

vii

brief contents

Part I Code generation fundamentals 1

1 Overview 3

2 Code generation basics 28

3 Code generation tools 43

4 Building simple generators 61

Part II Code generation solutions 97

5 Generating user interfaces 99

6 Generating documentation 127

7 Generating unit tests 139

8 Embedding SQL with generators 159

9 Handling data 172

10 Creating database access generators 190

11 Generating web services layers 230

12 Generating business logic 251

13 More generator ideas 264

3

C H A P T E R 1

Overview

1.1 A generation case study 4
1.2 Benefits of code generation

for engineers 15
1.3 Benefits of code generation

for managers 16
1.4 The code generation process 17

1.5 The buy/build decision 23
1.6 Code generation at its best 25
1.7 Top ten code-generation rules 25
1.8 Generators you are using today 27
1.9 Summary 27

Code generation is about writing programs that write programs. With today’s complex
code-intensive frameworks, such as Java 2 Enterprise Edition (J2EE), Microsoft’s .NET,
and Microsoft Foundation Classes (MFC), it’s becoming increasingly important that
we use our skills to build programs which aid us in building our applications. Gener-
ally speaking, the more complex your framework, the more appealing you will find a
code generation solution.

This book is the first to cover the breadth of high-level code generation at the theory
level. As we drill down into implementation, we show you how to create generators rang-
ing from very simple coding helpers that you can write in an hour or two, to complex
generators that build and manage large portions of your application from abstract mod-
els. The book will also aid you in using generators which you can find on the shelf—
we explain not only how to find the generators appropriate to your task, but also how
to customize and deploy them.

To understand why generators are so valuable, let’s start with a hypothetical case
study illustrating the building of applications using generation.

4

CHAPTER 1

O

VERVIEW

1.1 A

GENERATION

CASE

STUDY

In this section, we examine a case study that shows the potential for code generation in
modern application development. Our case study examines a corporate accounting
application. Because of the complex nature of the accounting work, the initial schema
has 150 database tables. By any estimation, it is a massive effort. The requirements spec-
ify that the application work in both a client/server mode as well as over HTTP using
a web interface.

We chose Java and Enterprise JavaBeans (EJB) as our back-end database access layer,
JavaServer Pages (JSP) for the web pages, and Swing for the client portion of the client/
server model. This is a standard J2EE architecture. Figure 1.1 shows the block diagram
for the accounting application.

The design is simple and standard. The web client comes in through the Tomcat/JSP
layer, and the desktop client comes in through a Swing interface that will talk directly
(over Remote Method Invocation, or RMI) to the database access layer. This common
database access layer encapsulates both database persistence and business logic. The
database access layer, in turn, talks directly to the database.

1.1.1 Step 1: generating the database access layer

The code generation portion of the story starts with the building of the database
access layer. We establish two teams: one for the database access layer and one for the
user interface. We’ll start with the database access team.

Our implementation of the EJB architecture specifies five classes and two inter-
faces per table. This is not a usual object/relational mapping in the EJB model. Each
class or interface is in its own file. These seven files make up a single EJB “entity.”
Seven files multiplied by 150 tables tells us that we are already looking at 1,050 files
for the EJB entities. It’s a big number, but it is not unusual for a J2EE system with
this many tables.

We build from scratch four EJB entities all the way to completion. These entities
provide a cross section of the various table structures we have in our schema. Building
just these files takes four man-weeks.

Figure 1.1

The architecture of a J2EE accounting

application. The business logic is included

in the database access layer.

A

GENERATION

CASE

STUDY

5

At this point, the schedule looks bad, with only four tables built in four weeks. By
extrapolating this timetable, we calculate that the database access layer alone will take
three man-years of effort. We must reduce that schedule significantly.

The first thing we notice about the EJB code is that it is pretty standardized, which
means it is going to entail a lot of monotonous work. We’ve had some experience with
generators in the past and think that a code generator can be successful in this case.
Our previous experience tells us that the first version of the generator will take about
two weeks to build. We decide to take the risk and spend two weeks building a gen-
erator to create the EJBs.

Using the four example EJBs we have already built, we create templates for a
template-based generator. As you’d expect, a template-based generator uses a page-
template language (e.g., JSP, ASP, or PHP) to build code. Instead of creating web
pages dynamically, we build class implementation files or Extensible Markup
Language (XML) deployment descriptors. Figure 1.2 shows the processing flow of our
database access layer generator.

The generator takes an XML file as input. This file defines the tables and fields of
the database and feeds this input to a series of templates—one template per output file
type—and stores the output of the template in the target files. These target files
include the database access EJBs (all seven files per table), the Structured Query
Language (SQL) for the database, and the deployment descriptors.

This technique is known as

model-driven generation

. The model of the system is
abstracted into the schema definition file, which is used to build large portions of the
production system. The model can be generated by hand or by using a tool such as
Rational Rose, which can export Unified Modeling Language (UML) in XML form.

