
M A N N I N G

Stephan Hochhaus
Manuel Schoebel
FOREWORD BY Matt DeBergalis

S A M P L E C H A P T E R

Meteor in Action

by Stephan Hochhaus
Manuel Christoph Schoebel

 Chapter 8

 Copyright 2015 Manning Publications

v

brief contents
PART 1 LOOK—A SHOOTING STAR! ...1

1 ■ A better way to build apps 3

2 ■ My fridge! A reactive game 31

PART 2 3, 2, 1—IMPACT!...49

3 ■ Working with templates 51

4 ■ Working with data 76

5 ■ Fully reactive editing 105

6 ■ Users, authentications, and permissions 130

7 ■ Exchanging data 153

8 ■ Routing using Iron.Router 176

9 ■ The package system 203

10 ■ Advanced server methods 227

PART 3 LEAVING THE CRATER..251

11 ■ Building and debugging 253

12 ■ Going into production 281

176

Routing using Iron.Router

As your application grows in size and complexity, you’ll have to deal with lots of
subscriptions, publications, collections, and templates. You need a way to organize
all these things as well as specify what to render and what data context should be
available in the rendered templates.

 One good approach to handling this complexity is to use routes. This means you
decide what to subscribe to and what to render and you specify the data context,
depending on unique URLs. The router handles all those tasks. The most com-
monly used package with Meteor is Iron.Router.

 Iron.Router is a community package maintained by Chris Mather and Tom
Coleman. Tom wrote one of the first routers for Meteor, called meteor-router, and

This chapter covers
■ Adding routing capabilities to Meteor

applications
■ Creating layouts
■ Improving code structure using Iron.Router
■ Extending Iron.Router with controllers, hooks,

and plug-ins
■ Creating server-side routes and APIs

177Routing in web applications

Chris also started a routing project called meteor-mini-pages. Luckily for the Meteor
community, they combined their efforts and developed a single router, which eventu-
ally became the Iron.Router package.

 The Meteor Development Group (MDG) had a router on its own roadmap once
but decided that it wasn’t necessary for them to build one, even though routing is a
crucial aspect of every web framework. The reason was that the community efforts in
building a router were so good that a router developed by MDG wasn’t needed.

8.1 Routing in web applications
If you click a link on a normal website, the URL changes in the browser. The browser
then requests the resource from the server that belongs to the new URL. The first
thing the web server does after it receives a request with a given route is go through a
dictionary of all the routes it knows. If the route of the request matches a known route
in the dictionary, the defined action is performed. At the end of each action, the
response is created and sent back to the browser, which renders the HTML it received
for the new route. The router typically handles all of this functionality (figure 8.1).

 Let’s say you’re on a community website and see a list of profiles. One of them is
from Manuel. If you click the Manuel link, the URL of the browser changes and a
request is sent to the server. The server performs the actions defined for the route to
generate the HTML needed for Manuel’s profile. At the end, the response is sent back.

 With Meteor, you create client-side web applications. This means if you click a link,
there’s no request back to the server for a different HTML document. In a web appli-
cation, if you click a link the view is changed directly in the browser, without the need
for a new HTTP request to the server. This means that technically you don’t need any

Router initiates the rendering
process and returns the rendered
HTML to the client.

Server Client

Database

HTML from response
is shown in browser.

Rendering

processes

Router Click on link

HTTP request with URL

Response with HTML

Figure 8.1 The client’s HTTP request is handled by a server-side router that responds
with HTML.

178 CHAPTER 8 Routing using Iron.Router

routes because you can link the functions that change the DOM directly on the event
handler of a click event on specific anchor elements (figure 8.2).

 When links to profiles are listed on a website, the process is quite different from
the one on a static website. If you click the link for Manuel’s profile, the URL
doesn’t change at all, but instead the event is handled by a JavaScript function
directly in the browser. The DOM could be changed directly on the click and show a
loading indicator—for example, a simple string like Loading.... At the same time,
the application fetches some data from the server that’s needed in order to render
the profile. In Meteor, you do this by updating or creating a new subscription. If the
new data is available on the client, the DOM is changed again and the new profile
is rendered.

 If you change the current HTML based on click events like this without changing
the browser’s URL, it affects the maintainability of your application. The URL com-
bined with a dictionary of routes that your application understands is a very good
starting point if you want to figure out where to look in your code. Suppose you want
to join a project that’s creating a complex application that’s completely new to you. If
you click a profile of the community website and the URL changes to /profiles/manuel,
you can start looking at the defined routes and see what action is performed. You can
use the URL as a first hint where to look for relevant code, which is very important.

Synced via publications
and subscriptions.

Server Client

Triggers

DB Mini DB

The event handler listens
for a click and changes
the DOM directly.

DOM update

process

Event

handler
Click on link

Figure 8.2 A client-side web application can handle the DOM manipulation in
an event handler.

179Routing in web applications

 The main reason why you should always use URLs even for a client-side application
is the architecture of the web itself. Its URLs define every resource you can reach in the
web. URLs enable you to share content with your friends. If your community applica-
tion will consist of only one URL, you can never share an interesting profile with any-
one. But if you perform actions like filtering or sorting of tables, it would be good to
reflect this in the URL as well. Consider a special and very important filter and sorting
combination of a large data set that you need to access very often. If you can access this
exact data set with a URL, you can easily bookmark it and reach it much faster than you
would if you had to set up the configuration every time you wanted to access it.

