on different parameters or dynamic application functions. For exam-
ple, a query-by-example web form might allow the user to select the fields to search
upon and what data to search for. This would require a dynamic change to the WHERE
clause of the SQL statement, which can be easily done with Dynamic SQL.

 Dynamic SQL is currently the most popular means of accessing relational data-
bases from modern languages. Most such languages include a standard API for
database access. Java developers and .NET developers will be familiar with the
standard APIs in those languages: JDBC and ADO.NET, respectively. These stan-
dard SQL APIs are generally very robust and offer a great deal of flexibility to the
developer. The following is a simple example of Dynamic SQL in Java:

 String name;
Date hiredate;
String sql = "SELECT emp_name, hire_date"
 + " FROM employee WHERE emp_num = ? ";
Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement (sql);
ps.setInt (1, 28959);
ResultSet rs = ps.executeQuery();
while (rs.next) {
name = rs.getString("emp_name");
hiredate = rs.getDate("hire_date");
}
rs.close();

 conn.close();

Without a doubt, Dynamic SQL is not as elegant as inline SQL, or even stored pro-
cedures (and we even left out the exception handling). The APIs are often com-
plex and very verbose, just like the previous example. Using these frameworks
generally results in a lot of code, which is often very repetitive. In addition, the
SQL itself is often too long to be on a single line. This means that the string has to
be broken up into multiple strings that are concatenated. Concatenation results
in unreadable SQL code that is difficult to maintain and work with.

 So if the SQL isn’t best placed in the database as a stored procedure, or in the
language as inline SQL, or in the application as a data structure, what do we do
with it? We avoid it. In modern object-oriented applications, one of the most com-
pelling solutions to interacting with a relational database is through the use of an
object/relational mapping tool.

Should be in try-catch
block

10 CHAPTER 1

The iBATIS philosophy

Object/relational mapping
Object/relational mapping (O/RM) was designed to simplify persistence of
objects by eliminating SQL from the developer’s responsibility altogether. Instead,
the SQL is generated. Some tools generate the SQL statically at build or compile
time, while others generate it dynamically at runtime. The SQL is generated based
on mappings made between application classes and relational database tables. In
addition to eliminating the SQL, the API for working with an O/RM tool is usually
a lot simpler than the typical SQL APIs. Object/relational mapping is not a new
concept and is almost as old as object-oriented programming languages. There
have been a lot of advances in recent years that make object/relational mapping a
compelling approach to persistence.

 Modern object/relational mapping tools do more than simply generate SQL.
They offer a complete persistence architecture that benefits the entire applica-
tion. Any good object/relational mapping tool will provide transaction manage-
ment. This includes simple APIs for dealing with both local and distributed
transactions. O/RM tools also usually offer multiple caching strategies for dealing
with different kinds of data to avoid needless access of the database. Another way
that an O/RM tool can reduce database hits is by lazy loading of data. Lazy loading
delays the retrieval of data until absolutely necessary, right at the point where the
data is used.

 Despite these features, object/relational mapping tools are not a silver-bullet
solution and do not work in all situations. O/RM tools are based on assumptions
and rules. The most common assumption is that the database will be properly nor-
malized. As we will discuss in section 1.4, the largest and most valuable databases
are rarely normalized perfectly. This can complicate the mappings and may
require workarounds or create inefficiencies in the design. No object relational
solution will ever be able to provide support for every feature, capability, and
design flaw of every single database available. As stated earlier, SQL is not a reli-
able standard. For this reason, every O/RM tool will always be a subset of the full
capabilities of any particular database.

 Enter the hybrid.

1.1.2 Understanding the iBATIS advantage

iBATIS is a hybrid solution. It takes the best ideas from each of these solutions and
creates synergy between them. Table 1.1 summarizes some of the ideas from each
of the approaches discussed earlier that are incorporated into iBATIS.

A hybrid solution: combining the best of the best 11

Now that you understand the roots of iBATIS, the following sections discuss two of
the most important qualities of the iBATIS persistence layer: externalization and
encapsulation of the SQL. Together, these concepts provide much of the value
and enable many of the advanced features that the framework achieves.

Externalized SQL
One of the wisdoms learned in the last decade of software development has been
to design one’s systems to correspond to different users of the subsystem. You want
to separate out the things that are dealt with by different programming roles such
as user interface design, application programming, and database administration.
Even if only a single person is playing all of these roles, it helps to have a nicely
layered design that allows you to focus on a particular part of the system. If you
embed your SQL within Java source code, it will not generally be useful to a
database administrator or perhaps a .NET developer who might be working with the
same database. Externalization separates the SQL from the application source
code, thus keeping both cleaner. Doing so ensures that the SQL is relatively
independent of any particular language or platform. Most modern development

Table 1.1 Advantages provided by iBATIS, which are the same as those provided by other solutions

Approach Similar benefit Solved problems

Stored procedures iBATIS encapsulates and externalizes
SQL such that it is outside of your
application code. It describes an API
similar to that of a stored procedure,
but the iBATIS API is object oriented.
iBATIS also fully supports calling
stored procedures directly.

Business logic is kept out of
the database, and the appli-
cation is easier to deploy and
test, and is more portable.

Inline SQL iBATIS allows SQL to be written the
way it was intended to be written.
There’s no string concatenation, “set-
ting” of parameters, or “getting” of
results.

iBATIS doesn’t impose on your
application code. No precom-
piler is needed, and you have
full access to all of the fea-
tures of SQL—not a subset.

Dynamic SQL iBATIS provides features for dynami-
cally building queries based on
parameters. No “query-builder” APIs
are required.

iBATIS doesn’t force SQL to
be written in blocks of concat-
enated strings interlaced with
application code.