Our first pass of the generator builds the EJB files, the deployment descriptors, and
the schema file for the database. Rather than start with all 150 tables, we pick 10 that
together provide a solid test set of the various table types.

The initial results are encouraging. The SQL for the first 10 database tables is built
properly on the first try. The EJB classes have some initial problems, but we are able

Figure 1.2 The database generator builds the database access classes.

6

CHAPTER 1

O

VERVIEW

to debug the classes and then alter the templates accordingly. Running the generator
fixes bug occurrences across all the EJBs.

This is a good start, but we want an end-to-end test—one that will show the system
working through a web server. We decide to upgrade the generator to have it also build
a set of simple JSP test pages that will work through the EJB layer. This will not be
the finished interface, but it will allow us to create a simple unit test of our database
access layer. At this point the generator block diagram looks like the one shown in
figure 1.3.

Again the results are encouraging. The generator builds test pages that will test the
EJB session beans to make sure the whole system works from end to end. To make it
simple, our test pages map one to one with the session beans. We know that there will
be a more complex mapping between entities and production pages because of the
requirements of the user interface.

Now we are able to make some observations about the code generation workflow
and its benefits:

• Our work on the generator itself is both interesting and motivating. It also
broadens our engineering experience.

• We are moving much more quickly toward completion than we would have if
we had been hand-coding.

• We are pushing our understanding of both EJB and JSP and finding issues early
that we believe we would not otherwise have found until much later.

• We experiment with various types of EJB implementation styles to spot perfor-
mance or deployment issues. Having the generator means we can write the code
one way and try it, and then change the template to try another approach.

Code generation for the database access layer is no longer an option; it is now the
implementation model. The next step is to complete the schema definition XML file,
which we accomplish with the aid of an XML editing tool such as Altova’s XMLSpy.

Figure 1.3 The generator builds the JSP test pages as well as all the previous output files.

A

GENERATION

CASE

STUDY

7

Figure 1.4 shows how the database generator builds portions of the complete system.
In the figure, the production units have a solid black border and the generator has a
dark-gray border. A light-gray border indicates an output file, and user-editable files
have a dotted light-gray border.

An accounting application is not just schema; it also includes business logic that
defines how the schema is used. The schema definition file shown in figure 1.4 is a
combination of files that includes the schema and extensions for custom business
logic. These are merged together during the construction of the database access classes.
We find that putting the business logic and the schema together in a single place
makes maintenance and synchronization much easier.

In total, the generator for the database access layer takes four weeks to design,
implement, and test—a little longer than the anticipated two weeks, but we can deal
with that given the productivity gains. (This timeframe is somewhat misleading
because the generator and its templates are software and, as such, require long-term
maintenance as the project evolves.)

Some initial project metrics

Our estimation of how long it would have taken to hand-code all 1,050 classes is
three man-years; it takes us one man-month to build the generator. This represents a
significant reduction in our schedule. The resulting EJBs are much more consistent
than any we would have handwritten, and they contain all of the functionality we
could want. In addition, if large-scale changes are required we can alter the templates
and roll them out across the entire code base in seconds.

Figure 1.4 How the database generator fits into the accounting application architecture

8

CHAPTER 1

O

VERVIEW

It’s not all about schedule time, though; there are other metrics to analyze.
Table 1.1 compares hand-coding and code generation for the database access layer.

1.1.2 Step 2: generating the user interface

While the database access layer team is busy building the generator, the front-end team
is hard at work designing the user interface for our application.

Once the database access team has finished with the first four EJB entities, the user
interface team develops all of the necessary pages to support them by hand. For each
table, it takes one man-week.

After this prototype phase, we take account of where we are. We know that the
engineers will improve their speed over time, but with padding, the schedule for the
web user interface is projected to take three man-years to cover all 150 tables with
JSP pages.

We decide to use generation for the user interface as well. Given our success with
a template-based generator for the database access layer, we decide to use a similar

Table 1.1 A comparison of hand-coding and code generation for the database access layer

Hand-Coding Code Generation

Each new class slightly increases on the quality
of the previous one. There is a lot of copy-and-
pasted code. The code base is of inconsistent
quality across the entities.

The code quality is consistent across all
of the entities.

Making additions means altering every entity
one by one.

When mass changes are required, the templates
are updated with the new code and the genera-
tor is rerun.

Bugs are fixed one by one across the entities.
When a bug affects more than one class,
each must be hand-fixed and verified. Some
changes made in base classes do not suffer
from this problem.

Bugs in the classes are fixed by changes to
the templates. When the generator is rerun,
all of the classes get the fixes automatically.

Each class has a corresponding unit test
that fits within the unit test framework.

Unit tests are critical. We use text differencing
to make sure that the generator is still creating
the proper implementations. We compare the
latest generation against the known goods. In
addition we can author or generate classical
unit tests as we would by hand-coding.

A compatibility layer is required underneath
the code to move it to a different framework.