 URLs are important not only for humans browsing through the web but for appli-
cations as well. If a search engine crawls a website, it always tries to understand the
content of the given document that relates to a specific URL. If a user then types
search phrases into the search bar, the search engine will try to present the best
matching URL as a response. If your application has only one URL for all the content it
contains, a search engine can’t properly redirect visitors to the exact view that would
be relevant to the search phrase of the user.

 Because routes are so important for Meteor applications, Iron.Router implements a
router. The router is available on both the client and the server sides. On the client side,
the router helps you set up new subscriptions but also end old ones based on a given
URL. In addition, it takes care of rendering the specified template based on the current
URL (figure 8.3). As you’ll see in this chapter, Iron.Router has even more capabilities.

Synced via publications
and subscriptions.

Server Client

Change

URL

DB Mini DB

Iron.Router reacts on changes
to the URL and performs
specific actions.

Handles new

subscriptions

and rendering

Iron.Router Click on link

Figure 8.3 Iron.Router listens for URL changes and performs actions defined
for a route.

180 CHAPTER 8 Routing using Iron.Router

You can also use Iron.Router to react as a normal server-side router. This means
you can create REST interfaces with a Meteor application. The main use case of
Iron.Router is client-side routing, and this is what we’ll focus on in this chapter. But
we’ll take a look at server-side routing at the end of this chapter, too.

8.2 Client-side routing
In this section we’ll show you how to use Iron.Router to implement client-side rout-
ing. The router component will run exclusively on the client and let you navigate
around without having to contact the server.

 You’ll be building a community application where you can see users’ profiles and
comment on their profile pages. An important aspect of an application like this (and
for nearly any web application) is to have URLs that are sharable. Think of your profile
page on our new community website. Without your unique URL, you couldn’t share it
with anyone or even access it yourself.

 At the end of this chapter you’ll have built an application that can contain an
unlimited number of profile pages, each with a unique and sharable URL. Each pro-
file will have a dedicated URL that shows the contents, as shown in figure 8.4. Our
application will have multiple routes not only for static pages but also for dynamic
pages that require data in order to render the templates.

8.2.1 Adding Iron.Router

Meteor doesn’t come with a router as a core feature, but as mentioned earlier,
Iron.Router is a high-quality package developed by the Meteor community that’s well
maintained. For your Meteor project, you have to add Iron.Router as a package first:

$ meteor add iron:router

Figure 8.4 A simple profile page of a single-page community application

181Client-side routing

Once you’ve added Iron.Router you get access to the Router object in your applica-
tion in both the client and server environments. Therefore, you can use it to perform
server-side routing as well. We’ll get back to using Router on the server in a bit.

 Create a router folder just at the root of your application folder. Inside this folder
you’ll put all router-related files, beginning with the routes.js file that contains all
route definitions (figure 8.5).

You’ll use the routes.js file to define all the routes the application should contain. It’s
a good practice to have every route of your application in a single file to allow for a
quicker overview.

8.2.2 Creating your first routes

Our next goal is to set up two basic routes. One is the standard home route, which
should be rendered at the root of your application. This route relates to the path /.
The second route is a simple about page that should be rendered when users access
the /about URL (see figure 8.6).

NOTE To reduce the complexity of the code we won’t show any of the boot-
strap markup. The code download for this chapter contains all the relevant
bootstrap code in order to achieve a more polished look. To add the Boot-
strap CSS-Framework, you have to add the twbs:bootstrap package.

The file structure you’ll use for the first step is shown in figure 8.7.

Figure 8.5 Iron.Router works on both the client and the
server, so putting a routes.js file somewhere outside the client
or server folder makes it accessible in all environments.

Figure 8.6 Clicking the About link in the top navigation changes the URL to /about.

182 CHAPTER 8 Routing using Iron.Router

The home.html file (see listing 8.1) contains the template that should be rendered if
a user is on the root path, /. Navigating to the /about page should bring up a static
site with further information about the application. For this you’ll use an about tem-
plate that’s stored in the static folder. The index.html file contains some general tem-
plates as well as the <head> element for the application.

// index.html
<head>
 <title>My Little Community</title>
</head>

<template name="header">
 <nav>

 My Little Community

 About

 </nav>
</template>

// home.html
<template name="home">
 {{> header}}

 <h1>Home</h1>
</template>

// about.html
<template name="about">
 {{> header}}

 <h1>About</h1>
</template>

There’s nothing too fancy about the templates yet. The navigation inside the header tem-
plate contains two anchor elements. One links to the root path My Little
Community and the other links to the about page About.

Listing 8.1 Initial templates for the community application

Figure 8.7 To create two simple routes, you
must define the routes and the templates that
should be rendered for each route.

The header template contains
the navigation so it can be
included in other templates.

The templates include
the header template so
the navigation is on
top of every view.

183Client-side routing

Next you want to add those routes to the Iron.Router and render the appropriate
template using the code from the following listing.

// routes.js
Router.route('/', function(){
 this.render('home');
});

Router.route('/about', function(){
 this.render('about');
});

The Router object has a route function that takes two parameters—the path and the
associated function. The function is called if the URL changes and the path matches
the specified one. Inside the scope of the function that’s called, you have access to the
current instance of the so-called RouteController object via this. With the help of
the RouteController you can, for example, render a template to a specific location
into the DOM. In this case, because you have nothing else defined, the template speci-
fied with the string parameter of the this.render('templateName') function will be
rendered simply inside the <body> element.

