
M A N N I N G

Konstantinos Kapelonis
FOREWORD BY Luke Daley

SAMPLE CHAPTER

Java Testing with Spock
by Konstantinos Kapelonis

Sample Chapter 3

Copyright 2016 Manning Publications

brief contents
PART 1 FOUNDATIONS AND BRIEF TOUR OF SPOCK 1

1 ■ Introducing the Spock testing framework 3
2 ■ Groovy knowledge for Spock testing 31
3 ■ A tour of Spock functionality 62

PART 2 STRUCTURING SPOCK TESTS 89

4 ■ Writing unit tests with Spock 91
5 ■ Parameterized tests 127
6 ■ Mocking and stubbing 157

PART 3 SPOCK IN THE ENTERPRISE 191

7 ■ Integration and functional testing with Spock 193
8 ■ Spock features for enterprise testing 224

A tour of Spock
functionality
With the Groovy basics out of the way, you’re now ready to focus on Spock syntax
and see how it combines several aspects of unit testing in a single and cohesive
package.

 Different applications come with different testing needs, and it’s hard to predict
what parts of Spock will be more useful to you beforehand. This chapter covers a bit
of all major Spock capabilities to give you a bird's-eye view of how Spock works. I
won’t focus on all the details yet because these are explained in the coming chapters.

 The purpose of this chapter is to act as a central hub for the whole book. You
can read this chapter and then, according to your needs, decide which of the com-
ing chapters is of special interest to you. If, for example, in your current application
you have tests with lots of test data that spans multiple input variables, you can skip
straight to the chapter that deals with data-driven tests (chapter 5).

This chapter covers
■ Understanding the given-when-then Spock

syntax
■ Testing datasets with data-driven tests
■ Introducing mocks/stubs with Spock
■ Examining mock behavior
62

63Introducing the behavior-testing paradigm
 The following sections briefly touch on these three aspects of Spock:

■ Core testing of Java code (more details in chapter 4)
■ Parameterized tests (more details in chapter 5)
■ Isolation of the class under test (more details in chapter 6)

To illustrate these concepts, a series of increasingly complex, semi-real scenarios are
used, because some Spock features aren’t evident with trivial unit tests. For each sce-
nario, I’ll also compare the Spock unit test with a JUnit test (if applicable).

3.1 Introducing the behavior-testing paradigm
Let’s start with a full example of software testing. Imagine you work as a developer for
a software company that creates programs for fire-control systems, as shown in
figure 3.1.

 The processing unit is connected to multiple fire sensors and polls them continu-
ously for abnormal readings. When a fire is discovered, the alarm sounds. If the fire
starts spreading and another detector is triggered, the fire brigade is automatically
called. Here are the complete requirements of the system:

■ If all sensors report nothing strange, the system is OK and no action is needed.
■ If one sensor is triggered, the alarm sounds (but this might be a false positive

because of a careless smoker who couldn’t resist a cigarette).
■ If more than one sensor is triggered, the fire brigade is called (because the fire

has spread to more than one room).

Your colleague has already implemented this system, and you’re tasked with unit test-
ing. The skeleton of the Java implementation is shown in listing 3.1.

Alarm
Fire sensor

Fire brigade

Processing unit

Figure 3.1 A fire-monitoring system controlling multiple detectors

64 CHAPTER 3 A tour of Spock functionality

Meth
every
sensor

I
alarm
This fire sensor is regularly injected with the data from the fire sensors, and at any
given time, the sensor can be queried for the status of the alarm.

public class FireEarlyWarning {

 public void feedData(int triggeredFireSensors)
 {
 [...implementation here...]
 }

 public WarningStatus getCurrentStatus()
 {
 [...implementation here...]
 }
}

public class WarningStatus {
 public boolean isAlarmActive() {
 [...implementation here...]
 }

 public boolean isFireDepartmentNotified() {
 [...implementation here...]
 }

}

The application uses two classes:

■ The polling class has all the intelligence and contains a getter that returns a sta-
tus class with the present condition of the system.