Because the schema and business logic are
stored in a meta description, the generator
and templates can be altered to build code
for a different language or framework.

The maintenance of the schema is a separate
task from the maintenance of the corresponding
EJB entity. It is likely that the field definitions in
the database will diverge from the corresponding
variable definitions in the EJB entities and cause
aberrant behavior.

The schema and the entity classes are created
at the same time by the same mechanism.
Synchronization is automatic. If there is a
synchronization problem it is the fault of the
generator, so the issue can be addressed easily
by fixing and rerunning the generator.

A

GENERATION

CASE

STUDY

9

technique for the user interface. We use the pages we built to cover the four database
access EJB entities as the basis of the templates. Then we build a user interface gen-
erator that takes an XML definition file containing all of the information about the
beans and use the templates to generate JSP pages. Figure 1.5 adds the user interface
generator to our diagram.

The generator takes six man-weeks to design, build, and test. Even with the first
version complete, we make sure that everyone understands that the user interface gen-
erator is an ongoing project that will require constant maintenance.

The user interface definition is actually a combination of raw field data and custom
options that can be set on a page-by-page basis. That allows for some customizations
to be made to the interface on a case-by-case basis.

We hand-code the user interface definition for our four prototype EJBs and use the
generator to build the pages. It takes four seconds to build the pages.

That’s great, but we still have to create the definitions for all 150 EJB entities.
That would be a pain. Instead, the front-end team works with the back-end team
to alter the database access generator so that it builds the entity definitions for the
user interface.

Figure 1.5 The user interface generator building the production JSPs as shown in relation

to the database generator

Figure 1.6 The database generator building entity definitions, which are used by the

user interface generator in the process of building the JSPs for the production interface

10

CHAPTER 1

O

VERVIEW

The two generators now cascade. The output of the database generator is fed into the
user interface generator that created the production web interface. Together the two
generators build all 150 entities and page sets in four minutes. Figure 1.6 illustrates
this cascading architecture. Figure 1.7 shows the linkage between the database access
generator and the user interface generator.

Once again, we’ve turned several man-years of effort into a couple of man-months.

1.1.3 Step 3: building the client interface

Our success with the database and user interface generators make it an easy decision to
build a Swing generator. Our experience with building the user interface generator
helps us when we work with the graphic designer to simplify the interface to make it
easy to generate.

To build the Swing generator, we alter the interface generator to build both JSP
and Swing interface code. Developing the templates and altering the generator takes
another four weeks. Figure 1.8 shows the addition of the Swing client outputs to the
user interface generator.

Our original estimate for building Swing for each entity was two to three days,
which meant one and a half man-years for the entire process. Our four weeks of devel-
opment to support Swing using the generator is a big improvement over that estimate.

These schedule impacts sound almost too good to be true, and in a sense, they are.
When you evaluate the productivity benefit of a generator, you should always attempt
to compare the schedule of the direct coding tasks against the time taken to develop,
deploy, and maintain the generator. You will still need to spend time debugging,
building tests, and building custom code that can’t be generated.

Figure 1.7 The user interface generator now gets part of its information from

the database generator. All of the other generator components remain the same.

A

GENERATION

CASE

STUDY

11

1.1.4 Step 4: building unit tests

At this point, the power that the generators hold over our project is a bit intimidat-
ing—one small glitch in the templates could invalidate almost every class or page in
the system. We need unit tests to ensure that the system runs as expected after the gen-
erators are run.

First we need a test data set. The QA group uses an automated tool to preload the
data set from the user interface. Now that the database is populated, we can extract
the data from the database into a set of test data files. We can then use a generator to
build a data loader that will load the test data files through the EJB layer and check
the output. This becomes our first unit test tool. Figure 1.9 shows our system with
the addition of the unit test generator.

Now whenever the generator is run, we can run a unit-test pass on the output to
ensure that the interfaces perform properly.

One enterprising engineer takes it a step further. Because the JSPs built by the
generator are so consistent, he is able to build a

user agent

 robot using Perl and

LWP::Simple

 that will automatically log into the site, virtually walk around the site

Figure 1.8 The user interface generator builds both the Swing and the JSP code.

Figure 1.9 The addition of the unit test generator, which tests the database access layer

12

CHAPTER 1

O

VERVIEW

as if it were a user, and load the test data through the JSP interface. This provides a
convenient system test that will check the entire technology stack from end to end.
Figure 1.10 shows how the user agent generator connects through the user interface
into the system.

1.1.5 Step 5: integrating a technical change

After two weeks of testing, we discover a bug that involves the storage and display of
very large numeric values. After some direct debugging against the generated code,
we find that the fix requires a change to the definition of 90 percent of the fields in
the database, as well as changes to the corresponding type definitions in the majority
of the Java classes.

Altering the templates within the generator takes a day. Running the generators
requires four minutes. Unit and manual testing consumes two more days.

We calculate that manually making these fixes across all of the Java classes and
across the database schema definition would take six months of work and that the
code we would have at the end of the process would be of questionable quality.