8.2.3 Defining a layout depending on a route

For the entire application you want to maintain a consistent layout—for example, by
keeping the main navigation on top. Therefore, you can set a default layout for all
routes. Alternatively, some routes may require different layouts. The front page
shows multiple images side by side whereas a profile page uses a single, bigger pro-
file image instead.

SINGLE LAYOUT

In our previous example, we included the navigation at the top of the application in
every rendered template (see figure 8.8).

 A more effective way to reuse the header template is to use a layout template for
each route and alter only a part of the layout based on the current route. This is espe-
cially useful if layouts grow more complex or multiple layouts must be used within a
single application.

 As you can see in figure 8.9, for both routes the masterLayout template should
be rendered so that it always has the header template on top. The dynamic part is
changed depending on the current route. If the current path is /, the dynamic part
of the layout should be replaced with the template called home, and if the path
changes to /about, the dynamic part of the layout has to be exchanged with the tem-
plate called about.

 In the layout template you use the {{> yield}} template helper that’s defined
by the Iron.Router package. With {{> yield}}, you can specify exactly where the

Listing 8.2 Setting up different routes

Defines a path and
associates it with a
function to call if the
URL matches this path

The specified
template is

rendered.

184 CHAPTER 8 Routing using Iron.Router

<template name="home">

{{> header}}

...

</template>

<template name="about">

{{> header}}

...

</template>

Figure 8.8 Reusing templates for each route without using a layout

<template name="masterLayout">

{{> header}}

<div class="container">

{{> yield}}

</div>

</template>

<template name="masterLayout">

{{> header}}

<div class="container">

{{> yield}}

</div>

</template>

Reusing the masterLayout
and header template

Figure 8.9 {{> yield}} is a dynamic area that’s replaced with the template that should be
rendered for the current route.

185Client-side routing

template for the route should be rendered; it’s a placeholder for content. This is
what’s called a region.

 Remember to consolidate the code from your view templates to the masterLayout
template, as shown in the following listing.

// masterLayout.html
<template name="masterLayout">
 {{> header}}

 <div class="container">
 {{> yield}}
 </div>
</template>

// home.html
<template name="home">
 <h1>Home</h1>
</template>

To specify which layout should be used for each route, you must set it inside the
Router object via the configure() function. To keep the configuration separate from
route definitions, put the following content inside a new file router/config.js:

Router.configure({
 layoutTemplate: 'masterLayout'
});

USING MULTIPLE LAYOUTS

Instead of a single layout template for all routes, you need two layouts to differentiate
the profile page from the front page. First let’s look at the old masterLayout and the
new profileLayout (figure 8.10).

 As you can see, the profile layout has two columns. The column on the left renders
the profile picture and the right column contains profile information. You still have
one main content region that’s specified with the {{> yield}} template helper. The
second region on the left needs a name so it can be referenced later in the route
function. For that, you can use a named yield like this: {{> yield "name"}}.

 In the route function you can specify which layout should be used. If you don’t
specify a layout, the one set by the configure function is used. If it hasn’t been config-
ured, the template is directly rendered into the <body> (see the following listing).

Router.route('/profiles/manuel', function () {
 this.layout('profileLayout');
 this.render('profileDetail');
});

Listing 8.3 Moving layout-specific markup into a common layout template

Listing 8.4 Setting a layout inside the route function

Sets a layout

The layout template is used to render
the specified profileDetail template.

186 CHAPTER 8 Routing using Iron.Router

DEFINING THE CONTENT TEMPLATE FOR NAMED REGIONS

If you have named regions like the previous example—{{> yield "left"}}—you want to
define which template should be rendered there. You can do so in one of several ways.

 The easiest approach is inside the template itself. Iron.Router uses a template
helper named contentFor that lets you define content for specific regions (see list-
ing 8.5). Anything outside this block is rendered to the main region.

// profileDetail.html
<template name="profileDetail">
 {{#contentFor 'left'}}

 {{/contentFor}}

Listing 8.5 Rendering a template inside a named yield with template helpers

<template name="masterLayout">

{{> header}}

<div>

{{> yield}}

</div>

</template>

<template name="profileLayout">

{{> header}}

<div class="left">

{{> yield "left"}}

</div>

<div class="right">

{{> yield}}

</div>

</template>

masterLayout template

profileLayout template

Figure 8.10 The second layout for the profile pages should be used on routes for profiles.

The block contents are
rendered to the region
called left.

187Client-side routing

 <h1>Manuel Schoebel</h1>
 <p>I like to eat good food and also cooking it myself!</p>
</template>

You can also use contentFor as a partial and specify which template to render:

{{> contentFor region='left' template="profileImage"}}

The most flexible way to define contents for a region is inside the route definition.
The render() function has a to option that can be used to specify the region in which
you want to render templates and data (see the following listing).

// profileDetail.html
<template name="profileDetail">
 {{> contentFor region='left' template="profileImage"}}

 <h1>Manuel Schoebel</h1>
 <p>I like to eat good food and also cooking it myself!</p>
</template>

<template name="profileImage">

</template>

// routes.js
Router.route('/profiles/manuel', function () {
 this.layout('profileLayout');
 this.render('profileImage', {to: 'left'});
 this.render('profileDetail');
});

You defined the route for a specific profile in a static way because you used the route
/profiles/manuel. Of course, you want to have only one route for profile detail pages,
as you’ll see next.

8.2.4 Setting the data context depending on a route

On the home route of our application, you want to have multiple profiles with links to
their details page. The profile detail page should have a template that renders the
data of the individual profile that’s specified through the URL. That means the route
/profiles/stephan should render the profile detail template with Stephan’s profile
data. The route /profiles/manuel should render the profile detail template as well,
only with Manuel’s profile data (figure 8.11).

