
M A N N I N G

Tariq Ahmed
Dan Orlando

WITH John C. Bland II
AND Joel Hooks

Revised edition of Flex 3 in Action

IN ACTION

Dottie
Text Box
SAMPLE CHAPTER

Flex 4 in Action
by Tariq Ahmed

and Dan Orlando

with John C. Bland II and Joel Hooks

Chapter 15

Copyright 2011 Manning Publications

brief contents
PART 1 APPLICATION BASICS ...1

1 ■ Making the case 3

2 ■ Getting started 21

3 ■ Working with ActionScript 44

4 ■ Layout and containers 70

5 ■ Displaying forms and capturing user input 96

6 ■ Validating user input 117

7 ■ Formatting data 138

8 ■ MX DataGrids, Lists, and Trees 155

9 ■ Using the Spark List controls 178

10 ■ List customization 192

PART 2 APPLICATION FLOW AND STRUCTURE219

11 ■ Events 221

12 ■ Application navigation 244

13 ■ Introduction to pop-ups 273

14 ■ Implementing view states 294

15 ■ Working with data services 316
i

BRIEF CONTENTSii
16 ■ Objects and classes 341

17 ■ Custom components 358

18 ■ Creating reusable components 388

19 ■ Architectural design patterns 405

PART 3 THE FINISHING TOUCHES...441

20 ■ Customizing the experience 443

21 ■ Working with effects 469

22 ■ Drag-and-drop 502

23 ■ Exploring Flex charting 530

24 ■ Debugging and testing 557

25 ■ Wrapping up a project 579

316

Working with data services

Integrating an RIA client application with its corresponding server-side application
services can be a daunting task the first time you do it, so if you don’t have much
experience in this area, strap in tight because you’re going to be spending about
the next hour or so getting the crash course in RIA data communications. By the
time you’ve finished with this chapter, you’ll have a level of confidence that’s felt by
experts in the field, and you’ll be considered a top resource in your workplace for
enterprise data communications for RIA.

This chapter covers
 Data-centric development with Flash Builder

 Connecting to web services

 Using HTTPService and WebService components

 Understanding Action Message Format (AMF)

 Communication with Java EE using BlazeDS

 ColdFusion communication

 Communicating with PHP via Zend_AMF

 Setting up your development environment for a seamless
client/server workflow

317Accessing server-side data

 Client/server RIA communication gets easier the more you do it. Understanding
the inner workings of how a Flex application communicates with data services will pro-
vide you with the knowledge to be able to connect a Flex or AIR application to any
server-side technology, even if you don’t know the server-side language being used.
This is a highly sought-after skill set that you’ll be able to add to your arsenal upon
completing this chapter.

15.1 Accessing server-side data
RIA architects often find themselves bewildered when faced with the dilemma of
choosing a web service infrastructure. Knowing the technology that’s available in this
area is critical, because the wrong decision could be catastrophic. Table 15.1 is a high-
level overview of the services that are available to you and can be used as a reference
when making infrastructure design decisions.

Table 15.1 Web service protocol matrix

Communication
Server support

Application Benefits

HTTP
(includes REST and RPC hybrids)

 - All Simple widget-based applica-
tions; speed and real-time UI
updates aren’t required.

Easy implementation via the
HTTPService object; RPC hybrid
protocols can be invoked using
RemoteObject.

SOAP/WSDL

- All Data aggregation from external
web services.

Easy implementation; pull data from
multiple outside resources regard-
less of platform.

AMF

- BlazeDS & LiveCycle Data
 Services (LCDS): Java,
- .NETZend: PHP
- AMFPHP: PHP
- WebOrb: .NET, Ruby, PHP

Approaching enterprise level;
speed is important; data is usu-
ally pulled from server by polling.

Binary data compression makes com-
munications 12 times faster; strong
data typing; multiplatform support.

RTMP

- LiveCycle Data Services (LCDS),
- Flash Media Server (FMS)

Enterprise level, messaging,
instantaneous UI updates; data
can be pushed to the client;
streaming media content; data-
intensive RIAs.

Integrates into existing J2EE infra-
structure; document management,
rapid data transfer, clustering, data
tracking, syncing, paging, and conflict
resolution.

Flash Remoting

- Native to ColdFusion Robust, enterprise platform for
client/server Flex communica-
tions; native.

Seamless integration with the Flash
platform; removes the need for an
intermediate code library to do data
type mapping and data serialization.

318 CHAPTER 15 Working with data services

TIP Note that you must place a cross-domain policy file at the root of the
domain in order to use the HTTPService object. If you aren’t familiar with the
cross-domain policy, the Adobe Developer Connection has a good resource at
the following web address: http://www.adobe.com/devnet/articles/
crossdomain_policy_file_spec.html.

Table 15.1 is a basic protocol matrix that provides a starting point for knowing when
to use each of the technologies available for Flex data communications along with the
benefits that can be gained for each of them.

15.1.1 Using the HTTPService object

Because the HTTPService object uses the same request-response paradigm as your
Internet browser does when it displays web content, it can be used to invoke opera-
tions on any server-side technology with GET and POST. It doesn’t require an intermedi-
ate code library for socket-level serialization and parsing as other data communication
protocols do. Listing 15.1 illustrates how the HTTPService object is declared in MXML
so it can be invoked later to run a search query on the Yahoo! search engine.

