
SAMPLE CHAPTER

ASP.NET Ajax in Action

and Rama Krishna Vavilala

Copyright 2008 Manning Publications

Chapter 4

by Alessandro Gallo
David Barkol

vii

brief contents
PART 1 ASP.NET AJAX BASICS ..1

1 ■ Introducing ASP.NET AJAX 3

2 ■ First steps with the Microsoft Ajax Library 36

3 ■ JavaScript for Ajax developers 73

4 ■ Exploring the Ajax server extensions 114

5 ■ Making asynchronous network calls 141

6 ■ Partial-page rendering with UpdatePanels 194

PART 2 ADVANCED TECHNIQUES ...229

7 ■ Under the hood of the UpdatePanel 231

8 ■ ASP.NET AJAX client components 264

9 ■ Building Ajax-enabled controls 299

10 ■ Developing with the Ajax Control Toolkit 332

viii BRIEF CONTENTS

PART 3 ASP.NET AJAX FUTURES ...371

11 ■ XML Script 373

12 ■ Dragging and dropping 410

PART 4 MASTERING ASP.NET AJAX441

13 ■ Implementing common Ajax patterns 443

114

Exploring the
Ajax server extensions

In this chapter:
■ Updating an existing ASP.NET application
■ Performing partial page updates with the

UpdatePanel
■ Using the ScriptManager
■ Working with timers
■ Obtaining user feedback

Ajax for ASP.NET developers 115

What makes ASP.NET AJAX unique and separates it from other Ajax toolkits and
frameworks is the fact that its architecture spans both the client and server. In
addition to a rich set of JavaScript libraries, it provides a set of server controls to
assist in Ajax development. In the previous two chapters, we revealed the basics of
the Microsoft Ajax Library and its ambitions of simplifying Ajax and JavaScript for
client-side development. Because most Ajax development originates from the cli-
ent, these chapters are a pivotal part of the book and will serve as a valuable refer-
ence for many of the later chapters.

 In this chapter, we continue our discussion of ASP.NET AJAX by delving into the
server-side portion of the framework, called the Ajax server extensions. If you’re
familiar with the basics of the server extensions, you may wish to skim this chapter
or jump ahead to chapters 6 and 7 to gain a deeper understanding of their inner
workings. Nonetheless, the foundation we lay here is important and will be benefi-
cial for even experienced Ajax developers.

 As the name implies, Ajax server extensions offer Ajax support for server-side
development. To help you understand why this is so valuable, we’ll expose some
of the issues and challenges of Ajax development from the client perspective.

4.1 Ajax for ASP.NET developers

An Ajax application runs in the browser and is written primarily in JavaScript.
This process is initiated when a richer and more intuitive application is delivered
from the server to the browser. This includes the logic for rendering and updating
the UI, as well as communicating with a server for data needs. The end result is an
application that runs more smoothly over time and provides a better user experi-
ence. This sounds great and is the recommended approach for Ajax develop-
ment. However, with this approach comes a new set of issues to address.

 For example, what about ASP.NET developers who are unfamiliar with Java-
Script or prefer to keep the application logic on the server? What about the rare
cases when the browser has JavaScript disabled? What about complex controls like
the GridView—does it make sense to rewrite these controls for the client? What
about security and exposing the application logic on the client?

 These are just a few of the common concerns that surface with Ajax develop-
ment. Thankfully, the ASP.NET AJAX framework offers an alternative.

4.1.1 What are the Ajax server extensions?

Built on top of ASP.NET 2.0, the Ajax server extensions include a new set of server
controls and services that simulate Ajax behavior on the client. The extensions

116 CHAPTER 4

Exploring the Ajax server extensions

don’t adhere to the Ajax model in the tradi-
tional sense but respond in a manner that pro-
vides that illusion to the end user. In this
chapter, we’ll focus on the server controls that
provide this functionality; the next chapter
will give you some insight into how ASP.NET
services such as authentication and profile are
also supported.

 As a quick overview, let’s look at the server
controls you have at your disposal. Figure 4.1
shows the new controls that are available to
the ASP.NET toolbox in Visual Studio. We’ll
cover each of these controls in this chapter by
explaining when and how they should be used.

 Since you’re reading this book (and have come this far), chances are you’ve
previously done some ASP.NET development. If you’re looking to take an applica-
tion you wrote previously and add Ajax support to it, then the next few sections
should be right up your alley.

4.2 Enhancing an existing ASP.NET site

The goal for the next few sections is straightforward: to take a traditional web
application written in ASP.NET and enrich the user experience by adding the Ajax
server extensions. In addition to showing how the controls are used, this
approach will also demonstrate why and how they’re applied in a normal situa-
tion. One of the reasons the server extensions are so enticing in this scenario is
that they allow you to rapidly integrate Ajax-like behavior into existing applica-
tions. It’s important to note that without some care and thought, use of the server
extensions can be abused and in some cases can even degrade performance.

 We’ll assess each portion of the application as we reach it; but first, here are
some general guidelines to keep in mind:

■ Improve network latency Do your best to cut back on the amount of data
passed between the browser and server. If you can eliminate unnecessary
data, network latency and response time will improve.

■ Eliminate full-page refreshes Keep the interaction between the user and the
application as fluid as possible, and avoid a full-page refresh whenever
feasible.

Figure 4.1 The Ajax server extensions
are a new set of server controls that
complement the already powerful
controls in the ASP.NET toolbox.

Enhancing an existing ASP.NET site 117

■ Keep UI and application logic in code-behind files Keep any logic used to ren-
der or manipulate the UI in the server-side code. This gives you the luxury
of supporting browsers that have JavaScript disabled as well as not exposing
logic to savvy web users via the client script.

■ Use seamless, transparent integration Try to keep the existing application
intact as much as possible so that future changes will be easy to integrate
and few or no changes to the existing logic will be required.