 Figure 8.11 shows the core functionality you’ll implement in this chapter. You’ll
need a list of profiles on the home route, a more… link that redirects to the profile
URL, and a dynamic route that displays detailed profiles.

Listing 8.6 Rendering a template inside a named yield using JavaScript

This is rendered
into the main yield.

Setting the template
and region using a
template helper

This is rendered
into the main yield.

The option “to”
specifies where to
render a given
template.

188 CHAPTER 8 Routing using Iron.Router

The data context of the home route has to be a set of profiles that should be ren-
dered. On the profile’s detail page you only require a single user’s data as the context
for the profileDetail template. Because the URL defines the data context, you’ll use
Iron.Router to set it.

Clicking the
“more...” link
renders the
profile detail
page.

Layout

home.html

Layout

profile

Img.

html

profile

Detail.

html

[

{

_id: 'Stephan',

img: 'http://...',

...

},

{

name: 'Manuel',

img: 'http://...',

...

}

]

Data

{

name: 'Stephan',

img: 'http://...',

_id: '6RwqQML6ivpf5cj93',

...

}

Path: /profiles/6RwqQML6ivpf5cj93

{

name: 'Manuel',

img: 'http://...' ,

_id: 'iMBBTWJWXefNQ6FeP' ,

...

}

Path: /profiles/iMBBTWJWXefNQ6FeP

Data Data

Figure 8.11 With Iron.Router you can define the rendered template, the layout, and the data context.

189Client-side routing

 To make things easier, let’s assume that the autopublish package is still active so
that all profile data is available on the client. You also need all profile data to be avail-
able inside ProfilesCollection. Refer back to chapter 7 to learn how to set up publi-
cations and subscriptions that limit the data on the client.

 The relevant logic is located in the routes.js file (see listing 8.7). You now have
three routes: home or /, /about, and a dynamic /profiles route that accepts a user ID
as a URL parameter to determine which profile to display. The /about route stays the
same, but the other two require updating.

 The home route now sets the data context of the home template. It returns an object
that contains all profiles available on the client and makes them accessible via pro-
files. This makes it possible to access all profiles inside {{#each profiles}}...{{/
each}} within the home template. There’s no need to define a template helper that
returns data; Iron.Router can take care of it entirely.

// routes.js
Router.route('/', function(){
 this.render('home', {
 data: function(){
 return {profiles: ProfilesCollection.find()};
 }
 });
});

Router.route('/about', function(){
 this.render('about');
});

Router.route('/profiles/:_id', function(){
 profile = ProfilesCollection.findOne({_id: this.params._id});
 this.layout('profileLayout');
 this.render('profileDetailLeft', {
 to: 'left',
 data: function(){
 return profile;
 }
 });
 this.render('profileDetail', {
 data: function(){
 return profile;
 }
 });
});

In case of the profile’s detail page, you expect the path to be /profiles/:_id. The
leading : (colon) signifies that _id is a variable, which is read from the URL. Its con-
tent is accessible through the params attribute of the current route controller
instance. You access the current value from the URL with this.params._id. This way,

Listing 8.7 Setting the data context with Iron.Router

Profiles are accessible
via {{profiles}} in the
home template.

Set the data
context of
the rendered
template.

Colons
indicate

path
variables.

Access path
variables via

this.params.key.

Data is directly
accessible, for
example, via
{{name}} in the
profile templates.Set the data

context of
the rendered

template.

190 CHAPTER 8 Routing using Iron.Router

you can identify which document to retrieve from the database. Let’s take a closer
look at the data option.

8.2.5 Data subscriptions with Iron.Router

You’ve seen that multiple aspects depend on the current route: the layout that should
be used, the templates that should be rendered, and the data that you want to look at.
Typically the autopublish package won’t be available within a package, so you must
be able to dynamically subscribe to data depending on the current route.

 On the home path of the social community, say you’d like to show some random
profiles, limited to a maximum of 10. This involves subscribing to the data. But
instead of being subscribed to this data all the time, you want to be subscribed to it
only for the home route. If you navigate to a profile’s detail page, you don’t need to
have all the data of the 10 profiles available anymore.

 At first you’ll remove the autopublish package from the application. On the
server you’ll create a publication that includes a slight delay to simulate network
latency. The following listing shows the publication code for the server.

// publications.js
Meteor.publish('profiles', function () {
 profiles = Meteor.wrapAsync(function (cb) {
 Meteor.setTimeout(function () {
 cb(null, ProfilesCollection.find({}, {
 limit: 10
 }));
 }, 1000);
 })();

 return profiles;
});

Next you need the client to subscribe to this publication. Let’s start with the home route.
Instead of using a simple this.render() call, you’ll pass an object as the second route
argument. The result will be the same, but the syntax is different (see following listing).

Router.route('/', {
 template: 'home',
 data: function() {
 return {
 profiles: ProfilesCollection.find({}, {limit: 10});
 }
 }
});

Listing 8.8 Publishing the profiles collection with a one-second delay

Listing 8.9 Defining a route’s behavior by options only

This code simulates
waiting time.

Here the actual query to the
MongoDB happens and the result
is stored in the profiles variable.Limit the publication

to 10 profiles.

The collection cursor from the
MongoDB query is returned from
the publication.

The template option specifies
which template to render. Data context is set

using the data option.

Return 10 profiles
from the
ProfilesCollection.

