
SAMPLE CHAPTER



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   C# in Depth 


      by Jon Skeet

 
                                             Chapter 8

 
 
 
 
 
 
 
 
 
 
 

                                                 Copyright 2008 Manning Publications

 
 
 



vii

brief contents
PART 1 PREPARING FOR THE JOURNEY ......................................1

1 ■ The changing face of C# development 3

2 ■ Core foundations: building on C# 1 32

PART 2 C# 2: SOLVING THE ISSUES OF C# 1........................... 61

3 ■ Parameterized typing with generics 63

4 ■ Saying nothing with nullable types 112

5 ■ Fast-tracked delegates 137

6 ■ Implementing iterators the easy way 161

7 ■ Concluding C# 2: the final features 183

PART 3 C# 3—REVOLUTIONIZING HOW WE CODE ..................205

8 ■ Cutting fluff with a smart compiler 207

9 ■ Lambda expressions and expression trees 230

10 ■ Extension methods 255

11 ■ Query expressions and LINQ to Objects 275

12 ■ LINQ beyond collections 314

13 ■ Elegant code in the new era 352



Part 3

C# 3—
Revolutionizing how we code

There is no doubt that C# 2 is a significant improvement over C# 1. The ben-
efits of generics in particular are fundamental to other changes, not just in C# 2
but also in C# 3. However, C# 2 was in some sense a piecemeal collection of fea-
tures. Don’t get me wrong: they fit together nicely enough, but they address a set
of individual issues. That was appropriate at that stage of C#’s development, but
C# 3 is different. 

 Almost every feature in C# 3 enables one very specific technology: LINQ.
Many of the features are useful outside this context, and you certainly shouldn’t
confine yourself to only using them when you happen to be writing a query
expression, for example—but it would be equally silly not to recognise the com-
plete picture created by the set of jigsaw puzzle pieces presented in the remain-
ing chapters.

 I’m writing this before C# 3 and .NET 3.5 have been fully released, but I’d like
to make a prediction: in a few years, we’ll be collectively kicking ourselves for not
using LINQ in a more widespread fashion in the early days of C# 3. The buzz
around LINQ—both within the community and in the messages from Microsoft—
has been largely around database access and LINQ to SQL. Now databases are cer-
tainly important—but we manipulate data all the time, not just from databases but
in memory, and from files, network resources, and other places. Why shouldn’t
other data sources get just as much benefit from LINQ as databases?

 They do, of course—and that’s the hidden jewel of LINQ. It’s been in broad
daylight, in public view—just not talked about very much. Even if you don’t



talk about it, I’d like you to keep it in the back of your mind while you read about
the features of C# 3. Look at your existing code in the light of the possibilities that
LINQ has to offer. It’s not suitable for all tasks, but where it is appropriate it can
make a spectacular difference.

 It’s only been in the course of writing this book that I’ve become thoroughly con-
vinced of the elegance and beauty of LINQ. The deeper you study the language, the
more clearly you see the harmony between the various elements that have been intro-
duced. Hopefully this will become apparent in the remainder of the book, but you’re
more likely to feel it gradually as you begin to see LINQ improving your own code. I
don’t wish to sound like a mindless and noncritical C# devotee, but I feel there’s
something special in C# 3.

 With that brief burst of abstract admiration out of the way, let’s start looking at
C# 3 in a more concrete manner.



207

Cutting fluff
 with a smart compiler

We start looking at C# 3 in the same way that we finished looking at C# 2—with a
collection of relatively simple features. These are just the first small steps on the
path to LINQ, however. Each of them can be used outside that context, but they’re
all pretty important for simplifying code to the extent that LINQ requires in order
to be effective.

 One important point to note is that while two of the biggest features of C# 2—
generics and nullable types—required CLR changes, there are no significant
changes to the CLR that ships with .NET 3.5. There are some bug fixes, but nothing
fundamental. The framework library has grown to support LINQ, along with intro-
ducing a few more features to the base class library, but that’s a different matter. It’s

This chapter covers
■ Automatically implemented properties
■ Implicitly typed local variables
■ Object and collection initializers
■ Implicitly typed arrays
■ Anonymous types



208 CHAPTER 8 Cutting fluff with a smart compiler

worth being quite clear in your mind which changes are only in the C# language,
which are library changes, and which are CLR changes.

 The fact that there are no CLR changes for .NET 3.5 means that almost all of the
new features exposed in C# 3 are due to the compiler being willing to do more work
for you. We saw some evidence of this in C# 2—particularly with anonymous methods
and iterator blocks—and C# 3 continues in the same vein. In this chapter, we’ll meet
the following features that are new to C# 3:

■ Automatically implemented properties—Removing the drudgery of writing simple
properties backed directly by fields.

■ Implicitly typed local variables—When you declare a variable and immediately
assign a value to it, you no longer need to specify the type in the declaration.

■ Object and collection initializers—Simple ways to initialize objects in single expres-
sions.

■ Implicitly typed arrays—Let the compiler work out the type of new arrays, based
on their contents.

■ Anonymous types—Primarily used in LINQ, these allow you to create new “ad
hoc” types to contain simple properties.

As well as describing what the new features do, I’ll make recommendations about their
use. Many of the features of C# 3 require a certain amount of discretion and restraint
on the part of the developer. That’s not to say they’re not powerful and incredibly use-
ful—quite the reverse—but the temptation to use the latest and greatest syntactic sugar
shouldn’t be allowed to overrule the drive toward clear and readable code.

 The considerations I’ll discuss in this chapter (and indeed in the rest of the book)
will rarely be black and white. Perhaps more than ever before, readability is in the eye
of the beholder—and as you become more comfortable with the new features, they’re
likely to become more readable to you. I should stress, however, that unless you have
good reason to suppose you’ll be the only one to ever read your code, you should con-
sider the needs and views of your colleagues carefully.

 Enough navel gazing for the moment. We’ll start off with a feature that shouldn’t
cause any controversy—and that I always miss when coding in C# 2. Simple but effec-
tive, automatically implemented properties just make life better.

8.1 Automatically implemented properties
Our first feature is probably the simplest in the whole of C# 3. In fact, it’s even simpler
than any of the new features in C# 2. Despite that—or possibly because of that—it’s also
immediately applicable in many, many situations. When you read about iterator blocks
in chapter 6, you may not immediately have thought of any areas of your current code-
base that could be improved by using them, but I’d be surprised to find any nontrivial
C# program that couldn’t be modified to use automatically implemented properties.
This fabulously simple feature allows you to express trivial properties with less code
than before.