As you can guess, we are pleased with the difference in outcomes between code
generation and hand-coding when it comes to altering the entire code base.

1.1.6 Step 6: integrating a design change

Using code generators has accelerated development to the point where we are able to
show some reasonably useful demos early in the process. The demos give both the
engineering team and the product marketing group insight into the shortcomings
with the original application specification. It is obvious that extra functionality is
necessary, to the tune of about 20 new tables. Substantial changes are also required in
the structure of some of the existing tables.

Figure 1.10 The user agent generator builds robots that test the application using the

JSP interface.

A

GENERATION

CASE

STUDY

13

We are able to react to these changing business requirements by altering our
schema definition files and regenerating. After a few iterations and some alterations
to the templates, we are able to demo the rudiments of the new schema and refine the
feature set even further.

It’s almost impossible to calculate how far we would have progressed toward
project completion if we had been hand-coding. Discovering the flaws in the design
would have necessitated making a serious business decision: either rewrite major por-
tions or maintain the faults in the design. Using code generation, we are able to
quickly react to customer demands and make large-scale changes to the structure of
the software.

1.1.7 Step 7: building an RPC layer

One of the items on the “wish list” for the project is a Remote Procedure Call (RPC)
layer. This had originally fallen off the list because of schedule pressures. Now that
we are ahead of schedule, we decide on the fly to take the next step of building a Sim-
ple Object Access Protocol (SOAP) layer on top of our application. The RPC layer
will go on top of our database access layer. Using the API definitions file that is
already being generated for the user interface generator, we create another RPC gen-
erator that builds not only the server side of the SOAP layer but also client adapters
for Visual Basic and C++, which makes it easy for our customers to use our APIs.

Figure 1.11 We’ve added an RPC generator that builds not only the server code but the client

stub code for both Visual Basic and C++.

14

CHAPTER 1

O

VERVIEW

Figure 1.11 shows the entire RPC layer. This includes the RPC generator, which
in turn builds the SOAP layer, the Visual Basic code, and the C++ stubs.

To test the RPC layer, we use a derivative of the user agent test system. This new
robot uses Perl and

SOAP::Lite

 to talk to the SOAP layer to implement the test
data-loading.

1.1.8 Step 8: building documentation

The final engineering task before deployment is to build documentation both for the
RPC layer as an external resource and for the internal APIs as a programmer refer-
ence. Using a documentation generator, we build RPC documentation using a defi-
nition file that is output as part of the RPC layer generation. The internal API
documentation is built using standard JavaDoc tools. Figure 1.12 shows our com-
pleted system (the JavaDoc output is implied in this figure).

Figure 1.12 The documentation generated for the RPC layer by the RPC generator. The Java-

Doc output for the other layers is not shown here.

B

ENEFITS

OF

CODE

GENERATION

FOR

ENGINEERS

15

1.1.9 Case study conclusions

We can make several assertions from this hypothetical case study:

• Code generation has a dramatic impact on development time and engineer-
ing productivity.

• The application is amenable to change on a large scale.

• The business rules are abstracted into files that are free of language or frame-
work details that would hinder portability.

• The code for the application is of consistently high quality across the code base.

In the chapters that follow, we describe the techniques we used in this case study in detail.
The case study uses a lot of generation. You may find that your application doesn’t

need to use that much. Not to worry—this book covers both small and large code
generation implementations.

1.2 B

ENEFITS

OF

CODE

GENERATION

FOR

ENGINEERS

As the case study shows, code generation techniques provide substantial benefits to
software engineers at all levels. These benefits include:

•

Quality—

Large volumes of handwritten code tend to have inconsistent quality
because engineers find newer or better approaches as they work. Code generation
from templates creates a consistent code base instantly, and when the templates
are changed and the generator is run, the bug fixes or coding improvements are
applied consistently throughout the code base.

•

Consistency—

The code that is built by a code generator is consistent in the
design of the APIs and the use of variable naming. This results in a no-surprises
interface that is easy to understand and use.

•

A single point of knowledge—

Using the case study as an example, a change in the
schema file percolates through all of the cascading generators to implement the
change across the system. Even in the best hand-coded systems, a table name
change would involve individual manual changes to the physical schema, the
object layer and its documentation, and the test bed. A code generation archi-
tecture allows you to change a table name in a single location and then regener-
ate the schema, the object layer, the documentation, and the test bed to match
the new naming requirement.

•

More design time—

The schedule for a code generation project is significantly
different than for a hand-coded project. In the schedule for hand-coding large
sections, little room exists for analyzing the best use of the system and the
APIs. When faulty assumptions are made about use of the framework APIs,
then either those decisions are retained or large sections of code have to be

16

CHAPTER 1

O

VERVIEW

rewritten to use the API appropriately. With code generation, engineers can
rewrite the templates to modify how APIs are used and then run the generator
to produce the fixed code.

In addition, because code generation compresses time on certain projects,
more time can be spent doing adequate design and prototype testing to avoid
downstream rework.