■ The status class is a simple object that holds the details.1

How to use the code listings

You can find almost all code listings for this book at https://github.com/kkapelon/
java-testing-with-spock.

For brevity, the book sometimes points you to the source code (especially for long
listings). I tend to use the Eclipse IDE in my day-to-day work. If you didn’t already install
Spock and Eclipse in chapter 2, you can find installation instructions in appendix A.

Listing 3.1 A fire-control system in Java

1 This is only the heart of the system. Code for contacting the fire brigade or triggering the alarm is outside the
scope of this example.

The main class that
implements monitoring

od called
second by
 software Redacted for brevity—see

source code for full code

Status report
getter method

Contents of status
report (status class)

f true, the
 sounds.

If true, the fire
brigade is called.

https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock

65Introducing the behavior-testing paradigm

Setup
for

Examin
of th
Your colleague has finished the implementation code, and has even written a JUnit
test2 as a starting point for the test suite you’re supposed to finish. You now have the
full requirements of the system and the implementation code, and you’re ready to
start unit testing.

3.1.1 The setup-stimulate-assert structure of JUnit

You decide to look first at the existing JUnit test your colleague already wrote. The
code is shown in the following listing.

@Test
public void fireAlarmScenario() {
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning();
 int triggeredSensors = 1;

 fireEarlyWarning.feedData(triggeredSensors);
 WarningStatus status = fireEarlyWarning.getCurrentStatus();

 assertTrue("Alarm sounds", status.isAlarmActive());
 assertFalse("No notifications", status.isFireDepartmentNotified());
}

This unit test covers the case of a single sensor detecting fire. According to the
requirements, the alarm should sound, but the fire department isn’t contacted yet. If
you closely examine the code, you’ll discover a hidden structure between the lines. All
good JUnit tests have three code segments:

1 In the setup phase, the class under test and all collaborators are created. All ini-
tialization stuff goes here.

2 In the stimulus phase, the class under test is tampered with, triggered, or other-
wise passed a message/action. This phase should be as brief as possible.

3 The assert phase contains only read-only code (code with no side effects), in
which the expected behavior of the system is compared with the actual one.

Notice that this structure is implied with JUnit. It’s never enforced by the framework and
might not be clearly visible in complex unit tests. Your colleague is a seasoned devel-
oper and has clearly marked the three phases by using the empty lines in listing 3.2:

■ The setup phase creates the FireEarlyWarning class and sets the number of
triggered sensors that will be evaluated (the first two statements in listing 3.2).

■ The stimulus phase passes the triggered sensors to the fire monitor and also
asks it for the current status (the middle two statements in listing 3.2).

■ The assert phase verifies the results of the test (the last two statements).

2 Following the test-driven development (TDD) principles of writing a unit test for a feature before the feature
implementation.

Listing 3.2 A JUnit test for the fire-control system

 JUnit test case

 needed
 the test

Create an event.

e results
e event.

66 CHAPTER 3 A tour of Spock functionality
This is good advice to follow, but not all developers follow this technique. (It’s also
possible to demarcate the phases with comments.)

 Because JUnit doesn’t clearly distinguish between the setup-stimulate-assert phases,
it’s up to the developer to decide on the structure of the unit test. Understanding the
structure of a JUnit test isn’t always easy when more-complex testing is performed. For
comparison, the following listing shows a real-world result.3

private static final String MASTER_NAME = "mymaster";
private static HostAndPort sentinel = new HostAndPort("localhost",26379);

@Test
public void sentinelSet() {
 Jedis j = new Jedis(sentinel.getHost(), sentinel.getPort());

 try {
 Map<String, String> parameterMap = new HashMap<String,
 String>();
 parameterMap.put("down-after-milliseconds",
 String.valueOf(1234));
 parameterMap.put("parallel-syncs", String.valueOf(3));
 parameterMap.put("quorum", String.valueOf(2));
 j.sentinelSet(MASTER_NAME, parameterMap);