Object/relational mapping iBATIS supports many of the same fea-
tures as an O/RM tool, such as lazy
loading, join fetching, caching, runtime
code generation, and inheritance.

iBATIS will work with any com-
bination of data model and
object model. There are nearly
no restrictions or rules to how
either is designed.

12 CHAPTER 1

The iBATIS philosophy

languages represent SQL as a string type, which introduces concatenation for long
SQL statements. Consider the following simple SQL statement:

 SELECT
 PRODUCTID,
 NAME,
 DESCRIPTION,
 CATEGORY
FROM PRODUCT

 WHERE CATEGORY = ?

When embedded in a String data type in a modern programming language such
as Java, this gentle SQL statement becomes a mess of multiple language character-
istics and unmanageable code:

 String s = "SELECT"
 + " PRODUCTID,"
 + " NAME,"
 + " DESCRIPTION,"
 + " CATEGORY"
 + " FROM PRODUCT"

 + " WHERE CATEGORY = ?";

Simply forgetting to lead the FROM clause with a space will cause a SQL error to
occur. You can easily imagine the trouble a complex SQL statement could cause.

 Therein lies one of the key advantages of iBATIS: the ability to write SQL the
way it was meant to be written. The following gives you a sense of what an iBATIS
mapped SQL statement looks like:

 SELECT
 PRODUCTID,
 NAME,
 DESCRIPTION,
 CATEGORY
FROM PRODUCT

 WHERE CATEGORY = #categoryId#

Notice how the SQL does not change in terms of structure or simplicity. The biggest
difference in the SQL is the format of the parameter #categoryId#, which is nor-
mally a language-specific detail. iBATIS makes it portable and more readable.

 Now that we have our SQL out of the source code and into a place where we
can work with it more naturally, we need to link it back to the software so that it
can be executed in a way that is useful.

A hybrid solution: combining the best of the best 13

Encapsulated SQL
One of the oldest concepts in computer programming is the idea of modulariza-
tion. In a procedural application, code may be separated into files, functions, and
procedures. In an object-oriented application, code is often organized into classes
and methods. Encapsulation is a form of modularization that not only organizes
the code into cohesive modules, but also hides the implementation details while
exposing only the interface to the calling code.

 This concept can be extended into our persistence layer. We can encapsulate
SQL by defining its inputs and outputs (i.e., its interface), but otherwise hide the
SQL code from the rest of the application. If you’re an object-oriented software
developer, you can think of this encapsulation in the same way that you think of
separating an interface from its implementation. If you’re a SQL developer, you
can think of this encapsulation much like you’d think of hiding a SQL statement
inside a stored procedure.

 iBATIS uses Extensible Markup Language (XML) to encapsulate SQL. XML was
chosen because of its general portability across platforms, its industrywide adop-
tion, and the fact that it’s more likely to live as long as SQL than any other lan-
guage and any file format. Using XML, iBATIS maps the inputs and outputs of the
statement. Most SQL statements have one or more parameters and produce some
sort of tabulated results. That is, results are organized into a series of columns and
rows. iBATIS allows you to easily map both parameters and results to properties of
objects. Consider the next example:

 <select id="categoryById"
 parameterClass="string" resultClass="category">
 SELECT CATEGORYID, NAME, DESCRIPTION
 FROM CATEGORY
 WHERE CATEGORYID = #categoryId#

 </select>

Notice the XML element surrounding the SQL. This is the encapsulation of the
SQL. The simple <select> element defines the name of the statement, the param-
eter input type, and the resulting output type. To an object-oriented software
developer, this is much like a method signature.

 Both simplicity and consistency are achieved through externalizing and encap-
sulating the SQL. More details of the exact usage of the API and mapping syntax
will follow in chapter 2. Before we get to that, it’s important to understand where
iBATIS fits in your application architecture.

14 CHAPTER 1

The iBATIS philosophy

1.2 Where iBATIS fits

Nearly any well-written piece of software
uses a layered design. A layered design
separates the technical responsibilities
of an application into cohesive parts
that isolate the implementation details
of a particular technology or interface.
A layered design can be achieved in any
robust (3GL/4GL) programming lan-
guage. Figure 1.2 shows a high-level
view of a typical layering strategy that is
useful for many business applications.

 You can read the arrows in figure 1.2
as “depends on” or “uses.” This layering
approach is inspired by the Law of
Demeter, which in one form states,
“Each layer should have only limited
knowledge about other layers: only lay-
ers closely related to the current layer.”

 The idea is that each layer will only
talk to the layer directly below it. This
ensures that the dependency flows only in one direction and avoids the typical
“spaghetti code” that is common of applications designed without layers.

 iBATIS is a persistence layer framework. The persistence layer sits between the
business logic layer of the application and the database. This separation is impor-
tant to ensuring that your persistence strategy is not mixed with your business
logic code, or vice versa. The benefit of this separation is that your code can be
more easily maintained, as it will allow your object model to evolve independently
of your database design.

 Although iBATIS is heavily focused on the persistence layer, it is important to
understand all of the layers of application architecture. Although you separate
your concerns so that there are minimal (or no) dependencies on any particular
implementation, it would be naive to think that you can be blind to the interaction
among these layers. Regardless of how well you design your application, there will
be indirect behavioral associations between the layers that you must be aware of.
The following sections describe the layers and describe how iBATIS relates to them.

Presentation

Business Logic

Persistence

Database

Business Object

Model

Figure 1.2 A typical layering strategy following
the Law of Demeter

Where iBATIS fits 15

1.2.1 The business object model

The business object serves as the foundation for the rest of the application. It is
the object-oriented representation of the problem domain, and therefore the
classes that make up the business object model are sometimes called domain
classes. All other layers use the business object model to represent data and per-
form certain business logic functions.