<mx:HTTPService
 id="yahooHTTPService"
 url="http://search.yahooapis.com/WebSearchService/V1/webSearch"
 method="GET"
 makeObjectsBindable="true"
 result="responseHandler(event)"
 fault="httpFaultHandler(event)"
 showBusyCursor="true">
</mx:HTTPService>

Before the service is invoked, a request object is set up so the necessary arguments can
be sent with the service call; see the following listing.

<fx:Script>
 <![CDATA[

 import mx.rpc.events.ResultEvent;
 import mx.rpc.events.FaultEvent;

JSON

- All (JavaScript data objects are
 serialized and transferred in
 binary form.)

AIR applications that use AJAX or
Flex applications that use the
ExternalInterface API.

Easy implementation with the
HTTPService object; part of the
AS3CorLib library.

Listing 15.1 The HTTPService object declared in MXML notation

Listing 15.2 Calling the HTTPService from ActionScript

Table 15.1 Web service protocol matrix (continued)

Communication
Server support

Application Benefits

Request can be GET or POST
Makes result object bindable
Declare the method to handle the result
Declare a method to handle a fault
Show busy cursor while in progress

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

319Accessing server-side data

 public function sendHttpRequest():void {
 var requestObj:Object = new Object();
 requestObj.appid = new String("YahooDemo");
 requestObj.query =
 new String("Flex in Action");
 requestObj.results = new int(2);
 yahooHTTPService.request = requestObj;
 yahooHTTPService.send();
 }

 private function
 responseHandler(e:ResultEvent):void {
 trace("Received a result: " + e.result);
 }

 private function
 httpFaultHandler(e:FaultEvent):void {
 trace("Received a Fault: " + e.message);
 }

]]>
</fx:Script>

As shown in listing 15.2, the function sendHTTPRequest() invokes the HTTPService
object. Before that happens, though, a generic object called requestObj is created B
and the variables appid, query, and results are passed to it C, which the Yahoo! ser-
vice will expect to find on the generic object when it receives the request. The
requestObj is then passed into the HTTPService.request property D, and finally the
HTTPService.send() method is called E.

 In addition, the functions named responseHandler and faultHandler (FG) are
implemented to catch the event that’s triggered by the service’s response to the
request. As you can see in the Alert.show that’s called in the body of the response-
Handler function, the data that’s returned from the server can be accessed through
the generic ResultEvent.result property. Any data type can be passed through this
property, including value objects (or data transfer objects if you come from the world
of Java or .NET development). You’ve learned all about the HTTPService object, which
makes this an excellent opportunity to introduce you to the WebService object, as
you’ll see in the next section.

15.1.2 Consuming web services with the WebService component

Web Service Description Language (WSDL) is a standard format for describing SOAP-
and RPC-based web services. This type of data consumption is great for mash-up-style
applications, because many online services have adopted the Simple Object Access
Protocol (SOAP) standard, but this is generally the slowest way to transfer data because
it carries a lot of overhead with it. On the other hand, SOAP is similar to HTTP in that
it’s supported by just about every server-side platform.

 Setting up web service integration in Flex is easy and takes only a few lines of code.
For example, if you wanted to use the <mx:WebService> tag to connect to the weather
web service, it would look like the code in the following listing.

Generic object created
to send with request

B

Service variables
passed into object

C

Generic object
passed to
propertyD

HTTPService.send()
method calledE

Response handlerF

Fault handlerG

320 CHAPTER 15 Working with data services

<mx:WebService id="weatherService"
 wsdl="http://www.webservicex.net/WeatherForecast.asmx?WSDL"
 fault="wsdlFault(event)">
 <mx:operation name="GetWeatherByZipCode"
 result="weatherResponse(event)"
 fault="weatherFault(event)"/>
 <mx:operation name="GetWeatherByPlaceName"
 result="weatherResponse(event)"
 fault="weatherFault(event)"/>
</mx:WebService>

The <mx:WebService> tag contains the necessary information to point the Flex appli-
cation to the WSDL document B. When the <mx:WebService> tag is initialized, it
parses the WSDL document and extracts the information it needs to generate Flex
objects with which you can interact with the web service.

 The operation tags C define the various operations that are used with this web
service. In this case, the GetWeatherByZipCode and GetWeatherByPlaceName opera-
tions are defined and ready for you to invoke in the same way as you did earlier with
the HTTPService object. Each operation has a handler defined to deal with the
response from the service request.

TIP In some cases, a web service you’d like to connect to may use methods
that are reserved words in Flex. In these situations, you can use the WebSer-
vice.getOperation("nameOfOperation") function to get a handle for the
operation.

Flex removes the responsibility of translating SOAP XML packets into usable objects by
abstracting the functionality for parsing SOAP packets within the WebService class.
You can obtain the data object that’s created after parsing is completed from the
generic object ResultEvent.result after parsing of the data packets has completed
and the ResultEvent is fired and captured by your result handler function.

15.2 Action Message Format in action
As you saw back in table 15.1 at the beginning of the chapter, the Action Message For-
mat is a robust communication protocol that’s quickly becoming the preferred
method of communication among RIA developers because of its open technology,
speed, and native support for the Flash virtual machine.