209Automatically implemented properties

 What do I mean by a trivial property? I mean one that is read/write and that stores
its value in a straightforward private variable without any validation or other custom
code. In other words, it’s a property like this:

string name;
public string Name
{
    get { return name; }
    set { name = value; }
}

Now, that’s not an awful lot of code, but it’s still five lines—and that’s assuming your
coding conventions allow you to get away with the “one line” forms of the getter and
setter. If your coding conventions force you to keep member variables in one area of
code and properties in another, it becomes a bit uglier—and then there’s the question
of whether to add XML documentation to the property, the variable, or both.

 The C# 3 version using an automatically implemented property is a single line:

public string Name { get; set; }

Where previously you might have been tempted to use a public variable (particularly
for “throwaway code”—which we all know tends to live for longer than anticipated)
just to make the code simple, there’s now even less excuse for not following the best
practice of using a property instead. The compiler generates a private variable that
can’t be referenced directly in the source, and fills in the property getter and setter
with the simple code to read and write that variable.

NOTE Terminology: Automatic property vs. automatically implemented property—When
automatically implemented properties were first discussed, long before
the full C# 3 specification was published, they were called automatic proper-
ties. Personally, I find this a lot less of a mouthful than the full name, and
it’s not like anything other than the implementation is going to be auto-
matic. For the rest of this book I will use automatic property and automati-
cally implemented property synonymously. 

 The feature of C# 2 that allows you to specify different access for the getter and the
setter is still available here, and you can also create static automatic properties. You need
to be careful with static properties in terms of multithreading, however—although most
types don’t claim to have thread-safe instance members, publicly visible static members
usually should be thread-safe, and the compiler doesn’t do anything to help you in this
respect. It’s best to restrict automatic static properties to be private, and make sure you
do any appropriate locking yourself. Listing 8.1 gives an example of this.

public class Person
{
    public string Name { get; private set; }
    public int Age { get; private set; }      

Listing 8.1 A Person class that counts created instances

Declares properties 
with public getters



210 CHAPTER 8 Cutting fluff with a smart compiler

    private static int InstanceCounter { get; set; }             
    private static readonly object counterLock = new object();

    public Person(string name, int age)
    {
        Name = name;                            
        Age = age;                              

        lock (counterLock)    
        {                            
            InstanceCounter++;
        }                            
    }
}

An alternative in this case is to use a simple static variable and rely on Interlocked.
Increment to update the instance counter. You may decide that’s simpler (and more
efficient) code than using an explicit lock—it’s a judgment call. Due to this sort of
issue, static automatic properties are rarely useful: it’s usually better to implement nor-
mal properties, allowing you more control. Note that you can’t use automatic proper-
ties and use Interlocked.Increment: you no longer have access to the field, so you
can’t pass it by reference to the method.

 The other automatic properties in listing 8.1, representing the name and age of
the person, are real no-brainers. Where you’ve got properties that you would have
implemented trivially in previous versions of C#, there’s no benefit in not using auto-
matic properties.

 One slight wrinkle occurs if you use automatic properties when writing your own
structs: all of your constructors need to explicitly call the parameterless constructor—
this()—so that the compiler knows that all the fields have been definitely assigned.
You can’t set the fields directly because they’re anonymous, and you can’t use the
properties until all the fields have been set. The only way of proceeding is to call the
parameterless constructor, which will set the fields to their default values.

 That’s all there is to automatically implemented properties. There are no bells
and whistles to them—for instance, there’s no way of declaring them with initial
default values, and no way of making them read-only. If all the C# 3 features were
that simple, we could cover everything in a single chapter. Of course, that’s not the
case—but there are still some features that don’t take very much explanation. Our
next topic removes duplicate code in another common but specific situation—
declaring local variables. 

8.2 Implicit typing of local variables
In chapter 2, I discussed the nature of the C# 1 type system. In particular, I stated that
it was static, explicit, and safe. That’s still true in C# 2, and in C# 3 it’s still almost com-
pletely true. The static and safe parts are still true (ignoring explicitly unsafe code, just
as we did in chapter 2) and most of the time it’s still explicitly typed—but you can ask
the compiler to infer the types of local variables for you.

Declares 
private static 
property and 
lock

Uses lock while 
accessing static 
property



211Implicit typing of local variables

8.2.1 Using var to declare a local variable

In order to use implicit typing, all you need to do is replace the type part of a normal
local variable declaration with var. Certain restrictions exist (we’ll come to those in a
moment), but essentially it’s as easy as changing

MyType variableName = someInitialValue;

into

var variableName = someInitialValue;

The results of the two lines (in terms of compiled code) are exactly the same, assuming
that the type of someInitialValue is MyType. The compiler simply takes the compile-
time type of the initialization expression and makes the variable have that type too. The
type can be any normal .NET type, including generics, delegates, and interfaces. The
variable is still statically typed; it’s just that you haven’t written the name of the type in
your code.

 This is important to understand, as it goes to the heart of what a lot of developers
initially fear when they see this feature—that C# has become dynamically or weakly
typed. That’s not true at all. The best way of explaining this is to show you some
invalid code:

var stringVariable = "Hello, world.";
stringVariable = 0;

That doesn’t compile, because the type of stringVariable is System.String, and you
can’t assign the value 0 to a string variable. In many dynamic languages, the code
would have compiled, leaving the variable with no particularly useful type as far as the
compiler, IDE, or runtime environment is concerned. Using var is not like using a
Variant type from COM or VB6. The variable is statically typed; it’s just that the type
has been inferred by the compiler. I apologize if I seem to be going on about this
somewhat, but it’s incredibly important.

 In Visual Studio 2008, you can tell the type that the compiler has used for the vari-
able by hovering over the var part of the declaration, as shown in figure 8.1. Note how
the type parameters for the generic Dictionary type are also explained.

 If this looks familiar, that’s because it’s exactly the same behavior you get when you
declare local variables explicitly.

 Tooltips aren’t just available at the point of declaration, either. As you’d probably
expect, the tooltip displayed when you hover over the variable name later on in the
code indicates the type of the variable too. This is shown in figure 8.2, where the same
declaration is used and then I’ve hovered over a use of the variable.

Figure 8.1 Hovering over var in Visual Studio 
2008 displays the type of the declared variable.



212 CHAPTER 8 Cutting fluff with a smart compiler

Again, that’s exactly the same behavior as a normal local variable declaration. Now,
there are two reasons for bringing up Visual Studio 2008 in this context. The first is
that it’s more evidence of the static typing involved—the compiler clearly knows the
type of the variable. The second is to point out that you can easily discover the type
involved, even from deep within a method. This will be important when we talk about
the pros and cons of using implicit typing in a minute. First, though, I ought to men-
tion some limitations.