 List<Map<String, String>> masters = j.sentinelMasters();
 for (Map<String, String> master : masters) {
 if (master.get("name").equals(MASTER_NAME)) {
 assertEquals(1234, Integer.parseInt(master
 .get("down-after-milliseconds")));
 assertEquals(3,
 Integer.parseInt(master.get("parallel-
 syncs")));
 assertEquals(2,
 Integer.parseInt(master.get("quorum")));
 }
 }

 parameterMap.put("quorum", String.valueOf(1));
 j.sentinelSet(MASTER_NAME, parameterMap);
 } finally {
 j.close();
 }
}

After looking at the code, how long did it take you to understand its structure? Can
you easily understand which class is under test? Are the boundaries of the three

Listing 3.3 JUnit test with complex structure (real example)

3 This unit test is from the jedis library found on GitHub. I mean no disrespect to the authors of this code, and
I congratulate them for offering their code to the public. The rest of the tests from jedis are well-written.

67Introducing the behavior-testing paradigm

 St

Another st
phase—

bad pr
phases really clear? Imagine that this unit test has failed, and you have to fix it imme-
diately. Can you guess what has gone wrong simply by looking at the code?

 Another problem with the lack of clear structure of a JUnit test is that a developer
can easily mix the phases in the wrong4 order, or even write multiple tests into one.
Returning to the fire-control system in listing 3.2, the next listing shows a bad unit test
that tests two things at once. The code is shown as an antipattern. Please don’t do this
in your unit tests!

@Test
public void sensorsAreTriggered() {
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning();
 fireEarlyWarning.feedData(1);
 WarningStatus status = fireEarlyWarning.getCurrentStatus();

 assertTrue("Alarm sounds", status.isAlarmActive());
 assertFalse("No notifications", status.isFireDepartmentNotified());
 fireEarlyWarning.feedData(2);

 WarningStatus status2 = fireEarlyWarning.getCurrentStatus();
 assertTrue("Alarm sounds", status2.isAlarmActive());
 assertTrue("Fire Department is notified",
 status2.isFireDepartmentNotified());
}

This unit test asserts two different cases. If it breaks and the build server reports the
result, you don’t know which of the two scenarios has the problem.

 Another common antipattern I see all too often is JUnit tests with no assert state-
ments at all! JUnit is powerful, but as you can see, it has its shortcomings. How would
Spock handle this fire-control system?

3.1.2 The given-when-then flow of Spock

Unlike JUnit, Spock has a clear test structure that’s denoted with labels (blocks in
Spock terminology), as you’ll see in chapter 4, which covers the lifecycle of a Spock
test. Looking back at the requirements of the fire-control system, you’ll see that they
can have a one-to-one mapping with Spock tests. Here are the requirements again:

■ If all sensors report nothing strange, the system is OK and no action is needed.
■ If one sensor is triggered, the alarm sounds (but this might be a false positive

because of a careless smoker who couldn’t resist a cigarette).
■ If more than one sensor is triggered, the fire brigade is called (because the fire

has spread to more than one room).

4 Because “everything that can go wrong, will go wrong,” you can imagine that I’ve seen too many antipatterns
of JUnit tests that happen because of the lack of a clear structure.

Listing 3.4 A JUnit test that tests two things—don’t do this

Setup phase

imulus
 phase

First assert phase

imulus
this is
actice.

Second assert
phase

68 CHAPTER 3 A tour of Spock functionality
Spock can directly encode these sentences by using full English text inside the source
test of the code, as shown in the following listing.

class FireSensorSpec extends spock.lang.Specification{

def "If all sensors are inactive everything is ok"() {
 given: "that all fire sensors are off"
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning()
 int triggeredSensors = 0

 when: "we ask the status of fire control"
 fireEarlyWarning.feedData(triggeredSensors)
 WarningStatus status = fireEarlyWarning.getCurrentStatus()

 then: "no alarm/notification should be triggered"
 !status.alarmActive
 !status.fireDepartmentNotified
}

def "If one sensor is active the alarm should sound as a precaution"() {
 given: "that only one fire sensor is active"
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning()
 int triggeredSensors = 1

 when: "we ask the status of fire control"
 fireEarlyWarning.feedData(triggeredSensors)
 WarningStatus status = fireEarlyWarning.getCurrentStatus()

 then: "only the alarm should be triggered"
 status.alarmActive
 !status.fireDepartmentNotified
}

def "If more than one sensor is active then we have a fire"() {
 given: "that two fire sensors are active"
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning()
 int triggeredSensors = 2

 when: "we ask the status of fire control"
 fireEarlyWarning.feedData(triggeredSensors)
 WarningStatus status = fireEarlyWarning.getCurrentStatus()

 then: "alarm is triggered and the fire department is notified"
 status.alarmActive
 status.fireDepartmentNotified
}
}