■ Stick to a familiar paradigm Leverage the server controls so that a typical
ASP.NET developer can continue to develop using an already familiar para-
digm (server controls and ASP.NET postback mechanism).

If you can meet these goals, you’ll have done something rather impressive. Let’s
begin our journey by examining the existing site you’ll be working with for the
remainder of the chapter.

4.2.1 A sample ASP.NET site

Figure 4.2 shows the home page for a fictitious and wealthy record company: Song
Unsung Records. Although it’s visually appealing, the application is in desperate
need of help in the usability department.

 For the sake of a realistic scenario, let’s imagine that the site has grown in pop-
ularity and that you’ve been brought aboard as a highly paid consultant to (you
hope) improve its usability and performance. After taking a quick look at the
interface, you notice immediately that a few areas on the page encourage user
interaction: the Artists search at the top, the list of recent feedback items at lower
left, and the section for news about a music genre on the right. Unfortunately,
interacting with some of the controls in these regions invokes a postback, which
causes the page to refresh and takes away any interaction the end user has with
the site.

 We briefly touched on postbacks in chapter 1, but it’s worth mentioning again
that a postback is costly because of the amount of data sent back and forth to the
server and the loss of interaction for the user. Understanding this behavior is
important because it’s an integral part of how ASP.NET behaves and what the Ajax
server extensions are all about.

118 CHAPTER 4

Exploring the Ajax server extensions

4.2.2 Configuring an existing ASP.NET site

Creating new sites that are Ajax-enabled is simple: You select the appropriate tem-
plate from the New Site dialog (see chapter 1 and appendix A) in Visual Studio,
and the configuration work is done for you. Taking an existing application and
adding Ajax support requires a few more steps. The first involves adding a refer-
ence to the library.

NOTE If you’re planning to follow along at home, you can download the files
from the book’s website. If you don’t currently have access to the code,
the snippets and concepts covered in the following sections are funda-
mental enough that you can grasp the concepts. The existing sample also
requires SQL Server Express—a free version of SQL Server that other
samples in the book use as well.

Figure 4.2 This application was written for a fictitious record company. Numerous areas on the
page encourage user interaction. Each interaction, unfortunately, causes the page to refresh.

Enhancing an existing ASP.NET site 119

To add a reference to a library in a website or project, you can select the Add Ref-
erence option from the Website or Project menu in the menu bar. You can also right-
click the site or project in the Solution Explorer tab of Visual Studio and choose the
same option. A dialog similar to the one depicted in figure 4.3 is displayed.

Postbacks in a nutshell
In ASP.NET, an event—typically a user-driven one such as the clicking of a button—
causes a page to send its contents back to the server for processing. This happens
principally because pages are stateless, and in order for the server to retrieve
the most recent status of a page, the page and all its contents are included in
the request back to the server. This is made possible by a hidden field on the
page called ViewState, which is responsible for storing information about the state
of all the server controls in an encoded format. As you can imagine, passing this
information back and forth on each postback can become costly over time, not
just in terms of bandwidth for the server but also in terms of frustration for the user.

One of the primary objectives of the Ajax server extensions is to find an alter-
native to some of this undesirable behavior. We’ll go deeper into postbacks later
in the chapter and with greater detail in the chapters that address the UpdatePanel
control. You should understand now that postbacks cause a full-page refresh to
occur, which is a behavior that Ajax applications seek to suppress or eliminate.

Figure 4.3
The System.Web.Extensions
library is visible in the .NET tab of
the Add Reference dialog. If this
isn’t visible but the framework has
been installed, then you can select
the ‘Browse’ tab to add the dll
manually. If you don’t see this,
you might want to investigate
your installation and confirm that
the framework has been
installed correctly.

120 CHAPTER 4

Exploring the Ajax server extensions

From the dialog, select System.Web.Extensions to add a reference to ASP.NET
AJAX—this should appear after you’ve successfully installed the framework. If this
option isn’t present in the list, take a moment to confirm that you’ve installed the
framework correctly, and then select the Browse tab to navigate to the Sys-
tem.Web.Extensions.dll file on your local machine. Next up is the web.config file
that defines some of the settings for the application.

 The web.config file defines the configurations of ASP.NET applications. Items
like handling error pages, permissions, and connections strings are placed there
for reference and integration with other libraries and components. For ASP.NET
AJAX, web.config is used to incorporate HTTP handlers, configuration settings,
the generating of proxies, and a few other settings that a website needs to leverage
the framework.

 Most developers create a new Ajax-enabled site and merge the changes
between the new web.config file and the one on their existing site. We’ll leave this
as exercise for you because it entails simple cut-and-paste steps that are too gratu-
itous to list here. For a detailed explanation of the web.config settings, see http://
ajax.asp.net/docs/ConfiguringASPNETAJAX.aspx. A helpful video is also available
on the ASP.NET AJAX homepage at http://www.asp.net/learn/videos/view.aspx?-
tabid=63&id=81.

 Assuming you’ve configured the site accordingly, it’s time to add Ajax support
by including the most important control in the framework: the ScriptManager.

4.3 ScriptManager: the brains of an Ajax page

The ScriptManager control is considered the brains of an Ajax-enabled page and
is by far the most important control in the framework. As we move along in this
chapter and throughout the book, we’ll demonstrate how to leverage the Script-
Manager and reveal its intricacies. The important thing to understand at this
point is that, as the name suggests, this control is responsible for many of the
operations that take place during an Ajax application.

 Because you want this control to be present on all the pages of the site, you
place it in the master page of the web application rather than in the home page
(or content page):

<asp:ScriptManager ID="ScriptManager1" runat="server" />

You place it in the master page so that any content pages that inherit from it receive
the same functionality. This is generally a good practice for similar controls that are
used across multiple content pages. Furthermore, this invisible control must be

ScriptManager: the brains of an Ajax page 121

declared before all other Ajax-enabled server controls in the page hierarchy to
ensure that they’re loaded and initialized accordingly.