8.2.2 Restrictions on implicit typing

You can’t use implicit typing for every variable in every situation. You can only use it
when

■ The variable being declared is a local variable.
■ The variable is initialized as part of the declaration.
■ The initialization expression isn’t a method group or anonymous function1

(without casting).
■ The initialization expression isn’t null.
■ Only one variable is declared in the statement.
■ The type you want the variable to have is the compile-time type of the initializa-

tion expression.

 The third and fourth points are interesting. You can’t write

var starter = delegate() { Console.WriteLine(); }

This is because the compiler doesn’t know what type to use. You can write

var starter = (ThreadStart) delegate() { Console.WriteLine(); }

but if you’re going to do that you’d be better off explicitly declaring the variable in
the first place. The same is true in the null case—you could cast the null appropri-
ately, but there’d be no point. Note that you can use the result of method calls or
properties as the initialization expression—you’re not limited to constants and con-
structor calls. For instance, you could use

var args = Environment.CommandLine;

In that case args would then be of type string[]. In fact, initializing a variable with
the result of a method call is likely to be the most common situation where implicit

1 The term anonymous function covers both anonymous methods and lambda expressions, which we’ll delve into
in chapter 9. 

Figure 8.2 Hovering 
over the use of an 
implicitly typed local 
variable displays its type.



213Implicit typing of local variables

typing is used, as part of LINQ. We’ll see all that later on—just bear it in mind as the
examples progress.

 It’s also worth noting that you are allowed to use implicit typing for the local vari-
ables declared in the first part of a using, for, or foreach statement. For example, the
following are all valid (with appropriate bodies, of course):

for (var i = 0; i < 10; i++)
using (var x = File.OpenText("test.dat"))
foreach (var s in Environment.CommandLine)

The variables in question would end up with types of int, StreamReader and string,
respectively. Of course, just because you can do this doesn’t mean you should. Let’s
have a look at the reasons for and against using implicit typing.

8.2.3 Pros and cons of implicit typing

The question of when it’s a good idea to use implicit typing is the cause of an awful lot
of community discussion. Views range from “everywhere” to “nowhere” with plenty of
more balanced approaches between the two. We’ll see in section 8.5 that in order to
use another of C# 3’s features—anonymous types—you’ve often got to use implicit typ-
ing. You could avoid anonymous types as well, of course, but that’s throwing the baby
out with the bathwater.

 The main reason for using implicit typing (leaving anonymous types aside for the
moment) is that it reduces not only the number of keystrokes required to enter the
code, but also the amount of code on the screen. In particular, when generics are
involved the type names can get very long. Figures 8.1 and 8.2 used a type of Dictionary
<string, List<Person>>, which is 33 characters. By the time you’ve got that twice on
a line (once for the declaration and once for the initialization), you end up with a mas-
sive line just for declaring and initializing a single variable! An alternative is to use an
alias, but that puts the “real” type involved a long way (conceptually at least) from the
code that uses it.

 When reading the code, there’s no point in seeing the same long type name twice
on the same line when it’s obvious that they should be the same. If the declaration isn’t
visible on the screen, you’re in the same boat whether implicit typing was used or not
(all the ways you’d use to find out the variable type are still valid) and if it is visible, the
expression used to initialize the variable tells you the type anyway.

 All of this sounds good, so what are the arguments against implicit typing? Para-
doxically enough, readability is the most important one, despite also being an argu-
ment in favor of implicit typing! By not being explicit about what type of variable
you’re declaring, you may be making it harder to work it out just by reading the code.
It breaks the “state what are we declaring, then what value it will start off with” mind-
set that keeps the declaration and the initialization quite separate. To what extent
that’s an issue depends on both the reader and the initialization expression involved.
If you’re explicitly calling a constructor, it’s always going to be pretty obvious what
type you’re creating. If you’re calling a method or using a property, it depends on how



214 CHAPTER 8 Cutting fluff with a smart compiler

obvious the return type is just from looking at the call. Integer literals are another
example where guessing the inferred type is harder than one might suppose. How
quickly can you work out the type of each of the variables declared here?

var a = 2147483647;
var b = 2147483648;
var c = 4294967295;
var d = 4294967296;
var e = 9223372036854775807;
var f = 9223372036854775808;

The answers are int, uint, uint, long, long, and ulong, respectively—the type used
depends on the value of the expression. There’s nothing new here in terms of the
handling of literals—C# has always behaved like this—but implicit typing makes it eas-
ier to write obscure code in this case.

 The argument that is rarely explicitly stated but that I believe is behind a lot of the
concern over implicit typing is “It just doesn’t feel right.” If you’ve been writing in a C-
like language for years and years, there is something unnerving about the whole busi-
ness, however much you tell yourself that it’s still static typing under the covers. This may
not be a rational concern, but that doesn’t make it any less real. If you’re uncomfortable,
you’re likely to be less productive. If the advantages don’t outweigh your negative feel-
ings, that’s fine. Depending on your personality, you may wish to try to push yourself to
become more comfortable with implicit typing—but you certainly don’t have to.

8.2.4 Recommendations

Here are some recommendations based on my experience with implicit typing. That’s
all they are—recommendations—and you should feel free to take them with a pinch
of salt.

■ Consult your teammates on the matter when embarking on a C# 3 project.
■ When in doubt, try a line both ways and go with your gut feelings.
■ Unless there’s a significant gain in code simplicity, use explicit typing. Note that

numeric variables always fall into this category since you’d never gain more
than a few characters anyway.

■ If it’s important that someone reading the code knows the type of the variable
at a glance, use explicit typing.

■ If the variable is directly initialized with a constructor and the type name is long
(which often occurs with generics) consider using implicit typing.

■ If the precise type of the variable isn’t important, but its general nature is clear
from the context, use implicit typing to deemphasize how the code achieves its
aim and concentrate on the higher level of what it’s achieving.

Effectively, my recommendation boils down to not using implicit typing either
“because it’s new” or for reasons of laziness, saving a few keystrokes. Where it keeps
the code tidier, allowing you to concentrate on the most important elements of the
code, go for it. I’ll be using implicit typing extensively in the rest of the book, for the



215Simplified initialization

simple reason that code is harder to format in print than on a screen—there’s not as
much width available.

 We’ll come back to implicit typing when we see anonymous types, as they create sit-
uations where you are forced to ask the compiler to infer the types of some variables.
Before that, let’s have a look at how C# 3 makes it easier to construct and populate a
new object in one expression. 