Spock follows a given-when-then structure that’s enforced via labels inside the code.
Each unit test can be described using plain English sentences, and even the labels can
be described with text descriptions.

Listing 3.5 The full Spock test for the fire-control system

Clear explanation of
what this test does

Setup
phase

Stimulus phase

Assert phase

69Introducing the behavior-testing paradigm
This enforced structure pushes the developer to think before writing the test, and also
acts as a guide on where each statement goes. The beauty of the English descriptions
(unlike JUnit comments) is that they’re used directly by reporting tools. A screenshot
of a Maven Surefire report is shown in figure 3.2 with absolutely no modifications
(Spock uses the JUnit runner under the hood). This report can be created by running
mvn surefire-report:report on the command line.

 The first column shows the result of the test (a green tick means that the test
passes), the second column contains the description of the test picked up from the
source code, and the third column presents the execution time of each test (really
small values are ignored). More-specialized tools can drill down in the labels of the
blocks as well, as shown in figure 3.3. The example shown is from Spock reports
(https://github.com/renatoathaydes/spock-reports).

Figure 3.2 Surefire report with Spock test description

Figure 3.3 Spock report
with all English sentences
of the test

https://github.com/renatoathaydes/spock-reports

70 CHAPTER 3 A tour of Spock functionality
Spock isn’t a full BDD tool,5 but it certainly pushes you in that direction. With careful
planning, your Spock tests can act as living business documentation.

 You’ve now seen how Spock handles basic testing. Let’s see a more complex testing
scenario, where the number of input and output variables is much larger.

3.2 Handling tests with multiple input sets
With the fire-control system in place, you’re tasked with a more complex testing
assignment. This time, the application under test is a monitor system for a nuclear
reactor. It functions in a similar way to the fire monitor, but with more input sensors.
The system6 is shown in figure 3.4.

 The components of the system are as follows:

■ Multiple fire sensors (input)
■ Three radiation sensors in critical points (input)
■ Current pressure (input)
■ An alarm (output)

5 See JBehave (http://jbehave.org/) or Cucumber JVM (http://cukes.info/) to see how business analysts, tes-
ters, and developers can define the test scenarios of an enterprise application.

6 This system is imaginary. I’m in no way an expert on nuclear reactors. The benefits of the example will
become evident in the mocking/stubbing section of the chapter.

Shutdown command

Fire sensors

Radiation sensors

Alarm

Pressure

Evacuation timer

Processing unit

Figure 3.4 A monitor system for a nuclear reactor

http://jbehave.org/
http://cukes.info/

71Handling tests with multiple input sets
■ An evacuation command (output)
■ A notification to a human operator that the reactor should shut down (output)

The system is already implemented according to all safety requirements needed for
nuclear reactors. It reads sensor data at regular intervals and depending on the read-
ings, it can alert or suggest corrective actions. Here are some of the requirements:

■ If pressure goes above 150 bars, the alarm sounds.
■ If two or more fire alarms are triggered, the alarm sounds and the operator is

notified that a shutdown is needed (as a precautionary measure).
■ If a radiation leak is detected (100+ rads from any sensor), the alarm sounds, an

announcement is made that the reactor should be evacuated within the next min-
ute, and a notification is sent to the human operator that a shutdown is needed.

You speak with the technical experts of the nuclear reactor, and you jointly decide that
a minimum of 12 test scenarios will be examined, as shown in table 3.1.

The scenarios outlined in this table are a classic example of parameterized tests. The test
logic is always the same (take these three inputs and expect these three outputs), and
the test code needs to handle different sets of variables for only this single test logic.