 Even though the ScriptManager control isn’t declared in the content page,
you can easily retrieve an instance of it by calling its static method GetCurrent
and passing in the current Page instance:

ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);

With this instance, you can manage and configure the way the errors, scripts, and
other settings on the page behave. We’ll explore some of this in a moment; first,
let’s see what adding the ScriptManager to the page does to the application.

4.3.1 Understanding the ScriptManager

The primary responsibility of the ScriptManager is to deliver scripts to the browser.
The scripts it deploys can originate from the ASP.NET AJAX library—embedded
resources in the System.Web.Extensions.dll, local files on the server, or embedded
resources in other assemblies. By default, adding the control to the page, declara-
tively or programmatically, delivers the required scripts you need for Ajax function-
ality on the page. To see the evidence, right-click the home page from the browser,
and select the View Source option (or select View > Source in IE, or View > Page-
Source in Firefox). In the viewed source window, search for an occurrence of Script-
Resource.axd. You’ll find something similar to (but not exactly like) listing 4.1.

<script src="/04/ScriptResource.axd?d=zQoixCVkx8JK9a1Az_4OOriP7
 iw9S-TvBA24ugyHeZ8NSIfT6_bRe7yPttg-
 sOhCr1ud1jBUWNQa9KSAugqepLY7DN4cuXzH5ybztCger
 rk1&t=633141075498906250"
 type="text/javascript">
</script>

Listing 4.1 An example of how a script is deployed with the ScriptManager

More on master pages
Master pages are used to define a consistent look and feel, as well as behavior,
for a group of pages in an application. Each page that adopts the look and feel
of a master page is called a content page. Whenever possible, it’s best to place
the ScriptManager in a master page so that each content page that inherits from
it adopts the same behavior. For more information on master pages, visit http:/
/msdn2.microsoft.com/en-us/library/wtxbf3hh.aspx.

122 CHAPTER 4

Exploring the Ajax server extensions

Let’s decode what this tag means; this is at the core of how scripts are delivered to
the client.

 In ASP.NET 2.0, resources embedded in an assembly are accessed through the
WebResource.axd HTTP handler. In the ASP.NET AJAX framework, a new HTTP
handler called ScriptResource.axd replaces it with some additional functionality
for localization and browser compression. Listing 4.1 shows a reference to a script
assigned by the ScriptManager that is eventually downloaded by the new handler.

 What about the cryptic text? How does the browser decipher it, and what does
it mean? A closer look exposes two parameters: d and t. They assist the browser in
identifying and caching the resource. The first is the encoded resource key,
assigned to the d parameter. The second is the timestamp, t, that signifies the last
modification made to the assembly (for example, t=632962425253593750). When
the page is loaded a second time, the browser recognizes the parameters and
spares the user the download by using what’s in its cache to retrieve the resources.

NOTE Embedding resources in an assembly is a common technique for controls
and libraries that require resources like images and scripts. This
approach simplifies how controls are packaged and deployed.

Now that you understand how the scripts are downloaded, let’s see how you can
leverage the ScriptManager control to deploy additional scripts.

4.3.2 Deploying JavaScript files

Earlier, we examined how the ScriptManager control downloads resources to the
browser by using a new HTTP handler: ScriptResource.axd. You also got a glimpse
of this in chapter 2 when we discussed the Microsoft Ajax Library and how the
core JavaScript files in the framework are delivered and manipulated with the
ScriptManager. The next logical step is for you to learn how other scripts can
be deployed.

 The ScriptManager control has a property called Scripts that contains a col-
lection of ScriptReference objects. A ScriptReference is nothing more than a
way of registering a JavaScript file for use on a page. Listing 4.2 demonstrates how
to include a few scripts on the page using the ScriptReference collection.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/scripts/Script1.js" />
 <asp:ScriptReference Path="~/scripts/Script2.js" />

Listing 4.2 A ScriptReference, which registers files for deployment to a web page

ScriptManager: the brains of an Ajax page 123

 <asp:ScriptReference Assembly="Demo"
 Name="Demo.SuperScript.js" />
 </Scripts>
</asp:ScriptManager>
Cueballs in code and text

In the first two entries, local JavaScript files are registered as references for the
page. In the third entry, an embedded JavaScript file from an assembly is
deployed to the site. Each reference added to the collection results in another
ScriptResource.axd entry in the response’s payload to the browser.

 Now that you have a general grasp of how scripts are deployed, let’s examine
another functionality of the ScriptManager: registering service references.

4.3.3 Registering services

Working with JavaScript files is an important component of Ajax programming.
However, accessing the server for data from JavaScript is what makes Ajax truly
possible. In order to be granted this support with the ASP.NET AJAX framework,
you must register a service reference for each local web service you wish to inter-
act with.

 The ScriptManager has a property called Services that contains a collection
of ServiceReference objects. A ServiceReference object is a mechanism for regis-
tering services you can access from JavaScript. The end result is a JavaScript proxy
that serves as the gateway to the service from the browser. Listing 4.3 demon-
strates how to register local services with the ScriptManager.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Services/MainService.asmx" />
 <asp:ServiceReference Path="~/Services/TestService.asmx" />
 </Services>
</asp:ScriptManager>

Chapter 5 will take you deeper into how to communicate with services. For now,
you can see that the pattern for adding script references is also applied to service
references.

 Another important feature of the ScriptManager is the ability to support local-
ization for languages and cultures. Let’s quickly examine how this works before
moving back to the existing ASP.NET application.

Listing 4.3 A ServiceReference, which provides a gateway to the service from JavaScript

124 CHAPTER 4

Exploring the Ajax server extensions

4.3.4 Localization

The process of supporting specific languages and cultures in an application is
commonly referred to as localization. You can also consider localization the act of
translating the interface. In ASP.NET, this is typically done by embedding localized
resources into an organized structure of assemblies, also known as satellite assem-
blies. The ASP.NET AJAX framework supports both this model and a more client-
centric model of using static JavaScript files on the server. Let’s explore both of
these occurrences to gain a general grasp of localization.