 Application designers usually start with the design of the business object
model before anything else. Even if at a very high level, the classes are identified
by deriving them from the nouns in the system. For example, in a bookstore
application, the business object model might include a class called Genre with
instances like Science Fiction, Mystery, and Children’s. It might also have a
class called Book with instances such as The Long Walk, The Firm, and Curious
George. As the application grows more advanced, classes represent more abstract
concepts, like InvoiceLineItem.

 Business object model classes may contain some logic as well, but they should
never contain any code that accesses any other layer, especially the presentation
and persistence layers. Furthermore, the business object model should never
depend on any other layer. Other layers use the business object model—it’s never
the other way around.

 A persistence layer like iBATIS will generally use the business object model for
representing data that is stored in the database. The domain classes of the busi-
ness object model will become the parameters and return values of the persis-
tence methods. It is for this reason that these classes are sometimes referred to as
data transfer objects (DTOs). Although data transfer is not their only purpose, it is a
fair name from the perspective of a persistence framework.

1.2.2 The presentation layer

The presentation layer is responsible for displaying application controls and data
to the end user. It is responsible for the layout and formatting of all information.
The most popular presentation approach in business applications today are web
front ends that use HTML and JavaScript to provide a look and feel to the user via
a web browser.

 Web applications have the advantage of cross-platform compatibility, ease of
deployment, and scalability. Amazon.com is a perfect example of a web application
that allows you to buy books online. This is a good use of a web application, as it
would be impractical to have everyone download an application just to buy books.

16 CHAPTER 1

The iBATIS philosophy

 Web applications generally break down when advanced user controls or com-
plex data manipulation are a requirement. In such cases, rich clients that use
native operating system widgets like tabs, tables, tree views, and embedded objects
are preferred. Rich clients allow for a much more powerful user interface, but are
somewhat more difficult to deploy and require more care to achieve the level of
performance and security a web application can offer. Examples of rich client
technologies include Swing in Java and WinForms in .NET.

 Recently the two concepts have been mixed into hybrid clients to attempt to
achieve the benefits of both web applications and rich clients. Very small rich cli-
ents with advanced controls can be downloaded to the users’ desktop, perhaps
transparently via the web browser. This hybrid-rich client does not contain any
business logic and it may not even have the layout of its user interface built in.
Instead, the application look and feel and the available business functionality are
configured via a web service, or a web application that uses XML as an interface
between the rich client and the server. The only disadvantage is that more soft-
ware is required to both develop and deploy such applications. For example, both
Adobe Flex and Laszlo from Laszlo Systems are based on Macromedia’s Flash
browser plug-in.

 Then of course there is the epitome of all hybrid presentation layers, Ajax.
Ajax, a term coined by Jesse James Garrett, used to be an acronym for Asynchro-
nous JavaScript and XML, until everyone realized that it need not be asynchro-
nous, or XML. So now Ajax has simply come to mean “a really rich web-based user
interface driven by a lot of really funky JavaScript.” Ajax is a new approach to
using old technology to build very rich and interactive user interfaces. Google
demonstrates some of the best examples of Ajax, putting it to good use with its
Gmail, Google Maps, and Google Calendar applications.

 iBATIS can be used for both web applications, rich client applications and
hybrids. Although the presentation layer does not generally talk directly to the
persistence framework, certain decisions about the user interface will impact the
requirements for your persistence layer. For example, consider a web application
that deals with a large list of 5,000 items. We wouldn’t want to show all 5,000 at
the same time, nor would it be ideal to load 5,000 items from the database all at
once if we weren’t going to use them right away. A better approach would be to
load and display 10 items at a time. Therefore, our persistence layer should allow
for some flexibility in the amount of data returned and possibly even offer us the
ability to select and retrieve the exact 10 items that we want. This would improve
performance by avoiding needless object creation and data retrieval, and by

Where iBATIS fits 17

reducing network traffic and memory requirements for our application. iBATIS
can help achieve these goals using features that allow querying for specific ranges
of data.

1.2.3 The business logic layer

The business logic layer of the application describes the coarse-grained services
that the application provides. For this reason they are sometimes called service
classes. At a high level, anyone should be able to look at the classes and methods
in the business logic layer and understand what the system does. For example, in a
banking application, the business logic layer might have a class called TellerSer-
vice, with methods like openAccount(), deposit(), withdrawal(), and getBal-
ance(). These are very large functions that involve complex interactions with
databases and possibly other systems. They are much too heavy to place into a
domain class, as the code would quickly become incohesive, coupled, and gener-
ally unmanageable. The solution is to separate the coarse-grained business func-
tions from their related business object model. This separation of object model
classes from logic classes is sometimes called noun-verb separation.

 Object-oriented purists might claim that this design is less object oriented than
having such methods directly on the related domain class. Regardless of what is
more or less object oriented, it is a better design choice to separate these concerns.
The primary reason is that business functions are often very complex. They usu-
ally involve more than one class and deal with a number of infrastructural compo-
nents, including databases, message queues, and other systems. Furthermore,
there are often a number of domain classes involved in a business function, which
would make it hard to decide which class the method should belong to. It is for
these reasons that coarse-grained business functions are best implemented as sep-
arate methods on a class that is part of the business logic layer.

 Don’t be afraid to put finer-grained business logic directly on related domain
classes. The coarse-grained service methods in the business logic layer are free to
call the finer-grained pure logic methods built into domain classes.

 In our layered architecture, the business logic layer is the consumer of the per-
sistence layer services. It makes calls to the persistence layer to fetch and change
data. The business logic layer also makes an excellent place to demarcate transac-
tions, because it defines the coarse-grained business functions that can be con-
sumed by a number of different user interfaces or possibly other interfaces, such
as a web service. There are other schools of thought regarding transaction demar-
cation, but we’ll discuss the topic more in chapter 8.