8.3 Simplified initialization
One would have thought that object-oriented languages would have streamlined
object creation long ago. After all, before you start using an object, something has to
create it, whether it’s through your code directly or a factory method of some sort.
And yet in C# 2 very few language features are geared toward making life easier when
it comes to initialization. If you can’t do what you want using constructor arguments,
you’re basically out of luck—you need to create the object, then manually initialize it
with property calls and the like.

 This is particularly annoying when you want to create a whole bunch of objects in
one go, such as in an array or other collection—without a “single expression” way of
initializing an object, you’re forced to either use local variables for temporary manipu-
lation, or create a helper method that performs the appropriate initialization based
on parameters.

 C# 3 comes to the rescue in a number of ways, as we’ll see in this section.

8.3.1 Defining our sample types

The expressions we’re going to be using in this section are called object initializers.
These are just ways of specifying initialization that should occur after an object has
been created. You can set properties, set properties of properties (don’t worry, it’s sim-
pler than it sounds), and add to collections that are accessible via properties. To dem-
onstrate all this, we’ll use a Person class again. To start with, there’s the name and age
we’ve used before, exposed as writable properties. We’ll provide both a parameterless
constructor and one that accepts the name as a parameter. We’ll also add a list of
friends and the person’s home location, both of which are accessible as read-only
properties, but that can still be modified by manipulating the retrieved objects. A sim-
ple Location class provides Country and Town properties to represent the person’s
home. Listing 8.2 shows the complete code for the classes.

public class Person
{
    public int Age { get; set; }          
    public string Name { get; set; }     

    List<Person> friends = new List<Person>();
    public List<Person> Friends { get { return friends; } }

    Location home = new Location();

Listing 8.2 A fairly simple Person class used for further demonstrations



216 CHAPTER 8 Cutting fluff with a smart compiler

    public Location Home { get { return home; } }            

    public Person() { }

    public Person(string name)
    {
        Name = name;
    }
}

public class Location
{
    public string Country { get; set; }
    public string Town { get; set; }
}

Listing 8.2 is straightforward, but it’s worth noting that both the list of friends and the
home location are created in a “blank” way when the person is created, rather than
being left as just null references. That’ll be important later on—but for the moment
let’s look at the properties representing the name and age of a person.

8.3.2 Setting simple properties

Now that we’ve got our Person type, we want to create some instances of it using the
new features of C# 3. In this section we’ll look at setting the Name and Age properties—
we’ll come to the others later.

 In fact, object initializers aren’t restricted to using properties. All of the syntactic
sugar here also applies to fields, but the vast majority of the time you’ll be using prop-
erties. In a well-encapsulated system you’re unlikely to have access to fields anyway,
unless you’re creating an instance of a type within that type’s own code. It’s worth
knowing that you can use fields, of course—so for the rest of the section, just read prop-
erty and field whenever the text says property.

 With that out of the way, let’s get down to business. Suppose we want to create a
person called Tom, who is four years old. Prior to C# 3, there are two ways this can be
achieved:

Person tom1 = new Person();
tom1.Name = "Tom";
tom1.Age = 4;

Person tom2 = new Person("Tom");
tom2.Age = 4;

The first version simply uses the parameterless constructor and then sets both proper-
ties. The second version uses the constructor overload which sets the name, and then
sets the age afterward. Both of these options are still available in C# 3 of course, but
there are other alternatives:

Person tom3 = new Person() { Name="Tom", Age=4 };

Person tom4 = new Person { Name="Tom", Age=4 };

Person tom5 = new Person("Tom") { Age = 4 };



217Simplified initialization

The part in braces at the end of each line is the object initializer. Again, it’s just com-
piler trickery. The IL used to initialize tom3 and tom4 is identical, and indeed it’s very
nearly2 the same as we used for tom1. Predictably, the code for tom5 is nearly the same
as for tom2. Note how for tom4 we omitted the parentheses for the constructor. You
can use this shorthand for types with a parameterless constructor, which is what gets
called in the compiled code.

 After the constructor has been called, the specified properties are set in the obvi-
ous way. They’re set in the order specified in the object initializer, and you can only
specify any particular property at most once—you can’t set the Name property twice,
for example. (You could, however, call the constructor taking the name as a parame-
ter, and then set the Name property. It would be pointless, but the compiler wouldn’t
stop you from doing it.) The expression used as the value for a property can be any
expression that isn’t itself an assignment—you can call methods, create new objects
(potentially using another object initializer), pretty much anything.

You may well be wondering just how useful this is—we’ve saved one or
two lines of code, but surely that’s not a good enough reason to make the
language more complicated, is it? There’s a subtle point here, though:
we’ve not just created an object in one line—we’ve created it in one
expression. That difference can be very important. Suppose you want to
create an array of type Person[] with some predefined data in it. Even
without using the implicit array typing we’ll see later, the code is neat and
readable:

Person[] family = new Person[]
{
     new Person { Name="Holly", Age=31 },
     new Person { Name="Jon", Age=31 },
     new Person { Name="Tom", Age=4 },
     new Person { Name="William", Age=1 },
     new Person { Name="Robin", Age=1 }  
};

Now, in a simple example like this we could have written a constructor taking both the
name and age as parameters, and initialized the array in a similar way in C# 1 or 2.
However, appropriate constructors aren’t always available—and if there are several
constructor parameters, it’s often not clear which one means what just from the posi-
tion. By the time a constructor needs to take five or six parameters, I often find myself
relying on IntelliSense more than I want to. Using the property names is a great boon
to readability in such cases.

 This form of object initializer is the one you’ll probably use most often. However,
there are two other forms—one for setting subproperties, and one for adding to col-
lections. Let’s look at subproperties—properties of properties—first.

2 In fact, the variable’s new value isn’t assigned until all the properties have been set. A temporary local variable
is used until then. This is very rarely noticeable, though, and where it is the code should probably be more
straightforward anyway.

Important! 
One 

expression to 

initialize an 
object



218 CHAPTER 8 Cutting fluff with a smart compiler

8.3.3 Setting properties on embedded objects

So far we’ve found it easy to set the Name and Age properties, but we can’t set the Home
property in the same way—it’s read-only. However, we can set the town and the coun-
try of a person, by first fetching the Home property, and then setting properties on the
result. The language specification refers to this as setting the properties of an embedded
object. Just to make it clear, what we’re talking about is the following C# 1 code:

Person tom = new Person("Tom");
tom.Age = 4;
tom.Home.Country = "UK";
tom.Home.Town = "Reading";

When we’re populating the home location, each statement is doing a get to retrieve
the Location instance, and then a set on the relevant property on that instance.
There’s nothing new in that, but it’s worth slowing your mind down to look at it care-
fully; otherwise, it’s easy to miss what’s going on behind the scenes.