•

Design decisions that stand out—

High-level business rules are lost in the minu-
tiae of implementation code. Code generators use abstract definition files to
specify the design of the code to be generated. These files are much shorter and
more specific than the resulting code. Small exceptions stand out much more
clearly in a five-line definition file than in the resulting five hundred lines of
implementation code.

To sum up, when you can work

smarter

 rather than

harder

 and use the computer to
offload some of your work, your project will be better off.

1.3 B

ENEFITS

OF

CODE

GENERATION

FOR

MANAGERS

Many of the advantages to the engineer should be important to engineering manage-
ment, such as increased productivity and quality. There are certain aspects, however,
that are uniquely important at the business level. Let’s take a look at these business-
level advantages:

•

Architectural consistency—

The code generator used for a project is the realization
of the architecture decisions made upfront in the development cycle. This has
three advantages:

• The generator encourages programmers to work within the architecture.

• When it is difficult to “get the generator to do what I want it to do,” it is a good
indication that the new feature does not work within the existing architecture.

• A well-documented and -maintained code generator provides a consistent
structure and approach, even as team members leave the project.

•

Abstraction—

The architectures of the code generators presented in this book
have the application logic (business logic, database schema definition, user inter-
face definition, etc.) in language-independent definition files. This abstraction of
the semantics of the application from the code that implements the semantics
has profound benefits:

• Engineers will be able to build new templates that translate the logic into other
languages, or onto other platforms, much more easily than the equivalent port
of handwritten code.

• Business analysts can review and validate the design in the abstract.

T

HE

CODE

GENERATION

PROCESS

17

• Capturing the application semantics at the abstract level can aid in the develop-
ment of work products outside implementation code. These can include vari-
ous forms of documentation, test cases, product support materials, and so forth.

•

High morale—

Long projects can be tough on teams, and long projects with
large amounts of tedious coding can be even worse. Code generation reduces
project schedules and keeps the engineers focused on the interesting, unique
work, as opposed to grinding through large volumes of tedious code. In addi-
tion, because the quality of generated code is uniformly high, the engineering
team will have confidence and pride in the code base.

•

Agile development—

A key feature of generated code bases is their malleability.
We discussed this topic at a technical level earlier; at the business level, this
means that the software will be easier to change and upgrade over the long run.

1.4 T

HE

CODE GENERATION PROCESS

In upcoming chapters, we discuss the development lifecycle and how to build a gen-
erator. In this section, we provide a roadmap for the development and deployment of
a generator within the engineering organization.

The sections that follow outline the entire lifecycle of the generator—from assess-
ing the need, to development, to maintenance.

1.4.1 Assessing the need

The first step in getting help is admitting you have a problem. So it is with code gen-
eration. You first need to see the problem you have at hand and then decide if
code generation is the right solution to that problem.

In the case study, the first clue that we needed a code generation solution was the
schedule impact of writing 1,050 Java files. The second clue was the monotony of the
task of writing the Java code. Both of these are strong indicators for using code gen-
eration. If you need a lot of Java files, and writing them is monotonous work, you will
want to generate those files.

Once you have assessed the need, you must decide for yourself how you want
to present the case to engineering and management. You can choose from three
basic strategies: the formal method, the Skunkworks method, and the “my own
tool” method.

The formal method

This method involves turning the generator into a full-fledged project from the
beginning and following whatever process your company has for the design and
implementation of software engineering projects.

The first phase of software design is the requirements phase, in which you gather
information about what the generator needs to do. In this phase, you want to agree

18 CHAPTER 1 OVERVIEW

on the scope of the work handled by the generator. In particular, you must clarify
these issues:

• How much will the generator do in the first release? The scope should be very
clear on this issue.

• How much will the generator do in the subsequent releases? This will help
define the long-term architecture of the generator.

• For what is the generator responsible? Having clear lines of responsibility will
allow you to ensure that key features are implemented and that extraneous fea-
tures are left out.

• For what is the generator not responsible? Going through the exercise of catalog-
ing what a piece of software is and is not responsible for is very valuable.

• From an outside perspective, is there anything unusual about what it covers or
does not cover? Make sure you catalog the areas of responsibility that could be
considered unusual to someone just coming into the project.

In addition to clarifying the scope of the project, make sure you establish some basic
goals about the development process for the generator. Here are some points you may
want to clarify:

• How will the generator fit into the development cycle?

• Will the generator go to the customer or stay in-house?

• What style of generation will it use? It’s important to get a consensus on what
type of generator to build. This book will present many types of generators as
we go along.

• How and when will an engineer use the generator?

• Is it a permanent or temporary solution?

• Who will maintain the generator?

• Who is the arbiter of features for the generator?

• Is the first release of the generator prototype code or production code?

• What development tools will be used?

These types of questions have to be answered in addition to the standard feature
specifications.