Localized script files
Localized JavaScript files are nothing more than files mapped to a specific cul-
ture. You create this mapping by including the name of the UI culture in the file-
name. For instance, a script file that is targeted for the Italian language could be
named SomeScript.it-IT.js. The it-IT stands for the well-known culture identifier of
the Italian language in Italy. Proceeding with this pattern, a French version of the
file could appropriately be named SomeScript.fr-FR.js, and our comrades in the
Ukraine could name their file SomeScript.uk-UA.js (you get the point).

 Rather than implementing logic that gets the current culture on the user’s
machine and loads the correct file accordingly, you can (and should) use the
ScriptManager control to do the work for you. The first step in configuring this is
to enable script localization:

<asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptLocalization="true">
</asp:ScriptManager>

Setting the EnableScriptLocalization property of the ScriptManager to true
forces the control to retrieve script files for the current culture, if they’re avail-
able. By default, this property is set to false, which means it doesn’t perform any
localization lookup for you. Consequently, if you now include a script reference
for SomeScript.js, intentionally omitting the culture name, the appropriate file
is downloaded:

<asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptLocalization="true">
 <Scripts>
 <asp:ScriptReference Path="SomeScript.js" />
 </Scripts>
</asp:ScriptManager>

To reiterate, if the UI culture on your machine were set to Italian, then Some-
Script.it-IT.js would be downloaded. Under the hood, the ScriptManager uses the

ScriptManager: the brains of an Ajax page 125

naming convention you just exposed to look for a match against the current cul-
ture. You can also force a specific culture by setting the ResourceUICultures
property in the ScriptReference:

<asp:ScriptReference Path="SomeScript.js"
 ResourceUICultures="it-IT" />

Pretty straightforward so far, but what about debug versions of your JavaScript
files? In section 2.1.3, you were introduced to the ScriptMode property, which
determines the version of a script file to load: release, debug, or auto (based on
configuration settings on the page or site). Luckily, the same applies to localized
scripts—if you had a debug version of the file called SomeScript.debug.it-IT.js, you
could load it explicitly by setting the ScriptMode property:

<asp:ScriptReference Path="SomeScript.js" ResourceUICultures="it-IT"
 ScriptMode="Debug" />

The result is that the debug version of the Italian resource is loaded. That’s all
there is to localization on static JavaScript files. Next, let’s see how loading script
resources from an assembly works with ASP.NET AJAX.

Using assembly resources
Packaging scripts and resources as embedded assets into an assembly is a common
technique that control developers use. This approach is popular primarily
because it simplifies how resources are deployed with the control.

 In order for a resource to be recognized by the ASP.NET AJAX framework, it
must be decorated with the WebResource attribute:

[assembly: WebResource("ControlNamespace.Control.js",
 "text/javascript")]

In this example, ControlNamespace represents the default namespace used in the
assembly. The remaining portion, Control.js, is the name of the resource.

 It’s highly recommended that the JavaScript file in the assembly not contain
any hard-coded string literals. Instead, it should look up values from a resource
file that follows the same naming conventions for the scripts. For example, you
could use a .NET resource file named Messages.it-IT.resx (or Messages.en-IE for
our Shillelagh-wielding friends in Ireland) to define strings for that culture. The
ASP.NET AJAX script loader automatically converts the .NET string resources into a
JavaScript object:

Messages={
"SayThankYou":"Grazie mille.",
"EnjoyMeal":"Buon appetito!"
};

126 CHAPTER 4

Exploring the Ajax server extensions

The logic on the client can then be UI culture-independent and reference the
string easily:

alert(Messages.SayThankYou);

This gives you a general understanding of how to use embedded scripts in a local-
ization context. The topic of how to embed resources into assemblies is slightly
out of the scope of this section; for more detailed information, see http://
msdn2.microsoft.com/en-us/library/ms227427.aspx.

 Most of the work of loading and managing localization is handled by the
ScriptManager, thus saving you a load of code and time. Using the ScriptManager
for localization also comes with additional benefits.

ScriptManager localization benefits
If your application supports multiple cultures, we strongly recommend loading
and leveraging the ScriptManager for localization support. Some of the benefits
of using the control include:

■ UI culture detection—When the EnableScriptLocalization property is
enabled, the ScriptManager detects and loads the appropriate script
resource for you.

■ Custom UI culture support—The ResourceUICultures property in the Script-
Reference object lets you override and determine which UI cultures are sup-
ported for a particular script.

■ Avoidance of indefinite caching—The ScriptManager employs a timestamp to
ensure that embedded scripts aren’t cached indefinitely by the browser.

■ Encrypted URLs to resources—As a security measure, the key that directs the
browser to the appropriate script is encrypted.

The ScriptManager makes localization very easy and includes an additional set of
features that make it an attractive solution for managing localization.

 You should now have a general idea of what the ScriptManager is capable of.
More instances of how and when it should be used are covered throughout the
book as we mentioned. Let’s get back to the application and make use of another
server control called the ScriptManagerProxy.

4.3.5 Using the ScriptManagerProxy

One and only one ScriptManager can exist on a page. Adding more than one
causes an InvalidOperationException to be raised at runtime. But in some situa-
tions, a content page may require a reference to a service or script that isn’t made

Partial-page updates 127

by the ScriptManager in the parent or master page. The additional references
may also be required for only a single page and not for others. In these situations,
the ScriptManagerProxy control comes to the rescue.

 Suppose the customer has requested that you include a certain script on the
home page but not on any of the other pages on the site. Adding this script to the
master page would deploy it everywhere, which is the undesired result. Instead,
you can leverage the ScriptManagerProxy on the target page to ensure that it’s
included only there.

<asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/scripts/DummyScript.js" />
 </Scripts>
</asp:ScriptManagerProxy>

Just like its parent control, the ScriptManagerProxy has a collection of script and
service references. Think of the ScriptManagerProxy as an extension of the
ScriptManager control: The influence and settings of the ScriptManager control
can be extended to content pages, user controls, and more. At runtime, the set-
tings are merged for each page accordingly.

 The key purpose of the ScriptManagerProxy is to add references that weren’t
included with the ScriptManager. This situation occurs most commonly when
you’re working with master pages.

 We’ve been laying the groundwork by adding support for the Ajax framework
and dropping in the ScriptManager control to deploy JavaScript files. Now we
can address those dreaded postbacks and start enhancing the overall user experi-
ence. We’ll return to the ScriptManager later in the chapter when we discuss
error handling.

4.4 Partial-page updates

Earlier in the chapter, we listed the goals for the existing application and men-
tioned that eliminating complete page refreshes from occurring would greatly
enhance the user experience. To reiterate, instead of updating the whole page all
at once, as in traditional ASP.NET applications, you should strive to update only
portions of the page—dynamically, without changing any of the application logic
if possible.

Listing 4.4 Using the ScriptManagerProxy control in a master-page scenario

128 CHAPTER 4

Exploring the Ajax server extensions

 In a conventional Ajax solution, when the UI and application logic reside on
the browser, you’re responsible for updating the UI with DHTML techniques and a
strong grasp of JavaScript. With the UpdatePanel control, the burden of this type
of development is abstracted away with all the heavy lifting done for you by the
server extensions. The best way to fully understand this is to see it in action.

4.4.1 Introducing the UpdatePanel control

The UpdatePanel is an Ajax-enabled server control that works closely with the
ScriptManager to apply partial-page updates to a page. Portions of the page
declared by the UpdatePanel can now be updated incrementally rather than as a
result of a page refresh. To demonstrate, let’s add the UpdatePanel control to the
existing application.

 The right column on the home page displays news about a selected genre.
Using a DropDownList control to display the available genres and a Repeater con-
trol to display news about the selected item, the controls work together to inform
the user about the latest relevant news. When the user selects a new item in the
drop-down list, a postback occurs, and the page is refreshed. Examining the
markup for the DropDownList explains this behavior.

 In listing 4.5, you can see that the AutoPostback property of the dropdown list
is set to True. As you can probably guess, this setting invokes the postbacks on each
selection change. During the postback, the server-side code processes the request
by looking up the selected genre and retrieving its relevant news. Listing 4.6 dem-
onstrates how the server code binds the Repeater control on the form with news
about the selected genre.

<asp:DropDownList ID="Genres" runat="server" AutoPostBack="True"
 OnSelectedIndexChanged="Genres_SelectedIndexChanged" >
 <asp:ListItem Text="Rock" Value="~/App_Data/RockFeed.xml"
 Selected="true" />
 <asp:ListItem Text="Jazz" Value="~/App_Data/JazzFeed.xml" />
 <asp:ListItem Text="Blues" Value="~/App_Data/BluesFeed.xml" />
</asp:DropDownList>

Listing 4.5 Selecting an item from the music genre list generates a postback to
 the server.

Partial-page updates 129

protected void Genres_SelectedIndexChanged(object sender,
 EventArgs e)
{
 UpdateGenre();
}

private void UpdateGenre()
{
 GenreSource.DataFile = Genres.SelectedValue;

 GenreNews.DataBind();
}

The Genres_SelectedIndexChanged method is invoked when the selected genre
is changed. It then calls the B private UpdateGenre method to C configure the
data source (in this case it’s an XML file that represents an RSS feed) and D
rebind the Repeater.

 Because each selection invokes a page refresh, the behavior in the browser
isn’t appealing to users. Technically, however, it makes a lot of sense. This pattern
is common in ASP.NET applications. The postback mechanism is frequently used
(and, unfortunately, often abused) to bridge the gap between what is displayed on
the UI and the logic on the server.

 If you add the UpdatePanel control, you can keep everything intact and
change the way it behaves for the user. The next time you run the site and select a
new genre, the news for a recently selected item is updated without a full-page
refresh. For clarity, the relevant source on the page is included in listing 4.7.

<asp:UpdatePanel ID="GenrePanel" runat="server">
 <ContentTemplate>
 <div class="columnheader">Music News:
 <asp:DropDownList ID="Genres" runat="server"
 AutoPostBack="True"
 OnSelectedIndexChanged="Genres_SelectedIndexChanged" >
 <asp:ListItem Text="Rock" Value="~/App_Data/RockFeed.xml"
 Selected="true" />
 <asp:ListItem Text="Jazz" Value="~/App_Data/JazzFeed.xml" />
 <asp:ListItem Text="Blues" Value="~/App_Data/BluesFeed.xml" />
 </asp:DropDownList>
 </div>

Listing 4.6 Selecting an item in the list updates the Repeater’s data source.

Listing 4.7 Dynamically updating regions during asynchronous postbacks

Call method to
update newsB

Update data
source

C

Bind to latest
data sourceD

130 CHAPTER 4

Exploring the Ajax server extensions

 <asp:Repeater ID="GenreNews" runat="server"
 DataSourceID="GenreSource" >
 <ItemTemplate>
 <div class="newshead">
 <asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl='<%#XPath("link") %>'
 Text='<%#XPath("title") %>' />

 <asp:HyperLink ID="HyperLink2" runat="server"
 NavigateUrl='<%#XPath("link") %>' Text="[read more]" />
 </div>
 </ItemTemplate>
 </asp:Repeater>
 <hr />
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>

 <asp:XmlDataSource ID="GenreSource" runat="server"
 DataFile="~/App_Data/RockFeed.xml" XPath="/rss/channel/item">
 </asp:XmlDataSource>

 </ContentTemplate>
</asp:UpdatePanel>

The ContentTemplate property of the UpdatePanel class defines the regions of
the page that are updated dynamically. This time, instead of a normal postback
that refreshes the entire page, a new type of postback is introduced: an asynchro-
nous postback. An asynchronous postback goes through the page lifecycle and
operates like a normal postback, minus the page refresh. This refreshing (pun
intended) news means the logic for the UI and application can remain intact.