 C# 3 allows all of this to be done in one expression, as shown here:

Person tom = new Person("Tom")
{ 
     Age = 4, 
     Home = { Country="UK", Town="Reading" }
};

The compiled code for these snippets is effectively the same. The com-
piler spots that to the right side of the = sign is another object initializer,

and applies the properties to the embedded object appropriately. One point about
the formatting I’ve used—just as in almost all C# features, it’s whitespace indepen-
dent: you can collapse the whitespace in the object initializer, putting it all on one line
if you like. It’s up to you to work out where the sweet spot is in balancing long lines
against lots of lines.

 The absence of the new keyword in the part initializing Home is significant. If you
need to work out where the compiler is going to create new objects and where it’s
going to set properties on existing ones, look for occurrences of new in the initializer.
Every time a new object is created, the new keyword appears somewhere.

 We’ve dealt with the Home property—but what about Tom’s friends? There are
properties we can set on a List<Person>, but none of them will add entries to the list.
It’s time for the next feature—collection initializers. 

8.3.4 Collection initializers

Creating a collection with some initial values is an extremely common task. Until C# 3
arrived, the only language feature that gave any assistance was array creation—and
even that was clumsy in many situations. C# 3 has collection initializers, which allow you
to use the same type of syntax as array initializers but with arbitrary collections and
more flexibility.

Looks like an 

assignment to 

Home, but it’s 

not really!



219Simplified initialization

CREATING NEW COLLECTIONS WITH COLLECTION INITIALIZERS
As a first example, let’s use the now-familiar List<T> type. In C# 2, you could populate
a list either by passing in an existing collection, or by calling Add repeatedly after cre-
ating an empty list. Collection initializers in C# 3 take the latter approach. Suppose we
want to populate a list of strings with some names—here’s the C# 2 code (on the left)
and the close equivalent in C# 3 (on the right):

Just as with object initializers, you can specify constructor parameters if you want, or
use a parameterless constructor either explicitly or implicitly. Also as before, the deci-
sion about how much whitespace to use is entirely yours—in real code (where there’s
significantly more room than in a book), I might well have put the entire C# 3 state-
ment on one line. The use of implicit typing here was partly for space reasons—the
names variable could equally well have been declared explicitly. Reducing the number
of lines of code (without reducing readability) is nice, but there are two bigger bene-
fits of collection initializers:

■ The “create and initialize” part counts as a single expression.
■ There’s a lot less clutter in the code.

The first point becomes important when you want to use a collection as either an
argument to a method or as one element in a larger collection. That happens relatively
rarely (although often enough to still be useful)—but the second point is the real rea-
son this is a killer feature in my view. If you look at the code on the right, you see the
information you need, with each piece of information written only once. The variable
name occurs once, the type being used occurs once, and each of the elements of the
initialized collection appears once. It’s all extremely simple, and much clearer than
the C# 2 code, which contains a lot of fluff around the useful bits.

 Collection initializers aren’t limited to just lists. You can use them with any type
that implements IEnumerable, as long as it has an appropriate public Add method for
each element in the initializer. You can use an Add method with more than one param-
eter by putting the values within another set of braces. The most common use for this
is creating dictionaries. For example, if we wanted a dictionary mapping names to
ages, we could use the following code:

Dictionary<string,int> nameAgeMap = new Dictionary<string,int>
{
    {"Holly", 31},

List<string> names = new List<string>();
names.Add("Holly");
names.Add("Jon");
names.Add("Tom");
names.Add("Robin");
names.Add("William");

var names = new List<string>
{ 
    "Holly", "Jon", "Tom",
    "Robin", "William"
};



220 CHAPTER 8 Cutting fluff with a smart compiler

    {"Jon", 31},
    {"Tom", 4}
};

In this case, the Add(string, int) method would be called three times. If multiple
Add overloads are available, different elements of the initializer can call different over-
loads. If no compatible overload is available for a specified element, the code will fail
to compile. There are two interesting points about the design decision here:

■ The fact that the type has to implement IEnumerable is never used by the com-
piler.

■ The Add method is only found by name—there’s no interface requirement
specifying it.

These are both pragmatic decisions. Requiring IEnumerable to be implemented is a
reasonable attempt to check that the type really is a collection of some sort, and using
any public overload of the Add method (rather than requiring an exact signature)
allows for simple initializations such as the earlier dictionary example. Nonpublic
overloads, including those that explicitly implement an interface, are not used. This is
a slightly different situation from object initializers setting properties, where internal
properties are available too (within the same assembly, of course).

 An early draft of the specification required ICollection<T> to be implemented
instead, and the implementation of the single-parameter Add method (as specified
by the interface) was called rather than allowing different overloads. This
sounds more “pure,” but there are far more types that implement IEnumerable than
ICollection<T>—and using the single-parameter Add method would be inconve-
nient. For example, in our case it would have forced us to explicitly create an
instance of a KeyValuePair<string,int> for each element of the initializer. Sacrific-
ing a bit of academic purity has made the language far more useful in real life.
POPULATING COLLECTIONS WITHIN OTHER OBJECT INITIALIZERS
So far we’ve only seen collection initializers used in a stand-alone fashion to create
whole new collections. They can also be combined with object initializers to populate
embedded collections. To show this, we’ll go back to our Person example. The
Friends property is read-only, so we can’t create a new collection and specify that as
the collection of friends—but we can add to whatever collection is returned by the
property’s getter. The way we do this is similar to the syntax we’ve already seen for set-
ting properties of embedded objects, but we just specify a collection initializer instead
of a sequence of properties.

 Let’s see this in action by creating another Person instance for Tom, this time with
friends (listing 8.3).

Person tom = new Person
{
    Name = "Tom",                                    
    Age = 4,                                             

Listing 8.3 Building up a rich object using object and collection initializers

Calls parameterless constructor

Sets properties 
directly



221Simplified initialization

    Home = { Town="Reading", Country="UK" },      
    Friends = 
    {                                                            
        new Person { Name = "Phoebe" },                
        new Person("Abi"),                                
        new Person { Name = "Ethan", Age = 4 },      
        new Person("Ben")                                  
        {                                                         
            Age = 4,                                            
            Home = { Town = "Purley", Country="UK" }
        }                                                         
    }                                                            
};

Listing 8.3 uses all the features of object and collection initializers we’ve come across.
The main part of interest is the collection initializer, which itself uses all kinds of dif-
ferent forms of object initializers internally. Note that we’re not specifying a type here
as we did with the stand-alone collection creation: we’re not creating a new collection,
just adding to an existing one.