18 CHAPTER 1

The iBATIS philosophy

1.2.4 The persistence layer

The persistence layer is where iBATIS
fits and is therefore the focus of this
book. In an object-oriented system, the
primary concern of the persistence
layer is the storage and retrieval of
objects, or more specifically the data
stored in those objects. In enterprise
applications persistence layers usually
interact with relational database systems
for storing data, although in some cases
other durable data structures and medi-
ums might be used. Some systems may
use simple comma-delimited flat files or
XML files. Because of the disparate
nature of persistence strategies in
enterprise applications, a secondary
concern of the persistence layer is
abstraction. The persistence layer
should hide all details of how the data is
being stored and how it is retrieved.
Such details should never be exposed
to the other layers of the application.

 To better understand these concerns
and how they’re managed, it helps to sep-
arate the persistence layer into three basic parts: the abstraction layer, the persis-
tence framework, and the driver or interface, as shown in the lower part of figure 1.3.

 Let’s take a closer look at each of these three parts.

The abstraction layer
The role of the abstraction layer is to provide a consistent and meaningful inter-
face to the persistence layer. It is a set of classes and methods that act as a façade
to the persistence implementation details. Methods in the abstraction layer
should never require any implementation-specific parameters, nor should it
return any values or throw any exceptions that are exclusive to the persistence
implementation. With a proper abstraction layer in place, the entire persistence
approach—including both the persistence API and the storage infrastructure—
should be able to change without modifications to the abstraction layer or any of

Presentation

Business Logic

Persistence

Database

Business Object

Model

Abstraction Layer

Persistence Framework

Driver / Interface

Figure 1.3 Persistence layer zoomed to show
internal layered design

Where iBATIS fits 19

the layers that depend on it. There are patterns that can help with the implemen-
tation of a proper abstraction layer, the most popular of which is the Data Access
Objects (DAO) pattern. Some frameworks, including iBATIS, implement this pattern
for you. We discuss the iBATIS DAO framework in chapter 11.

The persistence framework
The persistence framework is responsible for interfacing with the driver (or inter-
face). The persistence framework will provide methods for storing, retrieving,
updating, searching, and managing data. Unlike the abstraction layer, a persis-
tence framework is generally specific to one class of storage infrastructure. For
example, you might find a persistence API that deals exclusively with XML files for
storing data. However, with most modern enterprise applications, a relational
database is the storage infrastructure of choice. Most popular languages come
with standard APIs for accessing relational databases. JDBC is the standard frame-
work for Java applications to access databases, while ADO.NET is the standard data-
base persistence framework for .NET applications. The standard APIs are general
purpose and as a result are very complete in their implementation, but also very
verbose and repetitive in their use. For these reasons many frameworks have been
built on top of the standard ones to extend the functionality to be more specific,
and therefore more powerful. iBATIS is a persistence framework that deals exclu-
sively with relational databases of all kinds and supports both Java and .NET using
a consistent approach.

The driver or interface
The storage infrastructure can be as simple as a comma-delimited flat file or as
complex as a multimillion-dollar enterprise database server. In either case, a soft-
ware driver is used to communicate with the storage infrastructure at a low level.
Some drivers, such as native file system drivers, are very generic in functionality
but specific to a platform. You will likely never see a file input/output (I/O)
driver, but you can be sure that it is there. Database drivers, on the other hand,
tend to be complex and differ in implementation, size, and behavior. It is the job
of the persistence framework to communicate with the driver so that these differ-
ences are minimized and simplified. Since iBATIS only supports relational data-
bases, that is what we’ll focus on in this book.

1.2.5 The relational database

iBATIS exists entirely to make accessing relational databases easier. Databases are
complex beasts that can involve a lot of work to use them properly. The database

20 CHAPTER 1

The iBATIS philosophy

is responsible for managing data and changes to that data. The reason we use a
database instead of simply a flat file is that a database can offer a lot of benefits,
primarily in the areas of integrity, performance, and security.

Integrity
Integrity is probably the most important benefit, as without it not much else mat-
ters. If our data isn’t consistent, reliable, and correct, then it is less valuable to
us—or possibly even useless. Databases achieve integrity by using strong data
types, enforcing constraints, and working within transactions.

 Databases are strongly typed, which means that when a database table is cre-
ated, its columns are configured to store a specific type of data. The database
management system ensures that the data stored in the tables are valid for the col-
umn types. For example, a table might define a column as VARCHAR(25) NOT NULL.
This type ensures that the value is character data that is not of a length greater
than 25. The NOT NULL part of the definition means that the data is required and
so a value must be provided for this column.

 In addition to strong typing, other constraints can be applied to tables. Such
constraints are usually broader in scope in that they deal with more than just a sin-
gle column. A constraint usually involves validation of multiple rows or possibly
even multiple tables. One type of constraint is a UNIQUE constraint, which ensured
that for a given column in a table a particular value can be used only once.
Another kind of constraint is a FOREIGN KEY constraint, which ensures that the
value in one column of a table is the same value as a similar column in another
table. Foreign key constraints are used to describe relationships among tables,
and so they are imperative to relational database design and data integrity.

 One of the most important ways a database maintains integrity is through the
use of transactions. Most business functions will require many different types of
data, possibly from many different databases. Generally this data is related in
some way and therefore must be updated consistently. Using transactions, a data-
base management system can ensure that all related data is updated in a consis-
tent fashion. Furthermore, transactions allow multiple users of the system to
update data concurrently without colliding. There is a lot more to know about
transactions, so we’ll discuss them in more detail in chapter 8.

Performance
Relational databases help us achieve a greater level of performance that is not eas-
ily made possible using flat files. That said, database performance is not free and
it can take a great deal of time and expertise to get it right. Database performance
can be broken into three key factors: design, software tuning, and hardware.