The advantage of the formal method is that if the project goes forward, it has every-
one’s blessing. The disadvantage is that the generator project may fail through bad
project management, or by having too many features, or by having too little clarity
around the feature set.

THE CODE GENERATION PROCESS 19

The Skunkworks method

The term Skunkworks is used when an engineer goes off on her own time and imple-
ments a solution and then returns with it to the team. At this point the question of
deployment and maintenance becomes an issue for the team to resolve.

The value of this technique is the elimination of all external influences from the
process. You think up the project and then build it. If the generator project fails, then
nobody knows but you.

Of course, the disadvantage is that you can frighten or alienate other engineers
or managers, and you may lose your work if they decide not to use your generator.

The “my own tool” method

The directive comes down on high that all your methods must now have X by next
week to conform to the new architectural standard. What do you do? You can either
get typing, or you can make a tool to do the work for you. This is the type of scenario
that breeds the “my own tool” generator.

The my-own-tool method is the same as the Skunkworks model except that, at the
end, the tool remains yours. You don’t present it to the team, because they might say
it shouldn’t be used. As long as the tool is yours, you can use it as you wish, and
nobody will be the wiser.

You may find that you have a perception problem if people find out. It’s not good
being “that nut with that tool nobody understands.”

That being said, there is nothing stopping the my-own-tool generator from
becoming a Skunkworks generator or being promoted to a formal method generator.
All you need to do is tell people about it and do a little educating.

1.4.2 Laying down the infrastructure

After figuring out what problem you are solving and how you are going to solve it,
the next step is to get your tools ready. This process involves several steps. The most
important is to control and track versioning across the development team. You will
also need to set up a test environment, select the full suite of tools that your team will
use, and communicate those choices clearly.

Ensure source-code control

Source-code control is so important that I will mention it many times. Source-code
control is vital when working with code generators because large blocks of code are
rewritten in the blink of an eye.

Make sure that you are familiar with the command-line interface of your source-
code control system. Also, be familiar with any check-in or checkout automation facil-
ity the system may have. Using the automation facility may be an easy way to integrate
your generator into the development workflow. For example, you could have your

20 CHAPTER 1 OVERVIEW

documentation generator automatically build documentation upon source code
check-in.

You should also check the Internet to see if a wrapper is available for your source-
code control system. Perforce, for example, has Perl modules on CPAN that give you
access to all of the Perforce functionality through convenient Perl functions.

Build your sandbox

You should use your source-code control system to build a sandbox for the generator
and the code it creates—particularly when integrating a generator into an existing
system to replace existing code. This allows you to run and test the generator in
isolation without worrying about corrupting the main branch and interrupting
anyone else’s work.

Standardize your development tools

If you are using different development tools for the generator than you are for the
application, you will want to spend a little time preparing those tools for deploy-
ment. In particular, you should take the time to create an installation kit with just the
executables and extra modules required to support the generator. Be sure to docu-
ment the installation procedure; nothing kills the enthusiasm of an engineering tool
deployment quite like installation problems.

This also means locking in the version of the development tool you use. You
should look at the versioning of these tools with the same skepticism that you would
an update to your C, C++, or Java compiler. Each compiler, interpreter, or plug-in
module you use should be frozen at the deployment version and then upgraded
with care.

Buy it or build it

At this point, you’ve laid the groundwork for the development. Now you need to
decide whether to buy or build the generator.

Buying a generator is not the end of the game; it is just the beginning. First, you
must test and customize the generator against the code you would like to build.
Remember, the generator is just a tool. Because you must assume complete responsi-
bility for the code that it generates in production, you should feel completely confi-
dent about the behavior of the generator and the code that it creates. Also, standardize
the installation of the base package and any customizations that you have made—just
as you would with any development tool you use.

The emphasis of this book is on building generators. This approach provides you
with full control and also allows you to understand what an off-the-shelf generator is
doing for you.

THE CODE GENERATION PROCESS 21

1.4.3 Documenting it

Once the generator is finished with its first release, you should concentrate on docu-
mentation. You have to create this documentation regardless of whether you buy or
build the generator.

Two basic forms of documentation go along with the generator. The first is the
architectural document and will be used by the maintainers of the generator. This doc-
ument should include:

• The design goal of the generator

• Pros and cons of the generator approach as it applies to the problem at hand

• The block architecture diagram for the generator (see figure 1.5 for example)

• Information about the tools used (e.g., versions, links, installation guidelines,
good resources)

• The directory organization

• The format of any input files

• The purpose of every file associated with the generator

• The unit test process

• The installer build process

• Information required to explain the special cases covered by the generator

• Behaviors of the generator that would not be apparent at first glance to some-
one unfamiliar with the generator

• Contact information for the current maintainers

• Known bugs

The second document is aimed at the end user. It describes how the system is to be
used and should address the following:

• What the generator does and does not do

• Installing the generator

• Testing the installation

• Running the generator

• Deciding who should run it

• Determining when it should be run

You should also include:

• A warning about altering the output of the generator by hand

• A graphic that shows the input and output files and the flow of the generation
process

22 CHAPTER 1 OVERVIEW

• An illustration of possible problems (for example, if a runtime error occurs,
describe what that error looks like and what it might mean)

• Contact information for the current maintainers

If the end users of the generator are also the maintainers, then you can merge these
documents.