 To demonstrate, let’s add code to detect when you’re in an asynchronous post-
back by asking the ScriptManager control for more information; see listing 4.8.

protected void Page_Load(object sender, EventArgs e)
{
 ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);

 if (scriptManager.IsInAsyncPostBack)
 {
 // We are doing something cool!
 }
}

Listing 4.8 During an asynchronous postback, the page goes through the normal
 page lifecycle.

Return instance of ScriptManager B

Check for asynchronous
postbackC

Partial-page updates 131

You first B retrieve an instance of the ScriptManager on the page by calling the
static method GetCurrent and passing in the parent page. Remember, you
declared the ScriptManager on the master page, not the content page, so this is
the best way to find and retrieve an instance of the ScriptManager when in a con-
tent page (or child control). An alternative would be to find the control in the
Controls collection of the master page, but this approach is ostensibly much sim-
pler—under the hood, it does the same thing.

 Next, you query the C IsInAsyncPostBack property of the ScriptManager to
determine if you’re in the process of handling a normal postback or an asynchro-
nous one. This offers you the option of coding custom logic for each occasion.

WARNING Adding an UpdatePanel to a page seems so effortless, and the rewards
are so great, that many developers entertain the idea of placing the con-
tents of an entire page in a single UpdatePanel. This practice is highly
discouraged. Although the illusion of Ajax is present, the cost of each
postback is significant, and the application’s overall performance will suf-
fer greatly over time. As a general rule, try to avoid such solutions, and
instead look for portions of the page that can be updated instead of the
entire page.

So far, so good—you’ve added a single UpdatePanel to the page and in the pro-
cess stopped a page refresh from happening each time the user selects a different
music genre. Let’s now place the focus on the other interactive portion of the site:
the feedback area.

4.4.2 More UpdatePanels

Adding multiple UpdatePanel controls to a page is not only supported but also
encouraged. Doing so means that more regions of the page can be updated
dynamically instead of each time a page refreshes. This approach also allows you
to take more control of which portions of the page are updated and which ones
aren’t, thus helping conserve the amount of data passed between the client and
server during each postback. To demonstrate, let’s add another UpdatePanel to
address the postbacks that come out of the page’s Recent Feedback section.

 Figure 4.4 captures Visual Studio’s Design view of the related controls before
adding the UpdatePanel. You see a GridView control that is used to display, sort,
and page through feedback items. Below the GridView is a DetailsView control
that is used to enter new feedback to the site.

 Each time the user attempts to sort, navigate to the next page of results, or add
feedback, a postback occurs. Because both controls invoke postbacks and are rela-
tively close to each other in the page layout, you can place a single UpdatePanel

132 CHAPTER 4

Exploring the Ajax server extensions

around both of them. After adding the UpdatePanel, the design view of the form
resembles figure 4.5.

 When you run the site once more, the page refreshes previously invoked from
interaction with the news and feedback sections are gone. It’s worth mentioning
again that postbacks still occur, but now they take place asynchronously and, as a
result, update the page incrementally, thus eliminating the flicker.

 Unfortunately, you aren’t done yet. As you hand over the site to the client for
testing, they notice a behavior that they deem undesirable. When a new feedback
item is entered, the contents of both UpdatePanel controls are updated instead
of just the one for recent feedback. In other words, when a user enters in a new

Figure 4.4
This snapshot is from the Design view in Visual
Studio; it shows the state of the controls before
adding Ajax support.

Figure 4.5
Adding the UpdatePanel around the GridView and
DetailsView controls replaces their traditional
postbacks with asynchronous postbacks.

Partial-page updates 133

feedback item or sorts one of the columns, the recent news about a genre (on
the right side of the page) also gets updated. You can confirm this by sorting a
column like Name on the GridView and watching the Last Updated time in the
right column change.

 The content of both UpdatePanel controls is updated because by default,
every time an asynchronous postback occurs on the page, regardless of which con-
trol on the page invoked the postback, an UpdatePanel updates its contents. To
solve this, all you need to do is set the UpdateMode property on both panels to
Conditional. Doing so tells the UpdatePanel to update its contents only if the
postback originates from within itself (from one of its child controls).

TIP The default value for the UpdateMode on UpdatePanel controls is Always.
However, this setting is rarely needed. A best practice is to always set the
mode to Conditional and let the Always condition present itself natu-
rally in your application. Doing so cuts back on the amount of data passed
between the server and client and ultimately increases the site’s perfor-
mance. There are limitations to both, which we’ll cover in chapters 6
and 7, dedicated to the UpdatePanel control.

This time, when you run the site again, only the contents of the UpdatePanel rela-
tive to the user interaction are updated.

 Let’s take a moment to recap. So far in the chapter, you’ve eliminated full-page
refreshes, you’ve cut back on the amount of data passed between the client and
server, and you’ve kept all the application and UI logic on the server intact. You’ve
also improved network latency and written no JavaScript code in the process! For
extra credit, if the browser had JavaScript disabled, the existing application would
continue to function, with normal postbacks and page refreshes—just as it did
before you made any updates.

 Because most of the initial goals have been met, and given that this is ulti-
mately all about the user experience, perhaps you can find other things to add to
the site that add more value and interactivity for the user.

4.4.3 Insert feedback here

Adding the UpdatePanel controls to the site radically improves the behavior and
overall feel for users. They’re spared a page refresh when they interact with the
controls, which is a tremendous improvement from the intermittent nature you
had before. But as a side effect of this achievement, the user isn’t given any indica-
tion that something is being updated until it has happened.