Where iBATIS fits 21

 The number one performance consideration for a database is design. A bad
relational database design can lead to inefficiencies so great that no amount of soft-
ware tuning or extra hardware can correct it. Bad designs can lead to deadlocking,
exponential relational calculations, or simply table scans of millions of rows.
Proper design is such a great concern that we’ll talk more about it in section 1.3.

 Software tuning is the second-most important performance consideration for
large databases. Tuning a relational database management system requires a per-
son educated and experienced in the particular RDBMS software being used.
Although some characteristics of RDBMS software are transferable across different
products, generally each product has intricacies and sneaky differences that
require a specialist for that particular software. Performance tuning can yield
some great benefits. Proper tuning of a database index alone can cause a complex
query to execute in seconds instead of minutes. There are a lot of parts to an
RDBMS, such as caches, file managers, various index algorithms, and even operat-
ing system considerations. The same RDBMS software will behave differently if the
operating system changes, and therefore must be tuned differently. Needless to
say, a lot of effort is involved with tuning database software. Exactly how we do that
is beyond the scope of this book, but it is important to know that this is one of the
most important factors for improving database performance. Work with your DBA!

 Large relational database systems are usually very demanding on computer
hardware. For this reason, it is not uncommon that the most powerful servers in a
company are the database servers. In many companies the database is the center
of their universe, so it makes sense that big investments are made in hardware for
databases. Fast disk arrays, I/O controllers, hardware caches, and network inter-
faces are all critical to the performance of large database management systems.
Given that, you should avoid using hardware as an excuse for bad database design
or as a replacement for RDBMS tuning. Hardware should not be used to solve per-
formance problems—it should be used to meet performance requirements. Fur-
ther discussion of hardware is also beyond the scope of this book, but it is
important to consider it when you’re working with a large database system. Again,
work with your DBA!

Security
Relational database systems also provide the benefit of added security. Much of
the data that we work with in everyday business is confidential. In recent years, pri-
vacy has become more of a concern, as has security in general. For this reason,
even something as simple as a person’s full name can be considered confidential
because it is potentially “uniquely identifiable information.” Other information—

22 CHAPTER 1

The iBATIS philosophy

for example, such as social security numbers and credit card numbers—must be
protected with even higher levels of security such as strong encryption. Most com-
mercial-quality relational databases include advanced security features that allow
for fine-grained security as well as data encryption. Each database will have
unique security requirements. It’s important to understand them, as the applica-
tion code must not weaken the security policy of the database.

 Different databases will have different levels of integrity, performance, and
security. Generally the size of the database, the value of the data, and the number
of dependents will determine these levels. In the next section we’ll explore differ-
ent database types.

1.3 Working with different database types

Not every database is so complex that it requires an expensive database manage-
ment system and enterprise class hardware. Some databases are small enough to
run on an old desktop machine hidden in a closet. All databases are different.
They have different requirements and different challenges. iBATIS will help you
work with almost any relational database, but it is always important to understand
the type of database you’re working with.

 Databases are classified more by their relationships with other systems than by
their design or size. However, the design and size of a database can often be
driven by its relationships. Another factor that will affect the design and size of a
database is the age of the database. As time passes, databases tend to change in dif-
ferent ways, and often the way that these changes are applied are less than ideal.
In this section, we’ll talk about four types of databases: application, enterprise,
proprietary, and legacy.

1.3.1 Application databases

Application databases are generally the smallest, simplest, and easiest databases to
work with. These databases are usually the ones that we developers don’t mind
working with, or perhaps even like working with. Application databases are usually
designed and implemented alongside the application as part of the same project.
For this reason, there is generally more freedom in terms of design and are there-
fore more capable of making the design right for our particular application. There
is minimal external influence in an application database, and there are usually
only one or two interfaces. The first interface will be to the application, and the
second might just be a simple reporting framework or tool like Crystal Reports.
Figure 1.4 shows an application database and its relationships at a very high level.

Working with different database types 23

Application databases are sometimes small enough that they can be deployed to
the same server as the application. With application databases there is more infra-
structure freedom as well.

 With small application databases, it is generally easier to convince companies to
buy into using cheaper open source RDBMS solutions such as MySQL or PostgreSQL
instead of spending money on Oracle or SQL Server. Some applications may even
use an embedded application database that runs within the same virtual environ-
ment as the application itself, and therefore does not require a separate SQL at all.

 iBATIS works very well as a persistence framework for application databases.
Because of the simplicity of iBATIS, a team can get up to speed very quickly with a
new application. For simple databases, it’s even possible to generate the SQL from
the database schema using the administrative tools that come with your RDBMS.
Tools are also available that will generate all of the iBATIS SQL Map files for you.

1.3.2 Enterprise databases

Enterprise databases are larger than application databases and have greater exter-
nal influence. They have more relationships with other systems that include both
dependencies, as well as dependents. These relationships might be web applica-
tions and reporting tools, but they might also be interfaces to complex systems
and databases. With an enterprise database, not only are there a greater number
of external interfaces, but the way that the interfaces work is different too. Some
interfaces might be nightly batch load interfaces, while others are real-time trans-
actional interfaces. For this reason, the enterprise database itself might actually be
composed of more than one database. Figure 1.5 depicts a high-level example of
an enterprise database.

 Enterprise databases impose many more constraints on the design and use of
the database. There is a lot more to consider in terms of integrity, performance,
and security. For this reason, enterprise databases are often split up to separate
concerns and isolate requirements. If you tried to create a single database to meet
all the requirements of an enterprise system, it would be extremely expensive and
complex, or it would be completely impractical or even impossible.