 We could have gone further, specifying friends of friends, friends of friends of
friends, and so forth. What we couldn’t do with this syntax is specify that Tom is Ben’s
friend—while you’re still initializing an object, you don’t have access to it. This can be
awkward in a few cases, but usually isn’t a problem.

 Collection initialization within object initializers works as a sort of cross between
stand-alone collection initializers and setting embedded object properties. For each
element in the collection initializer, the collection property getter (Friends in this
case) is called, and then the appropriate Add method is called on the returned value.
The collection isn’t cleared in any way before elements are added. For example, if you
were to decide that someone should always be their own friend, and added this to
the list of friends within the Person constructor, using a collection initializer would
only add extra friends. 

 As you can see, the combination of collection and object initializers can be used to
populate whole trees of objects. But when and where is this likely to actually happen?

8.3.5 Uses of initialization features

Trying to pin down exactly where these features are useful is reminiscent of being in
a Monty Python sketch about the Spanish Inquisition—every time you think you’ve
got a reasonably complete list, another fairly common example pops up. I’ll just
mention three examples, which I hope will encourage you to consider where else you
might use them.
“CONSTANT” COLLECTIONS
It’s not uncommon for me to want some kind of collection (often a map) that is effec-
tively constant. Of course, it can’t be a constant as far as the C# language is concerned,
but it can be declared static and read-only, with big warnings to say that it shouldn’t be
changed. (It’s usually private, so that’s good enough.) Typically, this involves creating
a static constructor and often a helper method, just to populate the map. With C# 3’s
collection initializers, it’s easy to set the whole thing up inline.

Initializes 
embedded 
object

Initializes collection 
with further object 
initializers



222 CHAPTER 8 Cutting fluff with a smart compiler

SETTING UP UNIT TESTS
When writing unit tests, I frequently want to populate an object just for one test, often
passing it in as a parameter to the method I’m trying to test at the time. This is partic-
ularly common with entity classes. Writing all of the initialization “long-hand” can be
longwinded and also hides the essential structure of the object from the reader of the
code, just as XML creation code can often obscure what the document would look like
if you viewed it (appropriately formatted) in a text editor. With appropriate indenta-
tion of object initializers, the nested structure of the object hierarchy can become
obvious in the very shape of the code, as well as make the values stand out more than
they would otherwise.
PARAMETER ENCAPSULATION
Sometimes patterns occur in production code that can be aided by C# 3’s initialization
features. For instance, rather than specifying several parameters to a single method,
you can sometimes make code more straightforward by collecting the parameters
together in an extra type. The framework ProcessStartInfo type is a good example
of this—the designers could have overloaded Process.Start with many different sets
of parameters, but using ProcessStartInfo makes everything clearer. C# 3 allows you
to create a ProcessStartInfo and fill in all the properties in a clearer manner—and
you could even specify it inline in a call to Process.Start. In some ways, the method
call would then act as if it had a lot of default parameters, with the properties provid-
ing the names of parameters you want to specify. It’s worth considering this pattern
when you find yourself using lots of parameters—it was always a useful technique to
know about, but C# 3 makes it that bit more elegant.
<INSERT YOUR FAVORITE USE HERE>
Of course, there are uses beyond these three in ordinary code, and I certainly don’t
want to put you off using the new features elsewhere. There’s very little reason not to
use them, other than possibly confusing developers who aren’t familiar with C# 3 yet.
You may decide that using an object initializer just to set one property (as opposed to
just explicitly setting it in a separate statement) is over the top—that’s a matter of aes-
thetics, and I can’t give you much guidance there. As with implicit typing, it’s a good
idea to try the code both ways, and learn to predict your own (and your team’s) read-
ing preferences.

 So far we’ve looked at a fairly diverse range of features: implementing properties
easily, simplifying local variable declarations, and populating objects in single expres-
sions. In the remainder of this chapter we’ll be gradually bringing these topics
together, using more implicit typing and more object population, and creating whole
types without giving any implementation details.

 Our next topic appears to be quite similar to collection initializers when you look
at code using it. I mentioned earlier that array initialization was a bit clumsy in C# 1
and 2. I’m sure it won’t surprise you to learn that it’s been streamlined for C# 3. Let’s
take a look.



223Implicitly typed arrays

8.4 Implicitly typed arrays
In C# 1 and 2, initializing an array as part of a variable declaration and initialization
statement was quite neat—but if you wanted to do it anywhere else, you had to specify
the exact array type involved. So for example, this compiles without any problem:

string[] names = {"Holly", "Jon", "Tom", "Robin", "William"};

This doesn’t work for parameters, though: suppose we want to make a call to
MyMethod, declared as void MyMethod(string[] names). This code won’t work:

MyMethod({"Holly", "Jon", "Tom", "Robin", "William"});

Instead, you have to tell the compiler what type of array you want to initialize:

MyMethod(new string[] {"Holly", "Jon", "Tom", "Robin", "William"});

C# 3 allows something in between:

MyMethod(new[] {"Holly", "Jon", "Tom", "Robin", "William"});

Clearly the compiler needs to work out what type of array to use. It starts by forming a
set containing all the compile-time types of the expressions inside the braces. If
there’s exactly one type in that set that all the others can be implicitly converted to,
that’s the type of the array. Otherwise, (or if all the values are typeless expressions,
such as constant null values or anonymous methods, with no casts) the code won’t
compile. Note that only the types of the expressions are considered as candidates for
the overall array type. This means that occasionally you might have to explicitly cast a
value to a less specific type. For instance, this won’t compile:

new[] { new MemoryStream(), new StringWriter() }

There’s no conversion from MemoryStream to StringWriter, or vice versa. Both are
implicitly convertible to object and IDisposable, but the compiler only considers types
that are in the original set produced by the expressions themselves. If we change one
of the expressions in this situation so that its type is either object or IDisposable, the
code compiles:

new[] { (IDisposable) new MemoryStream(), new StringWriter() }

The type of this last expression is implicitly IDisposable[]. Of course, at that point
you might as well explicitly state the type of the array just as you would in C# 1 and 2,
to make it clearer what you’re trying to achieve.