 In this example, we have 12 scenarios with 6 variables, but you can easily imagine
cases with much larger test data. The naive way to handle testing for the nuclear reactor

Table 3.1 Scenarios that need testing for the nuclear reactor

Sample inputs Expected outputs

Current
pressure

Fire
sensors

Radiation
sensors

Audible
alarm

A shutdown is
needed

Evacuation within
x minutes

150 0 0, 0, 0 No No No

150 1 0, 0, 0 Yes No No

150 3 0, 0, 0 Yes Yes No

150 0 110.4 ,0.3, 0.0 Yes Yes 1 minute

150 0 45.3 ,10.3, 47.7 No No No

155 0 0, 0, 0 Yes No No

170 0 0, 0, 0 Yes Yes 3 minutes

180 0 110.4 ,0.3, 0.0 Yes Yes 1 minute

500 0 110.4 ,300, 0.0 Yes Yes 1 minute

 30 0 110.4 ,1000, 0.0 Yes Yes 1 minute

155 4 0, 0, 0 Yes Yes No

170 1 45.3 ,10.f, 47.7 Yes Yes 3 minutes

72 CHAPTER 3 A tour of Spock functionality

cla
would be to write 12 individual tests. That would be problematic, not only because of
code duplication, but also because of future maintenance. If a new variable is added in
the system (for example, a new sensor), you’d have to change all 12 tests at once.

 A better approach is needed, preferably one that decouples the test code (which
should be written once) from the sets of test data and expected output (which should
be written for all scenarios). This kind of testing needs a framework with explicit sup-
port for parameterized tests.

 Spock comes with built-in support for parameterized tests with a friendly DSL7 syn-
tax specifically tailored to handle multiple inputs and outputs. But before I show you
this expressive DSL, allow me to digress a bit into the current state of parameterized
testing as supported in JUnit (and the alternative approaches).

 Many developers consider parameterized testing a challenging and complicated
process. The truth is that the limitations of JUnit make parameterized testing a chal-
lenge, and developers suffer because of inertia and their resistance to changing their
testing framework.

3.2.1 Existing approaches to multiple test-input parameters

The requirements for the nuclear-reactor monitor are clear, the software is already
implemented, and you’re ready to test it. What’s the solution if you follow the status quo?

 The recent versions of JUnit advertise support for parameterized tests. The official
way of implementing a parameterized test with JUnit is shown in the following listing.
The listing assumes that –1 in evacuation minutes means that no evacuation is needed.

@RunWith(Parameterized.class)
public class NuclearReactorTest {
private final int triggeredFireSensors;
private final List<Float> radiationDataReadings;
private final int pressure;

private final boolean expectedAlarmStatus;
private final boolean expectedShutdownCommand;
private final int expectedMinutesToEvacuate;

public NuclearReactorTest(int pressure, int triggeredFireSensors,
 List<Float> radiationDataReadings, boolean expectedAlarmStatus,
 boolean expectedShutdownCommand, int expectedMinutesToEvacuate) {

 this.triggeredFireSensors = triggeredFireSensors;
 this.radiationDataReadings = radiationDataReadings;
 this.pressure = pressure;
 this.expectedAlarmStatus = expectedAlarmStatus;
 this.expectedShutdownCommand = expectedShutdownCommand;
 this.expectedMinutesToEvacuate = expectedMinutesToEvacuate;

7 A DSL is a programming language targeted at a specific problem as opposed to a general programming lan-
guage like Java. See http://en.wikipedia.org/wiki/Domain-specific_language.

Listing 3.6 Testing the nuclear reactor scenarios with JUnit

Specialized runner needed
for parameterized tests is
created with @RunWith.Inputs

become
ss fields.

Outputs become
class fields.