Web
Application Database

Reporting
Tool

Figure 1.4 Application database relationships

24 CHAPTER 1

The iBATIS philosophy

In the example depicted by figure 1.5, the requirements have been separated in
terms of horizontal and nonfunctional requirements. That is, the databases have
been separated into integration concerns, online transactional concerns, and
reporting concerns. Both the integration database and the reporting database
interface with the transactional system via a batch load, which implies that for this
system it is acceptable to have reports that are not exactly up-to-date and that the
transactional database only requires periodic updates from third-party systems.
The advantage is that the transactional system has a great deal of load lifted from
it and can have a simpler design as well. Generally it is not practical to design a
database that is efficient for integration, transactions, and reporting. There are
patterns for each that ensures the best performance and design. However, it is
sometimes a requirement to have near real-time integration and reporting func-
tions. For that reason this kind of design may not work. You might instead find
that your enterprise database has to be partitioned vertically by business function.

 Regardless of your enterprise database design, it’s easy to appreciate the differ-
ence between an application database and an enterprise database. It’s important
to understand the particular limitations of your environment to ensure that your
application uses the database effectively and is a good neighbor to other applica-
tions that are using the same database.

Web

Application
Integration

Database

Reporting

Tool

Transactional

Database

Reporting

Database

Web

Application

Reporting

Tool

Web

Service

Web

Service

Third-Party

Interface

batch Third-Party

Interface

batch

Figure 1.5 An example of enterprise database architecture

Working with different database types 25

 iBATIS works extremely well in an enterprise database environment. It has a
number of features that make it ideal for working with complex database designs
and large data sets. iBATIS also works well with multiple databases and does not
assume that any type of object is coming from only one database. It also supports
complex transactions that require multiple databases to be involved in a single
transaction. Furthermore, iBATIS isn’t only useful for online transactional systems,
but works very well for both implementing reporting and integration systems.

1.3.3 Proprietary databases

If you’ve been working with software for any length of time, you’ve no doubt heard
of the “build versus buy” debate. That is, should we build our own solution to a busi-
ness problem, or buy a package that claims to solve the problem already. Often the
cost is about the same (otherwise there would be no debate), but the real trade-off
is between time to implement and the fit to the problem. Custom-built software can
be tailored to an exact fit to business need, but takes more time to implement. Pack-
ages can be implemented very quickly, but sometimes don’t quite meet every need.
For that reason, when a choice is made to buy a package, businesses often decide
that they can get the best of both worlds by digging into the proprietary database
of the software to “extend” it just for the features that are missing.

 We could discuss the horror stories of such a scenario, but it’s probably better
just to know that such proprietary databases were likely not meant to be touched
by third parties. The designs are often full of assumptions, limitations, nonstand-
ard data types, and other warning signs that can be easily read as “Enter at Your
Own Risk.” Regardless of the warning signs, businesses will do amazing things to
save a few dollars. So software developers get stuck with navigating the jungle that
is the proprietary database.

 iBATIS is an excellent persistence layer for interfacing with proprietary data-
bases. Often such databases allow for read-only access, which you can feel confi-
dent about when using iBATIS because you can restrict the kinds of SQL that are
run. iBATIS won’t perform any magical updates to the database when they aren’t
expected. If updates are required, proprietary databases are often very picky
about how the data is structured. iBATIS allows you to write very specific update
statements to deal with that.

1.3.4 Legacy databases

If ever there were a bane of a modern object-oriented developer’s existence, it
would be the legacy database. Legacy databases are generally the prehistoric
remains of what was once an enterprise database. They have all of the complexities,

26 CHAPTER 1

The iBATIS philosophy

intricacies, and dependencies of an enterprise database. In addition, they have bat-
tle scars from years of modifications, quick fixes, cover-ups, workarounds, bandage
solutions, and technical limitations. Furthermore, legacy databases are often
implemented on older platforms that are not only outdated but are sometimes
totally unsupported. There may not be adequate drivers or tools available for mod-
ern developers to work with.

 iBATIS can still help with legacy databases. As long as there’s an appropriate
database driver available for the system you’re working with, iBATIS will work the
same way it does for any database. In fact, iBATIS is probably one of the best persis-
tence frameworks around for dealing with legacy data, because it makes no
assumptions about the database design and can therefore deal with even the most
nightmarish of legacy designs.

1.4 How iBATIS handles common database challenges

On modern software projects databases are often considered legacy components.
They have a history of being difficult to work with for both technical and nontech-
nical reasons. Most developers probably wish that they could simply start over and
rebuild the database entirely. If the database is to remain, some developers might
just wish that the DBAs responsible for it would take a long walk off a short pier.
Both of these cases are impractical and unlikely to ever happen. Believe it or not,
databases are usually the way they are for a reason—even if the reason isn’t a good
one. It may be that the change would be too costly or there may be other depen-
dencies barring us from changing it. Regardless of why the database is challenged,
we have to learn to work effectively with all databases, even challenged ones. iBA-
TIS was developed mostly in response to databases that had very complex designs
or even poor designs. The following sections describe some common database
challenges and how iBATIS can help with them.

1.4.1 Ownership and control

The first and foremost difficulty with databases in a modern enterprise environ-
ment is not technical at all. It is simply the fact that most enterprises separate the
ownership and responsibility for the database from the application development
teams. Databases are often owned by a separate group within the enterprise alto-
gether. If you’re lucky, this group may work with your project team to help deliver
the software. If you’re unlucky, there will be a wall between your project team and
the database group, over which you must volley your requirements and hope that
they are received and understood. It’s a sad truth, but it happens all the time.

How iBATIS handles common database challenges 27

 Database teams are often difficult to work with. The primary reason is that they
are under enormous pressure and are often dealing with more than one project.
They often deal with multiple and sometimes even conflicting requirements.
Administration of database systems can be difficult and many companies consider
it a mission-critical responsibility. When an enterprise database system fails, corpo-
rate executives will know about it. For this reason, database administration teams
are cautious. Change control processes are often much stricter for database sys-
tems than they are for application code. Some changes to a database might
require data migration. Other changes may require significant testing to ensure
that they don’t impact performance. Database teams have good reasons for being
difficult to work with, and therefore it’s nice to be able to help them out a bit.

 iBATIS allows a lot of flexibility when it comes to database design and interac-
tion. DBAs like to be able to see the SQL that is being run and can also help tune
complex queries, and iBATIS allows them to do that. Some teams that use iBATIS
even have a DBA or data modeler maintain the iBATIS SQL files directly. Database
administrators and SQL programmers will have no problem understanding iBA-
TIS, as there is no magic happening in the background and they can see the SQL.