 To show how fast AMF is, Adobe senior technical evangelist James Ward wrote a
Census RIA Benchmark application. He’s been updating it over the course of the last
couple of years with new features and has included as many ways of transferring data
as the community has been able to throw at him. Despite stiff competition from some
serious community challengers, the AMF protocol remains the reigning champion.
Figure 15.1 provides a screenshot of the application, which can be found at http://
www.jamesward.com/census/.

Listing 15.3 Using the WebService component

BDeclare the WSDL document location

C
Multiple operation
declarations within
a WebService

http://www.jamesward.com/census/
http://www.jamesward.com/census/

321Action Message Format in action

Comparing data transfer times is truly a dose of reality. In figure 15.1, I set the num-
ber of rows to retrieve to a minimum of 500 (from 5,000) and turned off GZIP com-
pression, and then I ran benchmarks only on data transfer mechanisms that are
comparable to AMF3.

 Upon running the same benchmark on any of the cases that involved SOAP, my
browser usually hung after about 90 seconds. It then displayed a message that the
server was taking a long time to respond, prompting me to tell it whether I wanted to
continue waiting or not. This was appalling, and yet I found it to be quite humorous at
the same time. Spend a few minutes with the Census RIA Benchmark application, and
I guarantee that you’ll think twice about your choice of communication protocol the
next time you build an enterprise Flex application.

 AMF presents you with a number of choices with regard to its implementation, but
the options are usually narrowed by your choice of server-side technology. In the next
sections, we’ll do a brief roundup of the technologies available at the time of this
writing.

15.2.1 Open-source AMF

In December of 2007, Adobe announced that AMF would become an open protocol,
which immediately led to the development of a number of code libraries, many of
which mimicked the data transfer capabilities with ColdFusion via Flash Remoting.

Figure 15.1 James Ward’s benchmark illustrates how impressive AMF is for data communication.

322 CHAPTER 15 Working with data services

Opening up the protocol was the icing on the cake for most Flash platform develop-
ers. It was already speedier than anything else, and its support is native to the Flash vir-
tual machine. The number of open source code libraries that were developed soon
after is evidence of this. Getting to know the tools that are available for data communi-
cation with AMF is simple.

15.2.2 AMF with PHP

The open source AMFPHP project began in January of 2008, right after AMF went
open source. It included a fairly steep learning curve for developers who were new to
Flex at the time, and there was little documentation to go by, resulting in a lot of trial
and error for determined PHP RIA programmers. Thankfully, Adobe formed a strate-
gic alliance with Zend Technologies in Q308, and the Zend_AMF module was devel-
oped and integrated into the PHP Zend framework by a friend of mine, Wade Arnold.

 The Zend_AMF module is easy to work with and is currently the ideal solution for
data communication between Flex and PHP, especially if you’re using Flash Builder
for your Flex application development. One of the greatest new features of Flash
Builder 4 is its ability to turbocharge your workflow by automating the process of
hooking up data services, as you’ll see in section 15.3.

15.2.3 AMF and ColdFusion

At the time of this writing, the beta of ColdFusion 9 was just released along with the
first-ever ColdFusion development tool made by Adobe, called CFBuilder. Not surpris-
ingly, AMF is most effective when working with ColdFusion because it has native sup-
port for the AMF format. That means that when running a Flash platform RIA
application on the client with ColdFusion data services on the server, you have native
support for the fastest available data-transfer mechanism on both the client and the
server.

 The result is a rich, web-based application that operates as if it’s running native to
the local desktop. More specifically, massive amounts of data can be captured, filtered,
organized, processed, and displayed in a human-readable graphical summation in less
than a second. It was merely a few years ago that this kind of query would be run by a
research technician, who would then get up and go have lunch and come back 45
minutes later only to find that the query was not complete yet.

15.2.4 BlazeDS

Adobe open-sourced the AMF specification in tandem with the release of BlazeDS, an
open source Java application that can be used for integrating Java and Flex via AMF.
With BlazeDS, developers can invoke methods on preexisting plain old Java objects
(POJOs), Spring Services, EJBs, and other Enterprise Java implementations. Blaze can
also be hooked into JMS and Hibernate for applications that require messaging. Java
application servers supported by BlazeDS include Tomcat, WebSphere, WebLogic,
JBoss, and ColdFusion.

323Building data-centric applications with Flash Builder

15.2.5 LiveCycle Data Services

BlazeDS was an offspring of LiveCycle Data Services ES. It’s logical to assert that
BlazeDS is the baby sibling of LCDS. The target market for LCDS is primarily large-
scale enterprise environments consisting of large server farms. Considering the cost of
a single LCDS license, it’s no wonder that most small businesses and entrepreneurial
developers view LCDS as out of reach. As with BlazeDS, LCDS is a Java-based implemen-
tation of AMF and offers additional advantages that are conducive to the needs of the
enterprise. The cost is typically justified by the level of support that comes with the
package.

15.2.6 Additional technologies

Other technologies that have surfaced over the last couple of years include WebOrb,
AMF.NET, AMFPHP, and RubyAMF. But the three that stand out among the rest in the
RIA arena are Zend_AMF, ColdFusion Remoting, and BlazeDS for Java EE. We’ll be
focusing on those technologies for the remainder of this chapter.