Special constructor
with all inputs
and outputs

http://en.wikipedia.org/wiki/Domain-specific_language

73Handling tests with multiple input sets

Two-dime
arra

te
 }

@Test
public void nuclearReactorScenario() {
 NuclearReactorMonitor nuclearReactorMonitor = new
 NuclearReactorMonitor();

 nuclearReactorMonitor.feedFireSensorData(triggeredFireSensors);
 nuclearReactorMonitor.feedRadiationSensorData(radiationDataReadings);
 nuclearReactorMonitor.feedPressureInBar(pressure);
 NuclearReactorStatus status = nuclearReactorMonitor.getCurrentStatus();

 assertEquals("Expected no alarm", expectedAlarmStatus,
 status.isAlarmActive());
 assertEquals("No notifications", expectedShutdownCommand,
 status.isShutDownNeeded());
 assertEquals("No notifications", expectedMinutesToEvacuate,
 status.getEvacuationMinutes());
 }

 @Parameters
 public static Collection<Object[]> data() {
 return Arrays.asList(new Object[][] {
 { 150, 0, new ArrayList<Float>(), false, false, -1 },
 { 150, 1, new ArrayList<Float>(), true, false, -1 },
 { 150, 3, new ArrayList<Float>(), true, true, -1 },
 { 150, 0, Arrays.asList(110.4f, 0.3f, 0.0f), true,
 true, 1 },
 { 150, 0, Arrays.asList(45.3f, 10.3f, 47.7f), false,
 false, -1 },
 { 155, 0, Arrays.asList(0.0f, 0.0f, 0.0f), true, false,
 -1 },
 { 170, 0, Arrays.asList(0.0f, 0.0f, 0.0f), true, true,
 3 },
 { 180, 0, Arrays.asList(110.4f, 0.3f, 0.0f), true,
 true, 1 },
 { 500, 0, Arrays.asList(110.4f, 300f, 0.0f), true,
 true, 1 },
 { 30, 0, Arrays.asList(110.4f, 1000f, 0.0f), true,
 true, 1 },
 { 155, 4, Arrays.asList(0.0f, 0.0f, 0.0f), true, true,
 -1 },
 { 170, 1, Arrays.asList(45.3f, 10.3f, 47.7f), true,
 true, 3 }, });

 }

}

If you look at this code and feel it’s too verbose, you’re right! This listing is a true tes-
tament to the limitations of JUnit. To accomplish parameterized testing, the following
constraints specific to JUnit need to be satisfied:

■ The test class must be polluted with fields that represent inputs.
■ The test class must be polluted with fields that represent outputs.

Unit test that will
use parameters

Source of
test data

nsional
y with

st data

74 CHAPTER 3 A tour of Spock functionality
■ A special constructor is needed for all inputs and outputs.
■ Test data comes into a two-dimensional object array (which is converted to a list).

Notice also that because of these limitations, it’s impossible to add a second parame-
terized test in the same class. JUnit is so strict that it forces you to have a single class for
each test when multiple parameters are involved. If you have a Java class that needs
more than one parameterized test and you use JUnit, you’re out of luck.8

 The problems with JUnit parameterized tests are so well known that several inde-
pendent efforts have emerged to improve this aspect of unit testing. At the time of
writing, at least three external projects9 offer their own syntax on top of JUnit for a
friendlier and less cluttered code.

 Parameterized tests are also an area where TestNG (http://testng.org) has been
advertised as a better replacement for JUnit. TestNG does away with all JUnit limita-
tions and comes with extra annotations (@DataProvider) that truly decouple test data
and test logic.

 Despite these external efforts, Spock comes with an even better syntax for parame-
ters (Groovy magic again!). In addition, having all these improved efforts external to
JUnit further supports my argument that Spock is a “batteries-included” framework
providing everything you need for testing in a single package.

3.2.2 Tabular data input with Spock

You’ve seen the hideous code of JUnit when multiple parameters are involved. You
might have also seen some improvements with TestNG or extra JUnit add-ons. All
these solutions attempt to capture the values of the parameters by using Java code or
annotations.

 Spock takes a step back and focuses directly on the original test scenarios. Return-
ing to the nuclear-monitoring system, remember that what you want to test are the
scenarios listed in table 3.1 (written in a human-readable format).