134 CHAPTER 4

Exploring the Ajax server extensions

 Imagine (for the sake of this example) that the source used to retrieve infor-
mation about a music genre comes from an external RSS feed. This scenario intro-
duces the possibility of slow responses when retrieving a news feed, which means
partial-page updates may not happen immediately—and may not happen for
quite a while. Previously, the page refresh was an indication that something was
happening and that eventually the page would be updated. With partial-page
updates, the user is given no visual cue that their actions have been accepted and
that work is being done on the other end.

 Fortunately, in chapter 1, we introduced the UpdateProgress control as a solu-
tion for this problem. You’ll use the control again here to notify the user that
you’re retrieving news about the selected genre. Listing 4.9 shows the insertion of
the UpdateProgress control on the page, right before the Repeater control that
displays the recent news.

<asp:UpdateProgress ID="UpdatingNews" runat="server"
 AssociatedUpdatePanelID="GenrePanel" >
 <ProgressTemplate>

 Loading ...
 </ProgressTemplate>
</asp:UpdateProgress>

First, you’d prefer to display the contents of the UpdateProgress control only
when news about a genre is being retrieved, and not when other UpdatePanel
controls are being updated. To accomplish this, you set the B AssociatedUp-
datePanelID property to the ID of the UpdatePanel associated with the music
news. This lets you have multiple UpdateProgress controls on a single page and
gives you added control over how the page is rendered during an asynchronous
postback. The UpdateProgress control has a C ProgressTemplate property that
encapsulates what is to be displayed during an asynchronous postback. For this
instance, you use an animated GIF image and some informative text.

 Now, when you select a new item from the drop-down list, a subtle but informa-
tive message is presented while the data is retrieved. Figure 4.6 displays the
UpdateProgress control in action.

Listing 4.9 Displaying the UpdateProgress control when the UpdatePanel’s contents
 are being updated

Assign to specific
UpdatePanelB

Displayed during
postback

C

Partial-page updates 135

TIP It’s easy to get carried away with Loading messages. In general, you should
try to inform the user with a subtle and informative message that is rele-
vant to the portion of the page being updated. Unless the entire page is
being updated, it’s usually more considerate and less intrusive to use
smaller, useful icons and text to relay messages to the user. Gratuitous
messages can have a negative effect on the overall user experience and
should generally be avoided.

You’re almost finished with the server-extension controls. You’ve used every one
of them except the Timer control, which, when used effectively, can complement
the UpdatePanel control and give you the ability to apply partial-page updates at
set intervals.

4.4.4 Working with a timer

Included in the Ajax server extensions is a control called the Timer. As its name
implies, the control creates a timer on the client that invokes a postback at an
interval you specify (in milliseconds). For the existing application, you’ll use the
Timer control in conjunction with the UpdatePanel to retrieve and display the lat-
est news about the selected genre. Because news about a genre can change often,
this subtle addition adds a little extra value to the site because it keeps the user’s
attention. Listing 4.10 shows how to declare the Timer control on the page.

<asp:Timer ID="NewsTimer" runat="server" Interval="10000"
 OnTick="UpdateNews" />

Listing 4.10 The Timer runs in the client and invokes a postback at each interval.

Figure 4.6 The UpdateProgress control offers a simple and useful tool
for keeping the user informed about asynchronous updates on the page.

136 CHAPTER 4

Exploring the Ajax server extensions

The declaration sets the interval to 10 seconds (or rather, its equivalent, 10000
milliseconds) and also assigns an UpdateNews handler to the OnTick event. Nor-
mally, this would be too frequent of an interval for news updates—we use it here
for demonstration purposes only. Also, for reasons we’re about to discuss, you
place the Timer control outside the UpdatePanel instead of in the ContentTem-
plate declaration, as in previous examples.

TIP It’s important to understand that the ticks for the Timer happen on the
browser, not the server. Using this control requires you to be mindful of
the system resources on the end user’s machine. In general, set the con-
trol’s interval to the highest value possible. Setting the interval value to
too short an amount may put too much strain on the system and cause
unpredictable behavior.

To accompany the declarative code, the server-side code calls the same Update-
Genre method used earlier to update the interface. Listing 4.11 shows the code-
behind for the Tick event handler.

protected void UpdateNews(object sender, EventArgs e)
{
 UpdateGenre();
}

private void UpdateGenre()
{
 GenreSource.DataFile = Genres.SelectedValue;
 GenreNews.DataBind();
}

Because the Timer control isn’t encapsulated by the UpdatePanel, each interval
that invokes a postback causes the page to refresh. This happens because the
UpdatePanel hasn’t been made aware that you’d like to use the Tick event of the
Timer control to invoke an asynchronous postback. To resolve this, you register
the Tick event with the UpdatePanel by adding the event to the control’s Trig-
gers collection. The next time you run the application, you’ll notice that the Last
Updated time is incremented at each interval.

 Listing 4.12 shows the entire contents of the music genre section as well as the
declaration of the Timer control at the end.

Listing 4.11 The Tick event, which calls the private UpdateGenre method

Partial-page updates 137

<asp:UpdatePanel ID="GenrePanel" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <div class="columnheader">Music News:
 <asp:DropDownList ID="Genres" runat="server"
 AutoPostBack="True"
 OnSelectedIndexChanged="Genres_SelectedIndexChanged" >
 <asp:ListItem Text="Rock" Value="~/App_Data/RockFeed.xml"
 Selected="true" />
 <asp:ListItem Text="Jazz" Value="~/App_Data/JazzFeed.xml" />
 <asp:ListItem Text="Blues" Value="~/App_Data/BluesFeed.xml" />
 </asp:DropDownList>
 </div>

 <asp:UpdateProgress ID="UpdatingNews" runat="server"
 AssociatedUpdatePanelID="GenrePanel" >
 <ProgressTemplate>
 Loading ...
 </ProgressTemplate>
 </asp:UpdateProgress>