 You’re now armed with the background knowledge that you’ll need to embark on
your next mission: learning to build data-centric AMF applications using Flash Builder.

15.3 Building data-centric applications with Flash Builder
The data-centric development (DCD) features that ship with Flash Builder were cre-
ated to shave a significant amount of development time for data-driven Flex applica-
tions and are undoubtedly my personal favorite of all the new Flash Builder features.

 The first thing to point out with regard to the highly anticipated data-centric devel-
opment features included in Flash Builder 4 is that the workflow generally remains
the same regardless of the server-side technology being used. In a moment we’ll walk
through this workflow. I’ll point out differences in the workflow that are dependent
on the server-side technology being used as we walk through the examples.

 Development time is cut down by implementing a series of DCD wizards that guide
you through the process of connecting to your server-side code and transferring
strongly typed data objects, otherwise known as value objects. While you’re guided
through the wizards, code is being generated in the background for you. The follow-
ing example demonstrates how you can truly streamline your workflow for connecting
to data services without even leaving the design view of the Flash Builder IDE!

15.3.1 Setting up the right environment

When developing RIA applications, your integrated development environment (IDE)
should reflect both the client and server-side platforms you’re working with.
Table 15.2 provides a list of recommendations for how you can configure your envi-
ronment based on your choice of server-side platform.

 The concept of the IDE matrix shown in table 15.2 is to be able to do both client
and server-side development without leaving the Eclipse environment. This will
streamline your workflow and save you a lot of time.

324 CHAPTER 15 Working with data services

15.3.2 Establishing connection to the server

Because the Flex framework is based on a Model-View-Controller architecture, it’s
usually in your best interest to maintain consistency by using MVC methodology in
your application as well. In this section, we’ll focus on using the Flash Builder GUI to
generate the code for the model layer of your application. But first you need to estab-
lish a connection to your server-side application layer.

TIP The data-centric development workflow built into the Flash Builder 4
IDE is almost identical between integrating with PHP and integrating with
ColdFusion services.

You have two scenarios for connecting to a data service: Either you’re trying to con-
nect from a project that already exists, or you’re starting fresh with a new project.

 In the first scenario, you have an existing project that you’d like to connect to a
data service. This is easily done by selecting the Connect to Data/Service link from the
Data/Services panel in Flash Builder, as shown in figure 15.2.

 In the second scenario, you can set up the connection to the server during cre-
ation of a new Flash Builder project. As shown in figure 15.4, the New Project Setup
Wizard includes a drop-down menu that allows you to select an application server for
configuration during the project setup process. The options are None/Other, .NET,
J2EE, ColdFusion, and PHP.

Table 15.2 Eclipse IDE configuration matrix for data-driven Flex 4 RIA development

PHP Eclipse PDT + Flash Builder 4 plug-in Zend Studio + Flash Builder 4 plug-in

J2EE/Blaze/LCDS Eclipse for Java + Flash Builder 4 plug-in Eclipse for Java EE + Flash Builder
plug-in

ColdFusion CFEclipse + Flash Builder 4 plug-in CFBuilder + Flash Builder 4 plug-in

WSDL Flash Builder 4 + WDT Eclipse plug-in WDT Eclipse + Flash Builder 4 plug-in

.NET Flash Builder 4 + WDT Eclipse plug-in WDT Eclipse + Flash Builder 4 plug-in

HTTP, RPC, AMF, and SOAP, oh my!
With Flex and Flash Builder 4, there’s no need to be overwhelmed by the choice in
protocol for your data communications. Flash Builder 4 takes care of most of this for
you behind the scenes when you use the DCD wizards and tries to use Action Mes-
sage Format for data communications whenever possible because of its superior
transfer speeds, among other things.

325Building data-centric applications with Flash Builder

Figure 15.2 Select Connect to Data/Service from the Data/Services panel to start the DCD wizard.
You’re then greeted with the window shown in figure 15.3, which lists all of the service types that you
can connect to.

Figure 15.3 Select from the list of available service types.

326 CHAPTER 15 Working with data services

Regardless of the scenario, you’ll end up in the same place, the server configuration
dialog box. Figure 15.5 demonstrates the server configuration dialog window after I
selected PHP as the application server type.
Regardless of the server type, Flash Builder is concerned about two things here:

1 The endpoint URI that it should connect to
2 Validating that it’s able to connect successfully

After you enter the necessary parameters in the configuration fields, the button
labeled Validate Configuration will be enabled. The wizard won’t allow you to con-
tinue until you successfully validate your server configuration. You’ll know when

Figure 15.4 Use the drop-down menu to set up the application server when creating a new
project in Flash Builder.

327Building data-centric applications with Flash Builder

validation is successful because you’ll see a friendly message at the top of the window,
as shown in figure 15.5.

NOTE If you’re working with PHP on the server side, and Flash Builder sees
that you don’t yet have the Zend Framework installed, it will ask you if you
want it to be installed. This is done so you can take advantage of the benefits
of AMF through the Zend_AMF module. Make sure you select Yes if you’re
prompted with this message.

Now you’re ready to have some fun as you learn how to autogenerate your services
right from Flash Builder!