Buy it and alter it

If the third-party code is close enough to your ideal but not quite there, you should
consider building a code munger to alter the code to your specifications post-
generation. Building and maintaining a custom code generator is no small effort,
and anything that can spare your company that expense is worth considering.

1.4.4 Deploying it

Deployment is the most critical phase—and often the most overlooked. Does a tree fall
in the forest if nobody is there to hear it? The same applies to programs. A program is
of no use to anyone if it is never used. You’ll want to concentrate on two areas during
deployment: creating installation tools and educating your users.

Making the installers

Your generator will go nowhere if it can’t be reliably installed or easily used. You should
spend the time building and documenting an installation tool for the components
required for the generator. In addition, you need a facility for testing the installation
without running the generator. This will make it easier for people who are nervous
about running the generator to ensure that it is able to run when they want it to.

Educating the users

Software tools, particularly ones built in-house, need evangelism and support. As the
builder, buyer, or maintainer of a generator, it falls on you to educate your fellow
engineers and managers on the use and the value of the generator.

An easy way to educate a large group of people is to give a seminar. The seminar
should be brief, but should at least cover this information:

• Describe what the generator does.

• Describe what the generator does not do.

• Emphasize the value of the target code and its impact on the project. Emphasize
that the code that the engineers write is important, and that the generated code
is also important. An architectural decision was made to build the code that is
output from the generator; you should support this decision.

• Show the architecture. Explain at a high level how it does its job, but leave the
gory details to a question-and-answer session.

THE BUY/BUILD DECISION 23

• Show how the generator is run. Ideally, you should run the generator during
the session so that people get a feel for the code generation cycle and how it
integrates into their workflow.

• Show the generated code in action.

• Address fears. Fear of the unknown is natural. At this point you will have been
working with the generator for a while, so it will be familiar to you. This will
not be the case with others. It is important that you address their natural fears
about this new tool. It is also important that you do not attempt to teach them
every little detail of implementation of the tool. If you drill down to a low level,
then your audience won’t know if what you are telling them is important infor-
mation about how to use it, or just self-aggrandizing trivia about how you built
the generator.

• Show the future potential without looking like a zealot. This is a tricky balancing
act. You want to appear enthusiastic about the potential of the generator with-
out looking like a megalomaniac. The last thing you want is a room full of people
who interpret your words about the generator doing this and that in the future
as “It will do your job, and your job...”

• Point people to the documentation.

For more information on how to give an excellent lecture, you should read the books
of Edward Tufte: Visual Explanations, Envisioning Information (both from Graphics
Press, 1998), and The Visual Display of Quantitative Information (also from Graphics
Press, 1999).

1.4.5 Maintaining it

Any successful software needs to be maintained. If you are the key implementer, you
should maintain the project for a while until a suitable replacement can be found to
take over the next maintenance period. In addition, you should strive to ensure that you
have access to architectural discussions and decisions that might affect the generator.

1.5 THE BUY/BUILD DECISION

The case study spent no time at all on the buy-or-build decision—and that was
intentional. This book is primarily about the design and implementation of code
generators, and the introductory chapter should talk to the value of the custom solu-
tion. In real life, the buy/build decision is a serious one.

To start, there are more options than just buying or building. Several excellent
open source code generators are available on the Internet. For purposes of this section,
the decision to use an open source code generator will be coupled with the decision
to buy, which brings us back to buy and build. If you like, you can say that the deci-
sion is to either develop or to use “off the shelf.”

24 CHAPTER 1 OVERVIEW

The cost of developing and maintaining software is high, so the decision to develop
something internally should not be taken lightly. Often the long-term maintenance
costs of software are ignored. This is a mistake; maintenance of an existing successful
software tool always outstrips the initial development cost.

You and your company will have to decide for yourselves, but we can offer some
pros and cons in both directions.

Advantages of building:

• You own the solution outright.

• You control completely the evolution of the tool.

Disadvantages of building:

• Your company must train engineers to use the tool.

• You must maintain the code base long term.

• You must keep the tool reasonably current with the development tools that were
used—tools whose version cycles may conflict with your own release schedule.

• The cost of a developer is very high—much higher than the price of an off-the-
shelf package.

Advantages of buying:

• There is no upfront developer time building the foundation elements of the tool.

• You may inherit a user community around the tool.

• You can use the documentation provided with the tool to train new engineers.

Disadvantages of buying:

• The deployment cycle needs to account for the time required to customize the
tool to the requirements of the application; this could be significant.

• The tool may not work within your development environment the way you
would like.

• The long-term evolution of the tool is out of your hands.