191Client-side routing

As you can see, by using options instead of a route function you save some lines of
code and it works perfectly fine for this simple use case.

 While you wait for data you want the application to render a loading indicator.
Iron.Router comes with a waitOn option that you can use to define all required sub-
scriptions (listing 8.10). A loading template is automatically shown when you use the
waitOn option. It’s possible to change the default loading template via the load-
ingTemplate option. You can do so either in the route’s options or globally for the
entire application in the global router configuration.

Router.route('/', {
 waitOn: function () {
 return Meteor.subscribe('profiles');
 },
 template: 'home',
 data: function () {
 return {
 profiles: ProfilesCollection.find({}, {
 limit: 10
 })
 };
 }
});

When the home route is requested, you’ll see a loading indicator, as shown in figure 8.12.
Once the subscription is ready, the home template will be rendered with the correct data.

 The same technique is used to display individual profiles. To tell the application
which profile to display you must also include the requested profile ID. As mentioned
earlier, you can pass it to the subscription using this.params._id. Without using the
render() function, the route looks like the following listing.

Router.route('/profiles/:_id', {
 layoutTemplate: 'profileLayout',
 waitOn: function() {
 return Meteor.subscribe('profile', this.params._id);
 },

Listing 8.10 Subscribing based on a route

Listing 8.11 Waiting on individual profile subscriptions

If waiting for multiple
subscriptions, you can
also use an array.

Figure 8.12 Iron.Router
automatically renders a loading
indicator when using waitOn.

192 CHAPTER 8 Routing using Iron.Router

 template: 'profileDetail',
 yieldTemplates: {
 'profileDetailLeft': {
 to: 'left'
 }
 },
 data: function() {
 return ProfilesCollection.findOne({
 _id: this.params._id
 });
 }
});

These are the fundamental building blocks you need to create single-page applica-
tions. Iron.Router not only helps you organize your code but also lets you accurately
define which templates should be rendered, which subscriptions are required, and
what data should be available in the templates’ data context.

 Ready to step it up a bit? Let’s look at some more advanced use cases.

8.3 Advanced routing methods
For the rest of this chapter, we’ll look at advanced techniques that are useful and com-
monly used in applications. They’re related to

■ Maintainability—Using named routes for easier reference and organizing code
in controllers and plug-ins

■ Appearance—Highlighting active links with different classes
■ Performance—Loading external libraries for specific routes only
■ Functionality—Using hooks to add view counters and prevent anonymous users

from accessing routes

8.3.1 Using named routes and link helpers

It’s good practice not to hard-code any links in an application, such as the href attri-
bute of an anchor element. If a route changes, you’d have to edit all hard-coded
occurrences manually, so it’s much better to rely on route names and use a helper to
generate the link path. As with templates you can give a name to a route and use it
to reference the router. The name of a route is one of its options in the route defini-
tion. To link to a named route, you’ll use the pathFor template helper.

 Listing 8.12 shows how to link to named routes. A profile page requires a profile’s
ID to properly display its contents. In that case the route named profile must fill a
variable called _id and the {{pathFor}} template helper must have access to it. It’s
possible to set the data context through Iron.Router or use the {{#with}} block
helper to pass a value for _id. Listing 8.12 uses Iron.Router to set the context.

193Advanced routing methods

// routes.js
Router.route('/', { name: 'home' });
Router.route('/about', 'about', { name: 'about' });
Router.route('/profiles/:_id', { name: 'profile.details' });

// index.html
<template name="header">
 <nav>
 ...

 My Little Community
 About

 </nav>
</template>

// profilePreview.html
<template name="profilePreview">

 <div>
 <h3>{{name}}</h3>
 <p>{{profileText}}</p>
 more...
 </div>
</template>

When {{pathFor}} is used, it returns a relative URL, making it work equally well in
different deployment environments. If you need an absolute URL, you should use
{{urlFor}} instead. A third option is {{#linkTo}}, which you’ve used earlier in this
chapter as well. It renders the anchor element and allows for content to be included
between its tags—for example, when providing a link text (see following listing).

{{#linkTo route='about'}}About{{/linkTo}}

// renders to
About

{{#linkTo route='home' class='navbar-brand'}}
 My Little Community
{{/linkTo}}

// renders to

 My Little Community

Any attribute you add to a {{#linkTo}} block helper will be rendered to the anchor
element, too. That way, you can add attributes such as class, data-*, or id.

Listing 8.12 Using named routes

Listing 8.13 Using the linkTo block helper to render anchor elements

Links to /

Links to /about

The profile route
requires :_id and
inherits the data
context of the
profilePreview
template.

194 CHAPTER 8 Routing using Iron.Router

8.3.2 Working with active routes for better navigation links

To let users know which part of an application they’re currently dealing with, you
should highlight the link associated with the current route. This way, users can
directly see where they are on the application (figure 8.13).

 For this functionality, you need a global template helper that can be used in any
template and for any navigational link. The purpose of the global helper is to check
whether or not the currently active route matches the route of the link. To be able to
tell which route is currently active, you’ll take advantage of Iron.Router’s named
routes feature:

Router.route("/about", {name: "about"});

Every route can have an optional name, which makes it easier to reference it. Listing
8.14 defines a template helper that determines the name for the current route and
returns it to the template. In the HTML file it’s then possible to implement a simple
check and set the CSS class for the li element to active for the current route.