 <asp:Repeater ID="GenreNews" runat="server"
 DataSourceID="GenreSource" >
 <ItemTemplate>
 <div class="newshead">
 <asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl='<%#XPath("link") %>'
 Text='<%#XPath("title") %>' />

 <asp:HyperLink ID="HyperLink2" runat="server"
 NavigateUrl='<%#XPath("link") %>' Text="[read more]" />
 </div>
 </ItemTemplate>
 </asp:Repeater>
 <hr />
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>

 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="NewsTimer"
 EventName="Tick" />
 </Triggers>
</asp:UpdatePanel>

<asp:Timer ID="NewsTimer" runat="server" Interval="10000"
 OnTick="UpdateNews" />

Listing 4.12 Registering the Timer control’s Tick event to ensure asynchronous
 postbacks

Register async
postback Postback

every 10
seconds

138 CHAPTER 4

Exploring the Ajax server extensions

You’ve now used every control in the Ajax server extensions, and the result is an
application that is far more engaging and responsive than when you started.
Along the way, you picked up a collection of best practices for getting the most
out of the extensions, and you also got a glimpse into how the ScriptManager
works under the hood.

 But you’re not done yet. Even the best applications contain errors or raise
exceptions.

4.4.5 Error handling

Things have been working smoothly so far, but in the real world, errors and
exceptions occur. To wrap up this chapter, let’s examine what you have at your dis-
posal to make handling these occurrences more manageable. Listing 4.13 shows a
snippet of code that purposely throws an exception after the user has selected a
new music genre from the drop-down list.

protected void Genres_SelectedIndexChanged(object sender,
 EventArgs e)
{
 UpdateGenre();
 throw new Exception("Look out!");
}

Earlier, you set the AutoPostBack property of this con-
trol to true and also placed it in an UpdatePanel. This
means the postback that originates from here is asyn-
chronous, also known as an Ajax postback. Typically,
depending on the settings of the web.config file, an
error during a normal postback results in the stack
trace and error information being shown on the screen.
This time, the browser relays the exception information
in a dialog box (see figure 4.7).

 This result can be informative for developers, but
displaying the same message from the exception back
to the user isn’t always the best idea. Fortunately, the
ScriptManager control throws an event called AsyncPostBackError that provides
you with an opportunity to update the text in the dialog box before it’s presented
to the user. Listing 4.14 demonstrates how a handler for the event is registered
and the message updated before reaching the user.

Listing 4.13 Throwing an exception to see how the page handles it

Figure 4.7 By default,
exceptions that occur during
asynchronous postbacks are
displayed in alert dialogs.

Partial-page updates 139

protected void Page_Load(object sender, EventArgs e)
{
 ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);
 scriptManager.AsyncPostBackError += new
 EventHandler<AsyncPostBackErrorEventArgs>(OnAsyncPostBackError);
}

void OnAsyncPostBackError(object sender,
 AsyncPostBackErrorEventArgs e)
{
 ScriptManager.GetCurrent(this.Page).AsyncPostBackErrorMessage =
 "We're sorry, an unexpected error has occurred.";
}

Now, when you select another music
genre from the list, you’re presented
with a message box that contains the
custom message instead of the one
coming from the exception.

 Even with the custom error mes-
sage, it’s still considered a best practice
to provide a default error page for a
website rather than display an alert dia-
log or stack trace to the user. This way,
when an exception occurs, the user is redirected to a friendly page that is infor-
mative and useful. The mechanism for handling errors is configurable in the cus-
tomErrors section of web.config:

<system.web>
 <customErrors mode="On|Off|RemoteOnly"
 defaultRedirect="ErrorPage.aspx">
 ...
 </customErrors>

The mode property of the customErrors section governs how error messages are to
be handled. When this property is set to On, the user is redirected to the error page
defined in the defaultRedirect property. The Off setting always shows the stack
trace—or, in this case, the dialog box with the error message. The RemoteOnly
value redirects the user to the error page only if they’re on a remote machine; oth-
erwise, the same behavior used for the Off setting is applied. Due to its flexibility,

Listing 4.14 Raising the AsyncPostBackError event before the dialog is displayed
 to the user

Figure 4.8 You can change the error message
during the AsyncPostBackError event.

140 CHAPTER 4

Exploring the Ajax server extensions

the RemoteOnly setting is the most appropriate for developers who wish to debug
applications locally and view details about exceptions as they occur.

 The ScriptManager control provides a property for overriding this mechanism.
By default, the AllowCustomErrorsRedirect property is set to true. This setting
honors the values set in the customErrors section. Setting this property to false
forces the dialog to appear when exceptions occur (see listing 4.15).

protected void Page_Load(object sender, EventArgs e)
{
 ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);
 ...
 scriptManager.AllowCustomErrorsRedirect = false;
}

The AllowCustomErrorsRedirect value must be set on or before the Load event
in the ASP.NET page lifecycle. Doing so afterward has no affect on the settings
configured in the customErrors section. Chapter 7 will show you how to handle
errors more elegantly when we examine the events that occur on the client side
during asynchronous postbacks.

 For now, the lesson is this: always provide a general error page for users. If you
have to show the user a dialog box during an exception, handle the AsyncPost-
BackError event to display a friendly and user-centric message as opposed to the
message from the exception itself.

4.5 Summary

We began this chapter by presenting an alternative to client-side Ajax develop-
ment. Using the Ajax server extensions, ASP.NET developers can simulate Ajax
behavior in the browser. Sometimes a client-centric Ajax solution isn’t appropriate
for a site. In these cases, you can still use a server-centric solution that leverages
these new controls to improve the user experience. In many situations, using both
approaches makes sense.

 The next chapter will round out your understanding of the core ASP.NET AJAX
framework by examining how asynchronous calls are made from the browser. It
will also pick up where we left off with the server extensions by exposing how you
can use the authentication and profile services in ASP.NET from client script.

Listing 4.15 The AllowCustomErrorsRedirect property overrides the web.config
 settings.