We have made every effort to discover the generators that are available both for purchase
and from the open source community. We have put references to these tools in the
sections that best relate to their function in all of the code generation solution chapters.

TOP TEN CODE-GENERATION RULES 25

1.6 CODE GENERATION AT ITS BEST

With all of the great things we have said about code generation, why not use it
for everything?

• Code generation has a large initial schedule overhead for developing the gener-
ator before any useful output is created. Code generation becomes genuinely
useful only when it is used to create a reasonably significant volume of work.

• You must consider the stability of the design and the feature set. Code generators
are ideal for well-known large-scale problems—for example, database access layers,
stored procedures, or RPC layers. When the feature set is not particularly stable, or
the design for the implementation is shifting, you should consider some hand-
coded functional prototypes before implementing a full solution using generation.

• A single tool is not a panacea. Effective solutions are derived by using a number
of heterogeneous tools that are well suited to their specific tasks. Code
generation is powerful when used appropriately—and laborious when used in
the wrong circumstance.

1.7 TOP TEN CODE-GENERATION RULES

Here is a handy set of rules that you can use when you are designing, developing,
deploying, and maintaining your code generator:

1 Give the proper respect to hand-coding—You should both respect and loathe hand-
written code. You should respect it because there are often special cases integrated
into code that are overlooked with a cursory inspection. When replacing code
you’ve written by hand, you need to make sure you have the special cases
accounted for. You should loathe hand-code because engineering time is
extremely valuable, and to waste it on repetitive tasks is nearly criminal. The goal
of your generator should always be to optimize the organization’s most valuable
assets—the creativity and enthusiasm of the engineering team.

2 Handwrite the code first—You must fully understand your framework before gen-
erating code. Ideally, you should handwrite a significantly broad spectrum of
code within the framework first and then use that code as the basis of the tem-
plates for the generator.

3 Control the source code—I can’t stress enough the importance of having a robust
source-code control system. This is critical to a successful code-generation
project. If your generator works directly on implementation files that contain
some hand-written code, make sure you have a versioning system running that
can protect your work.

4 Make a considered decision about the implementation language—The tools you use
to build the generator do not have to be the same tools you use to write the appli-
cation. The problem that the generator is trying to solve is completely different

26 CHAPTER 1 OVERVIEW

from the problem being solved by the application. For that reason, you should
look at the generator as an independent project and pick your tools accordingly.

5 Integrate the generator into the development process—The generator is a tool to be
used by engineers; thus, it should fit cleanly within their development process. If
it is appropriate, it can integrate with the integrated development environment
(IDE), or in the build process or check-in process. For examples of how to inte-
grate a generator with an IDE, refer to appendix D.

6 Include warnings—Your generator should always place warnings around code that
it generates so that people do not hand-tweak the code. If they hand-tweak the
code and rerun the generator, they will lose their revisions. In addition, your first
response to people ignoring the warnings should be to help them and not to
berate them. The fact that they are using your tool is a big step. Learn why they
needed to ignore the warnings and improve the generator or the documentation.
You are the emissary of your tool.

7 Make it friendly—Just because a generator is a tool for programmers doesn’t mean
it gets to be rude. The generator should tell the engineer what it’s doing, and
what files it has altered or created, and handle its errors with a reasonable amount
of decorum. It may sound silly, but a tool that is difficult to use or that’s flaky will
be ignored and your efforts will be wasted.

8 Include documentation—Good documentation is a selling point for the generator.
Your documentation should be thorough but not overwhelming, and should
highlight the key points: what the generator does, how it is installed, how it is
run, and what files it affects.

9 Keep in mind that generation is a cultural issue—Educating your colleagues
through documentation, seminars, and one-on-one meetings is critical to success-
fully deploying the generator. People are skeptical of new things, and a good pro-
grammer is twice as skeptical as the average person. You need to break through
those concerns and doubts and emphasize that you designed the generator for
their benefit.

10 Maintain the generator—Unless the generator is just a temporary measure, it will
need to be maintained long term. If the generator manages a large portion of
code, treat it just as you would an engineer maintaining that same piece of code.
Your budget should include dedicated time and money for maintaining and
upgrading that resource.

SUMMARY 27

1.8 GENERATORS YOU ARE USING TODAY

Understanding that tools that we use every day are code generators can help ease
adoption of code generation techniques. Compilers are the most common form of
code generators. Compilers generate assembler or virtual machine operands from a
high-level language (e.g., C, C++, Java, or Perl).

The C preprocessor is a code generator that is commonly used. The preprocessor
handles the #include, #define, #if, and #ifdef precompiler directives.
Another common generator is a resource compiler that takes a text definition of
application resources and builds binary versions of those resources for inclusion in
the application.

1.9 SUMMARY

Code generation is an extremely valuable tool that can have a stunning impact on
productivity and quality in software engineering projects. It is my hope that through
the rest of this book you’ll gain a solid understanding in the principles, design,
construction, and maintenance of code generators.

In the next chapter, we introduce the basic forms of code generation.