// helpers.js
Template.registerHelper("isActiveRoute", function(routeName) {
 if (Router.current().route.getName() === routeName) {
 return 'active';
 }
});

// index.html
<nav>

 <li class="{{isActiveRoute 'about'}}">
 {{#linkTo route="about"}}About{{/linkTo}}

</nav>

Listing 8.14 A global template helper that highlights an active link

Active link is highlighted.

Figure 8.13 An active navigation item has a CSS class active and a highlighted UI.

Returns active if the name of
the currently active route
equals routeName

The template helper takes a
string of the route name to
check as a parameter.

The linkTo helper creates
the actual link tag for the
about route.

195Advanced routing methods

You can use this template helper on every navigational link where you want to set the
active class depending on the current route name. You can also use this helper for
anything else that needs to check the name of the currently active route.

8.3.3 Waiting for external libraries to load

Meteor loads every JavaScript to the client with the initial page request. If your appli-
cation contains a lot of external JavaScript libraries, it’s a good idea to not put every-
thing into the main application folder because doing so will increase the amount of
data to be transferred when first accessing the page. The resulting load time will be
longer than for a statically rendered page. If you use external libraries that aren’t
required by the initial page, it’s better to split them from the initial loading request.

 Iron.Router makes it possible to load an external library based on a route. When
adding a map or date picker, the library must be loaded before rendering, which can
also be achieved with Router.

 A package called wait-on-lib provides the necessary functionality:

$ meteor add manuelschoebel:wait-on-lib

This package enables you to use an object called IRLibloader, which can be used in a
waitOn function named Iron.Router just like you do with a Meteor.subscription.
Let’s say you want to load the jquery.fittext.js library only for the /profiles/:_id URL.
Once loaded, it’ll make text sizes flexible. The library itself is located in the public
folder as public/jquery.fittext.js.1

 With the wait-on-lib package, the waitOn function is used as shown in listing 8.15.
You define a full URL or a filename; wait-on-lib will look for the file inside the pub-
lic folder.

// router.js
Router.route('/profiles/:_id', {
 // ...
 waitOn: function() {
 return [
 Meteor.subscribe('profile', this.params._id),
 IRLibLoader.load("/jquery.fittext.js")
];
 },
 //...
});

1 Everything inside the public folder is served as is. This means even if a JavaScript file is located in public, it
won’t be minified by Meteor, even when running with the --production flag.

Listing 8.15 Waiting for external libraries to load

You can subscribe to
publications as you
would normally do.

IRLibLoader behaves like a
subscription and includes
a loading indicator.

196 CHAPTER 8 Routing using Iron.Router

Even though Meteor is loaded as one complete application, it’s still possible to load
libraries you don’t need for every visit of the application separately in order to reduce
the data that has to be transferred on an initial page load.

8.3.4 Organizing routes as controllers

Until now you’ve added all of a route’s functionality directly in the route() method. If
you did this in a large application, the routes.js file would quickly become too large to
comfortably manage, and you’d lose the ability to get a quick overview of an applica-
tion’s route at a glance. As a means to better organize your code, Iron.Router intro-
duces the concept of controllers (see the accompanying sidebar).

You can specify a controller for each route and put it into its own file. That way, you
can remove all logic from the routes.js file and split it across multiple files, similar to
how you deal with templates.

 Let’s say that you want to use a controller for the home route. It should wait for a
subscription to the profiles collection and set the data context so that all available
profiles are shown inside the home template.

 To specify a controller for this route, you can set it explicitly as a string or a con-
troller object. The controller itself typically has the same name as the route, suffixed
by the word Controller. To organize your code, place each controller in a dedicated
file. For the HomeController you need to define the waitOn, template, and data attri-
butes as shown in listing 8.16.

Introducing routing controllers
Many web frameworks build on the MVC principle, which consists of models, views,
and controllers. Therefore the term controller comes with a lot of associations.
Meteor doesn’t rely on the MVC pattern, which means that some of these assump-
tions may not be accurate. So what is a controller in the Iron.Router context?

A routing controller is the blueprint for commonly shared routing instructions. Each
route can build on these default settings and extend them as required. Technically
the routing controller is an object that stores state information when changing URLs.
Controllers offer two main benefits when applications grow larger:

■ Inheritance—Routing controllers may build on each other to model an applica-
tion’s behavior, enforcing the Don’t repeat yourself principle (DRY).

■ Organization—Separating route logic into different files helps maintain a better
overview of the actual routing and business logic.

By default, all of the routing functions like route() and render() rely on the default
RouteController object.

197Advanced routing methods

// routes.js
Router.route('/', { controller: 'HomeController' });

// homeController.js
HomeController = RouteController.extend({
 waitOn: function () {
 return Meteor.subscribe('profiles');
 },
 template: 'home',
 data: function () {
 return {
 profiles: ProfilesCollection.find({}, {
 limit: 10
 })
 };
 }
});

RouteController can have the same attributes as route(). This means you can also cre-
ate your own custom action function or specify a layoutTemplate. Splitting your routes
into separate controllers leaves a clean and short routes.js file (see following listing).

Router.route('/', { controller: 'HomeController' });
Router.route('/about', 'about');
Router.route('/profiles/:_id', { controller: 'ProfileController' });

If you’re using named routes, you don’t even have to specify a controller anymore. If
you have a route named home, then Iron.Router automatically looks for a controller
called homeController or HomeController: The following works just like the code in
listing 8.17:

Router.route('/', { name: 'home' });
Router.route('/about', { name: 'about' });
Router.route('/profiles/:_id', { name: 'profile.details',
 controller: 'ProfileController'});

8.3.5 Extending the route process using hooks

A hook is basically a function that can be added to the routing process. One of the
most common requirements for using route hooks is to prevent anonymous users
from accessing internal routes. Another use case is tracking some statistics or count
views, like the number of times a certain profile has been viewed. To track each view,
you can use an onRun hook. This hook runs exactly once regardless of whether a com-
putation invalidates and a rerun takes place. Therefore, onRun is the perfect hook to
use to increase the view count.