1.4.2 Access by multiple disparate systems

A database of any importance will no doubt have more than one dependent. Even
if it is simply two small web applications sharing a single database, there will be a
number of things to consider. Imagine a web application called Web Shopping Cart,
which uses a database that contains Category codes. As far as Web Shopping Cart is
concerned, Category codes are static and never change, so the application caches
the codes to improve performance. Now imagine that a second web application
called Web Admin is written to update Category codes. The Web Admin application
is a separate program running on a different server. When Web Admin updates a
category code, how does Web Shopping Cart know when to flush its cache of Cat-
egory codes? This is a simple example of what is sometimes a complex problem.

 Different systems might access and use the database in different ways. One
application might be a web-based e-commerce system that performs a lot of data-
base updates and data creation. Another might be a scheduled batch job for load-
ing data from a third-party interface that requires exclusive access to the database
tables. Still another might be a reporting engine that constantly stresses the data-
base with complex queries. One can easily imagine the complexity that is possible.

 The important point is that as soon as a database is accessed by more than one
system, the situation heats up. iBATIS can help in a number of ways. First of all,
iBATIS is a persistence framework that is useful for all types of systems, including

28 CHAPTER 1

The iBATIS philosophy

transactional systems, batch systems, and reporting systems. This means that
regardless of what systems are accessing a given database, iBATIS is a great tool.
Second, if you are able to use iBATIS, or even a consistent platform like Java, then
you can use distributed caches to communicate among different systems. Finally,
in the most complex of cases, you can easily disable iBATIS caching and write spe-
cific queries and update statements that behave perfectly, even when other sys-
tems using the same database do not.

1.4.3 Complex keys and relationships

Relational databases were designed and intended to follow a set of strict design
rules. Sometimes these rules are broken, perhaps for a good reason, or perhaps
not. Complex keys and relationships are usually the result of a rule being broken,
misinterpreted, or possibly even overused. One of the relational design rules
requires that each row of data be uniquely identified by a primary key. The sim-
plest database designs will use a meaningless key as the primary key. However,
some database designs might use what is called a natural key, in which case a part
of the real data is used as the key. Still more complex designs will use a composite
key of two or more columns. Primary keys are also often used to create relation-
ships between other tables. So any complex or erroneous primary key definitions
will propagate problems to the relationships between the other tables as well.

 Sometimes the primary key rule is not followed. That is, sometimes data
doesn’t have a primary key at all. This complicates database queries a great deal as
it becomes difficult to uniquely identify data. It makes creating relationships
between tables difficult and messy at best. It also has a performance impact on the
database in that the primary key usually provides a performance-enhancing index
and is also used to determine the physical order of the data.

 In other cases, the primary key rule might be overdone. A database might use
composite natural keys for no practical reason. Instead the design was the result of
taking the rule too seriously and implementing it in the strictest sense possible. Cre-
ating relationships between tables that use natural keys will actually create some
duplication of real data, which is always a bad thing for database maintainability.
Composite keys also create more redundancy when used as relationships, as multi-
ple columns must be carried over to the related table to uniquely identify a single
row. In these cases flexibility is lost because both natural keys and composite keys
are much more difficult to maintain and can cause data-migration nightmares.

 iBATIS can deal with any kind of complex key definition and relationship.
Although it is always best to design the database properly, iBATIS can deal with
tables with meaningless keys, natural keys, composite keys, or even no keys at all.

How iBATIS handles common database challenges 29

1.4.4 Denormalized or overnormalized models

Relational database design involves a process of eliminating redundancy. Elimina-
tion of redundancy is important to ensure that a database provides high perfor-
mance and is flexible and maintainable. The process of eliminating redundancy
in a data model is called normalization, and certain levels of normalization can be
achieved. Raw data in tabular form generally will contain a great deal of redun-
dancy and is therefore considered denormalized. Normalization is a complex
topic that we won’t discuss in great detail here.

 When a database is first being designed, the raw data is analyzed for redun-
dancy. A database administrator, a data modeler, or even a developer will take the
raw data and normalize it using a collection of specific rules that are intended to
eliminate redundancy. A denormalized relational model will contain redundant
data in a few tables, each with a lot of rows and columns. A normalized model will
have minimal or no redundancy and will have a greater number of tables, but
each table will have fewer rows and columns.

 There is no perfect level of normalization. Denormalization does have advan-
tages in terms of simplicity and sometimes performance as well. A denormalized
model can allow data to be stored and retrieved more quickly than if the data were
normalized. This is true simply because there are fewer statements to issue, fewer
joins to calculate, and generally less overhead. That said, denormalization should
always be the exception and not the rule. A good approach to database design is to
begin with a “by the book” normalized model. Then the model can be denormal-
ized as needed. It is much easier to denormalize the database after the fact than it
is to renormalize it. So always start new database designs with a normalized model.

 It is possible to overnormalize a database, and the results can be problematic.
Too many tables create a lot of relationships that need to be managed. This can
include a lot of table joins when querying data, and it means multiple update
statements are required to update data that is very closely related. Both of these
characteristics can have a negative impact on performance. It also means that it’s
harder to map to an object model, as you may not want to have such fine-grained
classes as the data model does.