 Compared with the earlier features, implicitly typed arrays are a bit of an anticli-
max. I find it hard to get particularly excited about them, even though they do make
life that bit simpler in cases where an array is passed as a parameter. You could well
argue that this feature doesn’t prove itself in the “usefulness versus complexity” bal-
ance used by the language designers to decide what should be part of the language.

 The designers haven’t gone mad, however—there’s one important situation in
which this implicit typing is absolutely crucial. That’s when you don’t know (and
indeed can’t know) the name of the type of the elements of the array. How can you
possibly get into this peculiar state? Read on…



224 CHAPTER 8 Cutting fluff with a smart compiler

8.5 Anonymous types
Implicit typing, object and collection initializers, and implicit array typing are all use-
ful in their own right, to a greater or lesser extent. However, they all really serve a
higher purpose—they make it possible to work with our final feature of the chapter,
anonymous types. They, in turn, serve a higher purpose—LINQ.

8.5.1 First encounters of the anonymous kind

It’s much easier to explain anonymous types when you’ve already got some idea of
what they are through an example. I’m sorry to say that without the use of extension
methods and lambda expressions, the examples in this section are likely to be a little
contrived, but there’s a distinct chicken-and-egg situation here: anonymous types are
most useful within the context of the more advanced features, but we need to under-
stand the building blocks before we can see much of the bigger picture. Stick with it—
it will make sense in the long run, I promise.

 Let’s pretend we didn’t have the Person class, and the only properties we cared
about were the name and age. Listing 8.4 shows how we could still build objects with
those properties, without ever declaring a type.

var tom = new { Name = "Tom", Age = 4 };     
var holly = new { Name = "Holly", Age = 31 };
var jon = new { Name = "Jon", Age = 31 };

Console.WriteLine("{0} is {1} years old", jon.Name, jon.Age);

As you can tell from listing 8.4, the syntax for initializing an anonymous type is similar
to the object initializers we saw in section 8.3.2—it’s just that the name of the type is
missing between new and the opening brace. We’re using implicitly typed local vari-
ables because that’s all we can use—we don’t have a type name to declare the variable
with. As you can see from the last line, the type has properties for the Name and Age,
both of which can be read and which will have the values specified in the anonymous
object initializer used to create the instance—so in this case the output is “Jon is 31 years
old.” The properties have the same types as the expressions in the initializers—string

for Name, and int for Age. Just as in normal object initializers, the expressions used in
anonymous object initializers can call methods or constructors, fetch properties, per-
form calculations—whatever you need to do.

 You may now be starting to see why implicitly typed arrays are important. Suppose
we want to create an array containing the whole family, and then iterate through it to
work out the total age. Listing 8.5 does just that—and demonstrates a few other inter-
esting features of anonymous types at the same time.

var family = new[]                   
{

Listing 8.4 Creating objects of an anonymous type with Name and Age properties

Listing 8.5 Populating an array using anonymous types and then finding the total age

Uses an implicitly typed array initializerB



225Anonymous types

    new { Name = "Holly", Age = 31 },
    new { Name = "Jon", Age = 31 },   
    new { Name = "Tom", Age = 4 },    
    new { Name = "Robin", Age = 1 }, 
    new { Name = "William", Age = 1 }
};

int totalAge = 0;
foreach (var person in family)
{
    totalAge += person.Age;     
}
Console.WriteLine("Total age: {0}", totalAge);

Putting together listing 8.5 and what we learned about implicitly typed arrays in sec-
tion 8.4, we can deduce something very important: all the people in the family are of the
same type. If each use of an anonymous object initializer in C created a new type, there
wouldn’t be any appropriate type for the array declared at B. Within any given assem-
bly, the compiler treats two anonymous object initializers as the same type if there are
the same number of properties, with the same names and types, and they appear in
the same order. In other words, if we swapped the Name and Age properties in one of
the initializers, there’d be two different types involved—likewise if we introduced an
extra property in one line, or used a long instead of an int for the age of one person,
another anonymous type would have been introduced.

NOTE Implementation detail: how many types?—If you ever decide to look at the IL
(or decompiled C#) for an anonymous type, be aware that although two
anonymous object initializers with the same property names in the same
order but using different property types will produce two different types,
they’ll actually be generated from a single generic type. The generic type
is parameterized, but the closed, constructed types will be different because
they’ll be given different type arguments for the different initializers.

Notice that we’re able to use a foreach statement to iterate over the array just as we
would any other collection. The type involved is inferred D, and the type of the
person variable is the same anonymous type we’ve used in the array. Again, we can
use the same variable for different instances because they’re all of the same type.

 Listing 8.5 also proves that the Age property really is strongly typed as an int—
otherwise trying to sum the ages E wouldn’t
compile. The compiler knows about the anon-
ymous type, and Visual Studio 2008 is even
willing to share the information via tooltips,
just in case you’re uncertain. Figure 8.3 shows
the result of hovering over the person part of
the person.Age expression from listing 8.5.

 Now that we’ve seen anonymous types in
action, let’s go back and look at what the com-
piler is actually doing for us.

Uses same 
anonymous type 
five times

C

Uses implicit 
typing for person

D

Sums agesE

Figure 8.3 Hovering over a variable 
that is declared (implicitly) to be of an 
anonymous type shows the details of 
that anonymous type.



226 CHAPTER 8 Cutting fluff with a smart compiler

8.5.2 Members of anonymous types

Anonymous types are created by the compiler and included in the compiled assembly
in the same way as the extra types for anonymous methods and iterator blocks. The CLR
treats them as perfectly ordinary types, and so they are—if you later move from an anony-
mous type to a normal, manually coded type with the behavior described in this section,
you shouldn’t see anything change. Anonymous types contain the following members:

■ A constructor taking all the initialization values. The parameters are in the
same order as they were specified in the anonymous object initializer, and have
the same names and types.

■ Public read-only properties.
■ Private read-only fields backing the properties.
■ Overrides for Equals, GetHashCode, and ToString.

That’s it—there are no implemented interfaces, no cloning or serialization
capabilities—just a constructor, some properties and the normal methods from object.

 The constructor and the properties do the obvious things. Equality between two
instances of the same anonymous type is determined in the natural manner, compar-
ing each property value in turn using the property type’s Equals method. The hash
code generation is similar, calling GetHashCode on each property value in turn and
combining the results. The exact method for combining the various hash codes
together to form one “composite” hash is unspecified, and you shouldn’t write code
that depends on it anyway—all you need to be confident in is that two equal instances
will return the same hash, and two unequal instances will probably return different
hashes. All of this only works if the Equals and GetHashCode implementations of all
the different types involved as properties conform to the normal rules, of course.