Listing 8.16 Using an Iron.Router controller

Listing 8.17 Routes declaration using controllers

Using controllers makes
the routes.js file much
more readable.

Every controller
extends the default
RouteController object.

Basic routes don’t
need controllers.

If needed you
can pass both
a name and a
controller ID
to the route.

198 CHAPTER 8 Routing using Iron.Router

In listing 8.18, you add an onRun hook to the ProfileController. Now whenever the
route is accessed, an update to the ProfilesCollection is made, increasing the views
field by 1 for the current profile _id.

// ProfileController.js
ProfileController = RouteController.extend({
 layoutTemplate: 'profileLayout',
 template: 'profileDetail',
 yieldTemplates: {
 'profileDetailLeft': {to: 'left'}
 },
 onRun: function() {
 ProfilesCollection.update({
 _id: this.params._id
 }, {
 $inc: {
 views: 1
 }
 });
 this.next();
 },
...
});

Now every view of a profile is counted, and you can add it within the data context of a
profile via {{views}}.

 In our community application, there are several routes only members should be
able to access. This can be implemented with the onBeforeHook just as easily. See
listing 8.19 for the code. Within the onBeforeAction hook, you perform a check for
the current user ID. If there’s no user ID available, you redirect the request to show a

Iron.Router hooks
For every hook you can create one function or an array of multiple functions that will
all be called.

onRun—Called when the route runs for the first time. It runs only once!

onRerun—Called every time a computation is invalidated.

onBeforeAction—Called before an action or route function runs. If there are mul-
tiple functions, you have to make sure that next is called because this doesn’t hap-
pen automatically with onBeforeActions. If you want the next onBeforeAction to
be called, you have to call this.next.

onAfterAction—Called after the action or route function runs.

onStop—If a route stops—for example, a new route is run—this hook is called.

Listing 8.18 Adding a hook to a RouteController

On every run of this
route, the views attribute
is increased by 1.

Use next() to
continue routing.

199Advanced routing methods

membersOnly template. In combination with a data publication that checks for a
user ID, this will be enough to prevent users from seeing content they aren’t autho-
rized for.

// profileController.js
ProfileController = RouteController.extend({
 // ...
 onBeforeAction: function() {
 if (!Meteor.userId()) {
 this.render('membersonly');
 } else {
 this.next();
 }
 },
//...
});

You can make these hooks reusable by putting them into controllers or wrapping
them into plug-ins.

8.3.6 Creating an Iron.Router plug-in

If you create hooks that you want to use for multiple applications or share with the
community, creating Iron.Router plug-ins is the way to go. These plug-ins enable por-
table functionality that’s easy to share and use in applications or packages. Let’s turn
the hook that requires users to be logged in into a plug-in.

 Each Iron.Router plug-in can be added as part of the configuration. You can
include it for all or just for specific routes. Because you already have an onBefore-
Action hook in the /profiles route, you can remove the code from here and place it
inside a new router/plugins/membersOnly.js file. Creating a plug-in is similar to the
way you define template helpers. Plug-ins take two parameters: router and options.
Instead of simply reading the parameters passed to a plug-in, use a lookupOption
function to access all configuration options available to Iron.Router. You could use
the function to access layoutTemplate the same way you use it here to access the set-
ting for membersOnlyTpl. As you can see in listing 8.20, most of the code for a plug-in
is fairly similar to an actual route.

 To use a plug-in, you don’t call it from a specific route or controller but instead
set it in the router configuration file router/config.js (see listing 8.20). A plug-in is
loaded via Router.plugin('name', options). The options object contains two set-
tings: membersOnlyTpl defines which template to render when an anonymous user
tries to access a route that requires a user ID, and only contains an array of the routes
affected. You have a single route, /profile, that should be protected. If most of your
routes require a plug-in, then you can use except rather than only to define all routes
that don’t require a logged-in user.

Listing 8.19 Requiring a logged-in user for a specific route

200 CHAPTER 8 Routing using Iron.Router

// membersOnly.js
Iron.Router.plugins.membersOnly = function(router, options) {
 router.onBeforeAction(function() {
 if (!Meteor.userId()) {
 this.render(this.lookupOption('membersOnlyTpl'));
 } else {
 this.next();
 }
 }, options);
}

// config.js
Router.plugin('membersOnly', {
 membersOnlyTpl: 'membersonly',
 only: ['profile.details']
});

Keep in mind that this plug-in checks for a user ID only on the client side. Any mali-
cious user can fake a user ID, so it isn’t sufficient to rely on routing functionality as the
only security measure. A combination of a router with a publication that checks for a
user ID on the server side should be used to secure your application for production.
Even if users could get to the layout and templates of a single profile, they still
couldn’t access any data if it’s not published to the client in the first place.

8.4 Server-side routing with a REST API
If you need an API for non-Meteor clients, you can’t take advantage of DDP, so you may
need a traditional HTTP interface. For an automated process, you might want to allow
scripts to look up usernames based on their ID. Then all routing takes place on the
server because you’re dealing with a dumb client that knows only a single URL.
There’s no point in first sending all JavaScript over the wire if all the client needs is a
single name string.