GENERATING SERVICES

One of the neatest things about the DCD features in Flash Builder 4 is the ability for
the application to generate basic services for you containing standard CRUD opera-
tions for a specified database table. It also includes other handy operations such as
retrieving paged result sets (20 at a time, for example).

 If you’ve already created your database schema, Flash Builder can read the
schema of a specified table and generate all the code you should need for a basic ser-
vice from it. If that table contains many fields, the amount of time that this can save is
immeasurable.

 The process of generating a service stub begins by selecting the Click Here to Gen-
erate a Sample link under the PHP Location field, as shown in figure 15.6. If the code
for your service has already been written, however, you can use this window to specify
the name and location of the service so it can be introspected by Flash Builder.

 The dialog box that appears next in the sequence is displayed in figure 15.7. To
take full advantage of the built-in DCD features, make sure you’ve first created a data-

Figure 15.5 Configuring a local PHP server for DCD in Flash Builder

328 CHAPTER 15 Working with data services

base and a table with fields inside your database. Then, make sure that Generate from
Database is already selected when the sample service generator window opens. Fill in
the rest of the parameters according to your database configuration, and click the
Connect to Database button. You’ll begin to see the magic happen.

 Assuming all of your input parameters were correct and Flash Builder connected
to the database you specified, you’ll notice that all of a sudden the Table drop-down
menu populates with all of the tables in your database. The next thing you need to do
is select the table that you want to use to generate the service stub. Now click OK, and
let the games begin!

 The first thing you might think is that Flash Builder took on a mind of its own, and
you may wonder what just happened when it’s finished. Here’s a rundown of what
happened in those few tenths of a second:

 A package was added to your src folder.
 A services folder appeared under the libs folder.
 The service class was generated and opened up in the main editing pane of the

Eclipse IDE or the default editor on your system if it isn’t Eclipse for that file
type.

 The class was introspected by Flash Builder, and all of its methods were dis-
played in the Data/Services panel.

 An abstract class was created in the project that contains methods to easily call
each of the service’s operations.

 An empty class was also created that makes the call to the super (abstract) class.
The empty class is where you should place any custom code you might need.

Figure 15.6 Service stubs can be generated right from the service configuration dialog box.

329Building data-centric applications with Flash Builder

If you’re working in the full version of Flash Builder without having installed the nec-
essary editor for your service code into the IDE, Flash Builder opens the generated ser-
vice with whatever the default application is for that file type (most likely Adobe
Dreamweaver, if it’s installed on your local machine).

MIGRATION TIP The important thing to understand is that the old paradigm
that was used with previous versions of the Flex SDK—where value objects were
created on the server side to correspond with value objects on the client side—
has changed significantly. More specifically, you don’t need to create a
strongly typed PHP object that corresponds with your ActionScript objects
(unless you want to!). With that said, for basic CRUD services, little coding is
needed in the autogenerated PHP service other than what’s already there.
Configure your database connection parameters and table names accordingly.

Now that you’ve generated a service stub, it’s time to configure your send and return
types. Keep in mind that you’ve accomplished all of this, and you still haven’t left the
Flash Builder design view!

Figure 15.7 The database table names appear in a drop-down menu after the
Connect to Database button is clicked.

330 CHAPTER 15 Working with data services

CONFIGURING DATA SEND AND RETURN TYPES

Before you even start configuring data types manually, look at the data typings in your
Data/Services panel. If you set the type in your database fields properly, then Flash
Builder probably already set your data types for you, as it did for the project that’s
shown in figure 15.8. This is yet another incredible time-saver!

 Your Flash application must know what to expect for the data object types that will
be sent and returned for each operation. To configure your data types, either right-
click an operation from the Data/Services pane and then click Configure Return
Type, or select the method and then click the configure send/return type icon from
the toolbar of the Data/Services pane. You should then see a window that looks simi-
lar to figure 15.9.

 As previously mentioned, you don’t have to code your own value objects anymore.
You can autogenerate the necessary code when you invoke the getAllItems()
method. In the past, when an array of strongly typed objects came back in the
response from the server, it was standard practice to type the data as a bindable
ArrayCollection declared at the top of the class and then bind the list or data grid to
that ArrayCollection variable. You can still do things this way if you want to, but it’s
worth letting Flash Builder handle this for you because it makes the workflow so much
faster. Figure 15.10 demonstrates how to enable autodetection of data return types.

Figure 15.8 Flash Builder
automatically sets the send
and return data types upon
service introspection.

Figure 15.9 In the Configure
Input Types window, you configure
the parameters that will be sent
with the request when the
operation is invoked.

331Building data-centric applications with Flash Builder

The value objects that Flash Builder generates are more like value objects on steroids,
in that they do a whole lot more than wrap a bunch of values for strong data typing
between the client and server. For example, the return type set for getAllItems() is a
User object, even though it’s a collection of User objects. This is because the autogen-
erated result handlers are smart enough to know the difference between a single User
object that’s returned versus a collection of User objects. You don’t have to type the
result to an ArrayCollection and go through the whole typing, binding, and object-
mapping process as you would have done with the old Flex Builder. Things like class
mapping also made the process even more difficult. Luckily, that’s all in the past.