 Note that because the properties are read-only, all anonymous types are immutable
so long as the types used for their properties are immutable. This provides you with all
the normal benefits of immutability—being able to pass values to methods without
fear of them changing, simple sharing of data across threads, and so forth.

 We’re almost done with anonymous types now. However, there’s one slight wrinkle
still to talk about—a shortcut for a situation that is fairly common in LINQ.

8.5.3 Projection initializers

The anonymous object initializers we’ve seen so far have all been lists of name/value
pairs—Name = "Jon", Age=31 and the like. As it happens, I’ve always used constants
because they make for smaller examples, but in real code you often want to copy prop-
erties from an existing object. Sometimes you’ll want to manipulate the values in some
way, but often a straight copy is enough.

 Again, without LINQ it’s hard to give convincing examples of this, but let’s go back
to our Person class, and just suppose we had a good reason to want to convert a collec-
tion of Person instances into a similar collection where each element has just a name,
and a flag to say whether or not that person is an adult. Given an appropriate person
variable, we could use something like this:

new { Name = person.Name, IsAdult = (person.Age >= 18) }



227Anonymous types

That certainly works, and for just a single property the syntax for setting the name
(the part in bold) is not too clumsy—but if you were copying several properties it
would get tiresome. C# 3 provides a shortcut: if you don’t specify the property name,
but just the expression to evaluate for the value, it will use the last part of the expres-
sion as the name—provided it’s a simple field or property. This is called a projection ini-
tializer. It means we can rewrite the previous code as

new { person.Name, IsAdult = (person.Age >= 18) }

It’s quite common for all the bits of an anonymous object initializer to be projection
initializers—it typically happens when you’re taking some properties from one object
and some properties from another, often as part of a join operation. Anyway, I’m get-
ting ahead of myself. Listing 8.6 shows the previous code in action, using the
List.ConvertAll method and an anonymous delegate.

List<Person> family = new List<Person>                 
{
    new Person {Name="Holly", Age=31},
    new Person {Name="Jon", Age=31},
    new Person {Name="Tom", Age=4},
    new Person {Name="Robin", Age=1},
    new Person {Name="William", Age=1}
};

var converted = family.ConvertAll(delegate(Person person)
    { return new { person.Name, IsAdult = (person.Age >= 18) }; }
);

foreach (var person in converted)
{
    Console.WriteLine("{0} is an adult? {1}", 
                              person.Name, person.IsAdult);
}

In addition to the use of a projection initializer for the Name property, listing 8.6 shows
the value of delegate type inference and anonymous methods. Without them, we
couldn’t have retained our strong typing of converted, as we wouldn’t have been able
to specify what the TOutput type parameter of Converter should be. As it is, we can
iterate through the new list and access the Name and IsAdult properties as if we were
using any other type.

 Don’t spend too long thinking about projection initializers at this point—the
important thing is to be aware that they exist, so you won’t get confused when you see
them later. In fact, that advice applies to this entire section on anonymous types—so
without going into details, let’s look at why they’re present at all.

8.5.4 What’s the point?

I hope you’re not feeling cheated at this point, but I sympathize if you do. Anonymous
types are a fairly complex solution to a problem we haven’t really encountered yet…
except that I bet you have seen part of the problem before, really.

Listing 8.6 Transformation from Person to a name and adulthood flag



228 CHAPTER 8 Cutting fluff with a smart compiler

 If you’ve ever done any real-life work involving databases, you’ll know that you don’t
always want all of the data that’s available on all the rows that match your query criteria.
Often it’s not a problem to fetch more than you need, but if you only need two columns
out of the fifty in the table, you wouldn’t bother to select all fifty, would you?

 The same problem occurs in nondatabase code. Suppose we have a class that reads
a log file and produces a sequence of log lines with many fields. Keeping all of the
information might be far too memory intensive if we only care about a couple of fields
from the log. LINQ lets you filter that information easily.

 But what’s the result of that filtering? How can we keep some data and discard the
rest? How can we easily keep some derived data that isn’t directly represented in the orig-
inal form? How can we combine pieces of data that may not initially have been con-
sciously associated, or that may only have a relationship in a particular situation?
Effectively, we want a new data type—but manually creating such a type in every situa-
tion is tedious, particularly when you have tools such as LINQ available that make the
rest of the process so simple. Figure 8.4 shows the three elements that make anonymous
types a powerful feature.

 If you find yourself creating a type that is only used in a single method, and that only
contains fields and trivial properties, consider whether an anonymous type would be
appropriate. Even if you’re not developing in C# 3 yet, keep an eye out for places where
it might be worth using an anonymous type when you upgrade. The more you think
about this sort of feature, the easier the
decisions about when to use it will become.
I suspect that you’ll find that most of the
times when you find yourself leaning
toward anonymous types, you could also
use LINQ to help you—look out for that too.

 If you find yourself using the same
sequence of properties for the same pur-
pose in several places, however, you might
want to consider creating a normal type
for the purpose, even if it still just contains
trivial properties. Anonymous types natu-
rally “infect” whatever code they’re used in
with implicit typing—which is often fine,
but can be a nuisance at other times. As
with the previous features, use anonymous
types when they genuinely make the code
simpler to work with, not just because
they’re new and cool.

8.6 Summary
What a seemingly mixed bag of features! We’ve seen four features that are quite simi-
lar, at least in syntax: object initializers, collection initializers, implicitly typed arrays,
and anonymous types. The other two features—automatic properties and implicitly

Anonymous
types

Avoiding excessive
data accumulation

Avoiding manual
"turn the handle"

coding

Tailoring data
encapsulation to

one situation

Figure 8.4 Anonymous types allow you to keep 
just the data you need for a particular situation, 
in a form that is tailored to that situation, without 
the tedium of writing a fresh type each time.



229Summary

typed local variables—are somewhat different. Likewise, most of the features would
have been useful individually in C# 2, whereas implicitly typed arrays and anonymous
types only pay back the cost of learning about them when the rest of the C# 3 features
are brought into play.

 So what do these features really have in common? They all relieve the developer of
tedious coding. I’m sure you don’t enjoy writing trivial properties any more than I do, or
setting several properties, one at a time, using a local variable—particularly when
you’re trying to build up a collection of similar objects. Not only do the new features
of C# 3 make it easier to write the code, they also make it easier to read it too, at least
when they’re applied sensibly.

 In our next chapter we’ll look at a major new language feature, along with a frame-
work feature it provides direct support for. If you thought anonymous methods made
creating delegates easy, just wait until you see lambda expressions…