 Denormalized models are problematic too, possibly more so than overnormal-
ized models. Denormalized models tend to have more rows and columns. Having
too many rows impacts performance negatively in that there is simply more data to
search through. Having too many columns is similar in that each row is bigger and
therefore requires more resources to work with each time an update or a query is
performed. Care must be taken with these wide tables to ensure that only columns

30 CHAPTER 1

The iBATIS philosophy

that are required for the particular operation are included in the update or query.
Furthermore, a denormalized model can make efficient indexing impossible.

 iBATIS works with both denormalized models and overnormalized models. It
makes no assumptions about the granularity of your object model or database,
nor does it assume that they are the same or even remotely alike. iBATIS does the
best job possible of separating the object model from the relational model.

1.4.5 Skinny data models

Skinny data models are one of the most notorious and problematic abuses of rela-
tional database systems. Unfortunately, they’re sometimes necessary. A skinny data
model basically turns each table into a generic data structure that can store sets of
name and value pairs, much like a properties file in Java or an old-school INI (ini-
tialization) file in Windows. Sometimes these tables also store metadata such as
the intended data type. This is necessary because the database only allows one
type definition for a column. To better understand a skinny data model, consider
the following example of typical address data, shown in table 1.2.

Obviously this address data could be normalized in a better way. For example, we
could have related tables for COUNTRY, STATE and CITY, and ZIP. But this is a sim-
ple and effective design that works for a lot of applications. Unless your require-
ments are complex, this is unlikely to be a problematic design.

 If we were to take this data and arrange it in a skinny table design, it would
look like table 1.3.

Table 1.2 Address data in typical model

ADDRESS_ID STREET CITY STATE ZIP COUNTRY

1 123 Some Street San Francisco California 12345 USA

2 456 Another Street New York New York 54321 USA

Table 1.3 Address data in a skinny model

ADDRESS_ID FIELD VALUE

1 STREET 123 Some Street

1 CITY San Francisco

1 STATE California

1 ZIP 12345

How iBATIS handles common database challenges 31

This design is an absolute nightmare. To start, there is no hope of possibly nor-
malizing this data any better than it already is, which can only be classified as first
normal form. There’s no chance of creating managed relationships with COUN-
TRY, CITY, STATE, or ZIP tables, as we can’t define multiple foreign key definitions
on a single column. This data is also difficult to query and would require complex
subqueries if we wanted to perform a query-by-example style query that involved a
number of the address fields (e.g., searching for an address with both street and
city as criteria). When it comes to updates, this design is especially poor in terms
of performance; inserting a single address requires not one, but five insert state-
ments on a single table. This can create greater potential for lock contention and
possibly even deadlocks. Furthermore, the number of rows in the skinny design is
now five times that of the normalized model. Due to the number of rows, the lack
of data definition, and the number of update statements required to modify this
data, effective indexing becomes impossible.

 Without going further, it’s easy to see why this design is problematic and why it
should be avoided at all costs. The one place that it is useful is for dynamic fields in
an application. Some applications have a need to allow users to add additional data
to their records. If the user wants to be able to define new fields and insert data into
those fields dynamically while the application is running, then this model works
well. That said, all known data should still be properly normalized, and then these
additional dynamic fields can be associated to a parent record. The design still suf-
fers all of the consequences as discussed, but they are minimized because most of
the data (probably the important data) is still properly normalized.

 Even if you encounter a skinny data model in an enterprise database, iBATIS
can help you deal with it. It is difficult or maybe even impossible to map classes to
a skinny data model, because you don’t know what fields there might be. You’d
have better luck mapping such a thing to a hashtable, and luckily iBATIS supports

1 COUNTRY USA

2 STREET 456 Another Street

2 CITY New York

2 STATE New York

2 ZIP 54321

2 COUNTRY USA

Table 1.3 Address data in a skinny model (continued)

ADDRESS_ID FIELD VALUE

32 CHAPTER 1

The iBATIS philosophy

that. With iBATIS, you don’t necessarily have to map every table to a user-defined
class. iBATIS allows you to map relational data to primitives, maps, XML, and user-
defined classes (e.g., JavaBeans). This great flexibility makes iBATIS extremely
effective for complex data models, including skinny data models.

1.5 Summary

iBATIS was designed as a hybrid solution that does not attempt to solve every prob-
lem, but instead solves the most important problems. iBATIS borrows from the var-
ious other methods of access. Like a stored procedure, every iBATIS statement has
a signature that gives it a name and defines its inputs and outputs (encapsula-
tion). Similar to inline SQL, iBATIS allows the SQL to be written in the way it was
supposed to be, and to use language variables directly for parameters and results.
Like Dynamic SQL, iBATIS provides a means of modifying the SQL at runtime.
Such queries can be dynamically built to reflect a user request. From object/rela-
tional mapping tools, iBATIS borrows a number of concepts, including caching,
lazy loading, and advanced transaction management.

 In an application architecture, iBATIS fits in at the persistence layer. iBATIS
supports other layers by providing features that allow for easier implementation
of requirements at all layers of the application. For example, a web search engine
may require paginated lists of search results. iBATIS supports such features by
allowing a query to specify an offset (i.e., a starting point) and the number of rows
to return. This allows the pagination to operate at a low level, while keeping the
database details out of the application.

 iBATIS works with databases of any size or purpose. It works well for small
application databases because it is simple to learn and quick to ramp up. It is
excellent for large enterprise applications because it doesn’t make any assump-
tions about the database design, behaviors, or dependencies that might impact
how our application uses the database. Even databases that have challenging
designs or are perhaps surrounded by political turmoil can easily work with iBA-
TIS. Above all else, iBATIS has been designed to be flexible enough to suit almost
any situation while saving you time by eliminating redundant boilerplate code.

 In this chapter we’ve discussed the philosophy and the roots of iBATIS. In the
next chapter we’ll explain exactly what iBATIS is and how it works.