 So far you’ve been creating this data-centric application without leaving the design
view of the Flash Builder IDE, which is pretty neat. Continuing with this theme, you’ll
learn how to perform drag-and-drop data binding in a moment. But before we move
into drag-and-drop data binding, we’ll take this opportunity to build on your data ser-
vices skill set and knowledge base by showing you how to work with some of the other
server technologies available.

 It’s important to know how to work with a diverse range of server-side technologies
because you never know what you’ll be working with on the server side for your next
project. For example, in the last three months alone, the projects I’ve been involved
with include WebOrb AMF for C#.NET, BlazeDS, LCDS, Tomcat/JBoss, Zend_AMF for
PHP, AMFPHP, AMF.NET/C#, and a custom AMF server framework written in C++ for its
increased multithreading capabilities. The more server-side technologies you can inte-
grate your Flex applications with, the less you’ll ever have to worry about finding work.

Figure 15.10 Return types can be automatically detected by letting Flash Builder
invoke the operation.

332 CHAPTER 15 Working with data services

15.4 Data-centric Flex with ColdFusion
If you’re already a PHP developer and are curious about ColdFusion, Flash Builder 4
makes it especially easy to get started. Adobe has finally added a fully supported devel-
opment tool specifically for ColdFusion development to its IDE palette, called
CFBuilder. From a Flex development standpoint, the coolest thing about CFBuilder is
that, like Flash Builder, CFBuilder is built on Eclipse. This means that CFBuilder can
be installed right into your Flash Builder IDE as a plug-in, as shown in figure 15.11, so
you can handle both the client-side and server-side development of your RIA applica-
tions without leaving your primary IDE. There’s never been a better time to start using
ColdFusion with Flex than now.

 To set up a new Flex project for use with ColdFusion services, select ColdFusion for
the Application Server Type in on the first screen of the New Project Setup Wizard,
and choose the Flash Remoting radio button. You’ll then be prompted to set up the
server configuration as you did in the previous example.

 The purpose of figure 15.12 is to reiterate the point that the process of getting set
up with data services is generally the same regardless of server technology.
Figure 15.12 should look familiar because it’s nearly identical to figure 15.5, where
you configured and validated a PHP server. In this case, however, you’re configuring
the project for use with ColdFusion data services.

 After completing the New Project Setup Wizard, select Connect to Data/Service, as
you did earlier. The next pop-up window will look like figure 15.13, where you’re pre-
sented with the option of setting up a ColdFusion service (Flash Remoting, in this
case), HTTPService, or WebService.

Figure 15.11 Adobe CFBuilder can be installed as a plug-in to your Flash Builder 4 IDE.

333Data-centric Flex with ColdFusion

Figure 15.12 Configuring a Flex project for ColdFusion data services

Figure 15.13 Selecting ColdFusion in this case lets you take advantage of the
built-in Flash Remoting.

334 CHAPTER 15 Working with data services

The rest of the service setup process is the same as for the previous example, and as
shown in figure 15.14, the operations that are available once the service stub is gener-
ated are also the same.

 Now that you’ve taken a look into ColdFusion-specific data-centric development
with Flash Builder, let’s take a quick look into data-centric Java EE with BlazeDS before
we move on to drag-and-drop data binding.

15.5 Data-centric Flex with Java EE and BlazeDS
For development of the client-side Flex application, setting up a Flex project for use
with J2EE web applications is as simple as selecting J2EE from the Application Server
Type drop-down menu when prompted with the first window of the New Project Setup
Wizard, as shown in figure 15.15.
After selecting J2EE, you’re given the option of using either LiveCycle Data Services or
BlazeDS. For this example, choose BlazeDS because it’s powerful, the code is open
source, and, best of all, it takes only about 15 minutes to get up and running with it.

SETTING UP BLAZEDS

Release builds of BlazeDS come in three flavors: Turnkey, Binary Distribution, and
Source. The quickest way to get up and running is to deploy the Turnkey download.
Release builds of BlazeDS are available from the Adobe Open Source website at
http://opensource.adobe.com/wiki/display/blazeds/Release+Builds. In addition,
Adobe evangelist Sujit Reddy G has a great post on setting up BlazeDS at http://
sujitreddyg.wordpress.com/2009/04/07/setting-up-blazeds/. The BlazeDS documen-
tation that’s provided on the Adobe Open Source website also includes step-by-step
instructions.

 The moment you’ve been waiting for has finally come. It’s time to tie together
everything you’ve learned and make something useful!

Figure 15.14 The stub operations show up in the Data/Services window, ready for drag-
and-drop binding.

http://opensource.adobe.com/wiki/display/blazeds/Release+Builds
http://sujitreddyg.wordpress.com/2009/04/07/setting-up-blazeds/
http://sujitreddyg.wordpress.com/2009/04/07/setting-up-blazeds/

335Binding the model to the view

15.6 Binding the model to the view
A data model is no good without a means of visualizing it. In the MVC design pattern,
the model is the collection of data that’s retrieved from the server side by invoking
operations from a service, the view is the display of such data, and the controller is the
code responsible for binding the model and the view together. In theory, this sounds
great, but in practice, writing all of the code for this can be tedious and boring. Enter
drag-and-drop data binding.