 Implementing server-side routing requires passing the where option to the route()
function. You use this option to limit the route to the server only. Providing an HTTP
interface effectively bypasses most of Meteor’s functionality, so you’ll rely on the basic
Node.js functionality with both request and response objects (see listing 8.21). Instead
of defining all headers and using response.write(), you shorten the code to use only
response.end(). In the response.end() function, you perform a database lookup
with the given ID and return the name attribute (figure 8.14).

Listing 8.20 Creating a reusable Iron.Router plug-in

The plug-in is named
membersOnly.

It runs as an
onBeforeAction
hook.

this.lookupOption may also
access options set in the
global Router.configure()
settings.

Continue if there
is a user ID.

Template that should
be rendered in case the
user isn’t logged in

The plug-in is applied only
to the profile.details route.

201Server-side routing with a REST API

Router.route('/api/profiles/name/:_id', function() {
 var request = this.request;
 var response = this.response;

 response.end(ProfilesCollection.findOne({
 _id: this.params._id
 }).name);
}, {
 where: 'server'
})

If you make a request with a query string and message as the key, the server will
respond with the value.

 For more advanced APIs, it’s even possible to use the route() function to deter-
mine whether a GET, POST, or PUT request was received. For more RESTful routes,
take a look at listing 8.22. It defines a GET method for /api/find/profiles that
returns all database entries from the profiles collection and a POST method for /api/
insert/profile to create new profiles via an API. Remember when using this for your
own API to secure the API endpoints—for example, by requiring a login system.

// routes.js
Router.route('/api/find/profiles', {
 where: 'server'
 })
 .get(function() {
 this.response.statusCode = 200;
 this.response.setHeader("Content-Type", "application/json");
 this.response.setHeader("Access-Control-Allow-Origin", "*");
 this.response.setHeader("Access-Control-Allow-Headers",
 "Origin, X-Requested-With, Content-Type, Accept");
 this.response.end(JSON.stringify(
 ProfilesCollection.find().fetch())
);
 })

Listing 8.21 Simple server-side route

Listing 8.22 RESTful routes

Figure 8.14 When provided with a valid ID, the API responds with the
name of a member.

Node.js request object

Node.js response object

This route should run
only on the server and
not on the client.

These are server-
only routes.

Defines what to do
with GET requests

All REST responses
should be JSON.

202 CHAPTER 8 Routing using Iron.Router

Router.route('/api/insert/profile', {
 where: 'server'
 })
 .post(function() {
 this.response.statusCode = 200;
 this.response.setHeader("Content-Type", "application/json");
 this.response.setHeader("Access-Control-Allow-Origin", "*");
 this.response.setHeader("Access-Control-Allow-Headers",
 "Origin, X-Requested-With, Content-Type, Accept");
 // returns ID for new profile
 this.response.end(JSON.stringify(
 ProfilesCollection.insert(this.request.body)
));
 })

TIP If you need to build a REST interface, instead of using Iron.Router
directly you should also look into using either the nimble:restivus or
simple:rest package, which both offer a simpler approach for creating routes
and endpoints.

Iron.Router is an extremely versatile and highly configurable router that’s tailored to
the Meteor platform. It enables applications to react on specific route requests and
can also be used to greatly improve your code structures.

8.5 Summary
In this chapter, you’ve learned that

■ URLs enable applications to be accessible and shareable.
■ Iron.Router is the de facto standard for routing in Meteor.
■ Templates, subscriptions, and the data context can be defined using routes.
■ Routing functionality can be structured and grouped by using named routes,

controllers, hooks, and plug-ins.
■ Routes can be created for the client and the server.

These are server-
only routes.

Defines
what to
do with

POST
requests

All REST responses
should be JSON.

Hochhaus ● Schoebel

Y
ou might call Meteor a reactive, isomorphic, full-stack
web development framework. Or, like most developers
who have tried it, you might just call it awesome. Meteor

is a JavaScript-based framework for both client and server web
and mobile applications. Meteor applications react to changes
in data instantly, so you get impossibly responsive user expe-
riences, and the consistent build process, unifi ed front- and
back-end package system, and one-command deploys save you
time at every step from design to release.

Meteor in Action teaches you full-stack web development with
Meteor. It starts by revealing the unique nature of Meteor’s
end-to-end application model. Through real-world scenarios,
you’ll dive into the Blaze templating engine, discover Me-
teor’s reactive data sources model, learn routing techniques,
and practice managing users, permissions, and roles. Finally,
you’ll learn how to deploy Meteor on your server and scale
effi ciently.

What’s Inside
● Building your fi rst real-time application
● Using MongoDB and other reactive data sources
● Creating applications with Iron Router
● Deploying and scaling your applications

Readers need to know the basics of JavaScript and understand
general web application design.

Stephan Hochhaus and Manuel Schoebel are veteran web devel-
opers who have worked with Meteor since its infancy.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/meteor-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Meteor IN ACTION

JAVASCRIPT

M A N N I N G

“An enjoyable and
 approachable book.”
—From the Foreword by
Matt DeBergalis, Founder

Meteor Development Group

“An invaluable guide
for any developer,

 from beginner to expert.”
—John Griffi ths, UXGent.co

“The only source you need
to develop reactive,

 commercial-grade apps.”
—David DiMaria
Collective Sessions

“The defi nitive resource on
Meteor. The book’s depth

is unparalleled and the
examples are real-world
and comprehensive.”—Subhasis Ghosh, ISACA

SEE INSERT