15.6.1 Drag-and-drop data binding

One of the coolest things about Flash Builder 4 is the ability to drag and drop opera-
tions from the Data/Services panel onto list-based components in design view,

Figure 15.15 Setting up a new Flex project for use with J2EE and BlazeDS

336 CHAPTER 15 Working with data services

effectively creating a binding between the respective operation and the component
you dropped it on.

THREE SIMPLE STEPS TO DATA BINDING

Make sure you’re in design view with your main application MXML file selected in the
main window.

1 First, grab a VDividedBox and drag it to the stage. Set its X and Y values both to
0, and set the height and width properties to 100%.

2 Next, grab a DataGrid component from the components list and drag it to the
stage so that it’s inside the VDividedBox. Set its X and Y values both to 0 as well.
Then set its width to 100% and its height to 30%.

3 Now select the getAllItems() method in the Data/Services window and drag it
onto the DataGrid.

If you did not set the return type for your methods yet, you’ll see a pop-up that looks
similar to figure 15.16. Otherwise, you should immediately see the column headers
autopopulate with the field names, and the number of columns should change based
on the number of fields you have.

 Assuming you followed the instructions in the previous section on connecting to a
local database and you have data in your database, you should be able to run the
application at this point. The DataGrid will display the data from your database when
the application is initialized.

Figure 15.16 If you see this window,
you need to go back and configure
your return types.

What if it didn’t work?
A good way to pinpoint errors is to go back and invoke the methods through the return
type configuration for each operation again. The error responses that come back are
surprisingly detailed and will usually tell you exactly what the problem is and where it
occurred (I managed to find and fix a couple of forgotten semicolons in PHP in less
than a minute this way!). The Network Monitor will also come in handy during your
experimentation endeavors, which we discuss shortly.

337Binding the model to the view

15.6.2 Generating a Master-Detail form

One thing is for sure: Drag-and-drop data binding is ultra cool, but generating a
Master-Detail form without having to write a single line of code is even cooler!

 Start by right-clicking your DataGrid component in design view, and select Gener-
ate Details Form. As demonstrated in figure 15.17, the window that’s displayed should
have Master-Detail selected as well as the Make Form Editable check box selected.
Uncheck this box if you want the details of the selected item to be displayed as text
fields, but you don’t want the values of the selected item to be editable.

 Next, select the check box labeled Make a New Service Call to Get Details. Make
sure that the correct Service is selected, and for the Operation menu, select the get-
ObjectByID() method, as shown in figure 15.17. Then click Next. The next window
displayed should look similar to figure 15.18.

 The Property Control Mapping window that’s displayed (figure 15.18) provides
you with the opportunity to unselect any fields that you don’t want shown in the
Master-Detail form. You can also leave a field selected and select Text for the control,
which means it will display but won’t be an editable item. A unique identifier field is a
good example of this type of situation, which is illustrated in figure 15.18, where
video_id is the unique identifier for each record. If you’ve been following along with a
specific project of your own, you should be able to run it at this point with all the fea-
tures and functionality available. Remember, you accomplished all of this without even leav-
ing the Flash Builder design view!

Figure 15.17 Be sure to use the
correct configuration settings for
your Master-Detail form.

338 CHAPTER 15 Working with data services

Those of you who are fairly new to Flex will certainly appreciate this, but veteran Flex
programmers may want to dig a little deeper and find out what’s going on behind the
scenes, which is what we do in the next section.

15.6.3 Flash Builder code review

You accomplished a lot without looking at any of the code that was being generated
behind the scenes, so now might be a good time to check up on Flash Builder and
make sure it’s still writing quality code. Listing 15.4 is the full set of code that should
have been generated in the main MXML application file that you were working in this
whole time.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 minWidth="1024" minHeight="768"
 xmlns:videoservice="services.videoservice.*"
 xmlns:valueObjects="valueObjects.*">
 <fx:Script>
 <![CDATA[
 import mx.events.ListEvent;
 import mx.events.FlexEvent;

Listing 15.4 DCD code generated by Flash Builder in main application file

Figure 15.18 Property
control mappings of the
Generate Master-Detail
Form Wizard

339Binding the model to the view

 import mx.controls.Alert;

 protected function
 dataGrid_creationCompleteHandler(event:FlexEvent):void
 {
 getAllVideoResult.token = videoService.getAllVideo();
 }

 protected function
 dataGrid_changeHandler(event:ListEvent):void
 {
 getVideoByIDResult.token =
 videoService.getVideoByID(dataGrid.selectedItem.video_id);
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <s:CallResponder id="getAllVideoResult"/>
 <videoservice:VideoService id="videoService"
 fault="Alert.show(event.fault.faultString + '\n'
 + event.fault.faultDetail)"
 showBusyCursor="true"/>
 <valueObjects:Video id="video"
 domain_id="{parseInt(domain_idTextInput.text)}"/>
 <s:CallResponder id="getVideoByIDResult"
 result="video = getVideoByIDResult.lastResult[0] as Video"/>
 </fx:Declarations>
 <mx:DataGrid x="10" y="10" id="dataGrid"
 creationComplete="dataGrid_creationCompleteHandler(event)"
 dataProvider="{getAllVideoResult.lastResult}"
 change="dataGrid_changeHandler(event)">
 <mx:columns>
 <mx:DataGridColumn headerText="video_id"
 dataField="video_id"/>
 <mx:DataGridColumn headerText="video_url"
 dataField="video_url"/>
 <mx:DataGridColumn headerText="domain_id"
 dataField="domain_id"/>
 <mx:DataGridColumn headerText="title"
 dataField="title"/>
 <mx:DataGridColumn headerText="description"
 dataField="description"/>
 <mx:DataGridColumn headerText="category"
 dataField="category"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:Form>
 <mx:FormItem label="Video_url">
 <s:TextInput id="video_urlTextInput"
 text="@{video.video_url}"/>
 </mx:FormItem>
 <mx:FormItem label="Domain_id">
 <s:TextInput id="domain_idTextInput"
 text="@{video.domain_id}"/>
 </mx:FormItem>

Function for
populating
the DataGrid

Function for when
selectedItem
is changed

BManual code
modification for

selected item

Service declarations
placed within
<fx:Declarations/>

Begin DataGrid code

Begin Master-Detail
form code

340 CHAPTER 15 Working with data services

 <mx:FormItem label="Title">
 <s:TextInput id="titleTextInput"
 text="@{video.title}"/>
 </mx:FormItem>
 <mx:FormItem label="Description">
 <s:TextInput id="descriptionTextInput"
 text="@{video.description}"/>
 </mx:FormItem>
 <mx:FormItem label="Category">
 <s:TextInput id="categoryTextInput"
 text="@{video.category}"/>
 </mx:FormItem>
 </mx:Form>

</s:Application>

The code generated by Flash Builder wasn’t too shabby. One thing had to be manually
changed though. The change handler function B for the data grid needed the video
ID value set manually from itemID to dataGrid.selectedItem.video_id.

 If you’re paying attention, you may notice something else missing as well. There
isn’t a control or a function for updating the selected item! You should still be able to
run the application at this point, but changing values in the Master-Detail form won’t
have any effect on the database record.

 To address this, switch back to design view, drag a button component to the stage,
then drag the updateVideo() method from the Data/Services panel to it, and voila!
Congratulations, you’ve completed your Flash Builder DCD CRUD service application!

15.7 Summary
In this chapter you learned about the many ways of communicating with the outside
world from your Flex 4 applications. You also gave the new Flash Builder 4 data-
centric development features a spin and learned how to speed up your workflow ten-
fold by doing so.

 Although the code-generating features for data-centric development with Flash
Builder are incredibly useful and can save huge amounts of time during development,
you should be aware of a couple of caveats as a conscientious developer. First, at the
time of this writing, the DCD features don’t support any of the microarchitecture
frameworks for enterprise Flex development (discussed in chapter 19). It’s worth not-
ing, however, that there’s a good possibility we’ll see third-party plug-ins that add DCD
support for use with the Swiz and Mate frameworks in the not-so-distant future. The
second caveat is the general idea of generated code. In theory, it sounds like the be-all
end-all to programming in general, but in practice, this is hardly the case. It’s impor-
tant to analyze and review any code that has been generated for you by the IDE and
make sure it’s consistent with what you’re trying to accomplish.

 In the next chapter, you’ll learn about the concepts of objects and classes, which
will be a nice lead-in for chapter 17 on building custom components with Flex 4.

Ahmed Orlando Bland Hooks

F
lex has grown from just a way to build Flash apps into a
rich ecosystem, and Flex 4 introduces new UI components,
better performance monitoring, and speed enhancements

to the compiler.

Flex 4 in Action is a comprehensive tutorial that introduces Flex
to web designers and developers. It starts with the basics—forms
and data—and moves through core concepts like navigation,
drag-and-drop, and events. Even if you’re new to Flex, this book
is all you’ll need to make your apps pop using the new Spark
components, data services, charting, special eff ects, and more.

What’s Inside
How to architect your applications
Use charting to build interactive dashboards
Improve productivity with network monitoring
and unit testing
Give your apps a unique look with themes and skins
And much more

Readers of this book need basic development skills, but no
previous experience with Flex.

Tariq Ahmed is an RIA engineer and Flex community evangelist.
Dan Orlando is an RIA architect, specializing in Flex and AIR.
John C. Bland II is an independent Flex, ColdFusion, and mobile
developer. Joel Hooks is a Flash Platform developer and
ActionScript expert.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/Flex4inAction

$49.99 / Can $57.99 [INCLUDING eBOOK]

FLEX 4 IN ACTION

WEB DEVELOPMENT

“Th e desk reference for all
 things Flex 4”
 —John Griffi n, Overstock.com

“No question is left
 unanswered, no facet
 unexplored.”
 —Peter Pavlovich, Kronos Inc.

“A great book for both
 beginners and experienced
 Flex developers.”
 —Kevin Schmidt
 Adobe Systems, Inc.

“Th e lessons are memorable,
 witty, and very relevant.”
 —Zareen Zaff ar, Amcom

“Completely demystifi es
 building rich user interfaces.”
 —Rick Wagner, Acxiom Corp.

“What you need to be
 fl exible 4 your job!”
 —Rick Evans, SAS

M A N N I N G

SEE INSERT

	BriefTOC.pdf
	brief contents