 Spock allows you to do the unthinkable. You can directly embed this table as-is
inside your Groovy code, as shown in the next listing. Again I assume that –1 in evacu-
ation minutes means that no evacuation is needed.

class NuclearReactorSpec extends spock.lang.Specification{

def "Complete test of all nuclear scenarios"() {
 given: "a nuclear reactor and sensor data"
 NuclearReactorMonitor nuclearReactorMonitor =new
 NuclearReactorMonitor()

8 There are ways to overcome this limitation, but I consider them hacks that make the situation even more com-
plicated.

9 https://code.google.com/p/fuzztester/wiki/FuzzTester; https://github.com/Pragmatists/junitparams;
https://github.com/piotrturski/zohhak.

Listing 3.7 Testing the nuclear reactor scenarios with Spock

Human-readable
test description

https://code.google.com/p/fuzztester/wiki/FuzzTester
https://github.com/Pragmatists/junitparams
https://github.com/piotrturski/zohhak
http://testng.org

75Handling tests with multiple input sets

te

Usag

Defin
inpu

o

s
 when: "we examine the sensor data"
 nuclearReactorMonitor.feedFireSensorData(fireSensors)
 nuclearReactorMonitor.feedRadiationSensorData(radiation)
 nuclearReactorMonitor.feedPressureInBar(pressure)
 NuclearReactorStatus status = nuclearReactorMonitor.getCurrentStatus()

 then: "we act according to safety requirements"
 status.alarmActive == alarm
 status.shutDownNeeded == shutDown
 status.evacuationMinutes == evacuation

 where: "possible nuclear incidents are:"
 pressure | fireSensors | radiation || alarm | shutDown | evacuation
 150 | 0 | [] || false | false | -1
 150 | 1 | [] || true | false | -1
 150 | 3 | [] || true | true | -1
 150 | 0| [110.4f ,0.3f, 0.0f] || true | true | 1
 150 | 0| [45.3f ,10.3f, 47.7f]|| false | false | -1
 155 | 0| [0.0f ,0.0f, 0.0f] || true | false | -1
 170 | 0| [0.0f ,0.0f, 0.0f] || true | true | 3
 180 | 0| [110.4f ,0.3f, 0.0f] || true | true | 1
 500 | 0| [110.4f ,300f, 0.0f] || true | true | 1
 30 | 0|[110.4f ,1000f, 0.0f] || true | true | 1
 155 | 4| [0.0f ,0.0f, 0.0f] || true | true | -1
 170 | 1| [45.3f ,10.3f, 47.7f]|| true | true | 3
 }

}

Spock takes a different approach to parameters. Powered by Groovy capabilities, it
offers a descriptive DSL for tabular data. The key point of this unit test is the where:
label (in addition to the usual given-then-when labels) that holds a definition of all
inputs/outputs used in the other blocks.

 In the where: block of this Spock test, I copied verbatim the scenarios of the
nuclear-reactor monitor from the table. The || notation is used to split the inputs
from outputs. Reading this table is possible even by nontechnical people. Your busi-
ness analyst can look at this table and quickly locate missing scenarios.

 Adding a new scenario is easy:

■ You can append a new line at the end of the table with a new scenario, and the
test will pick the new scenario upon the next run.

■ The parameters are strictly contained inside the test method, unlike JUnit. The
test class has no need for special constructors or fields. A single Spock class can
hold an unlimited number of parameterized tests, each with its own tabular data.

The icing on the cake is the amount of code. The JUnit test has 82 lines of Java code,
whereas the Spock test has 38 lines. In this example, I gained 50% code reduction by
using Spock, and kept the same functionality as before (keeping my promise from
chapter 1 that Spock tests will reduce the amount of test code in your application).

Usage of
st inputs

e of test
outputs Source of

parameters

ition of
ts and
utputs

Tabular
representation
of all scenario

76 CHAPTER 3 A tour of Spock functionality
 Chapter 5 shows several other tricks for Spock parameterized tests, so feel free to
jump there directly if your enterprise application is plagued by similar JUnit boiler-
plate code.

 We’ll close our Spock tour with its mocking/stubbing capabilities.

3.3 Isolating the class under test
JUnit doesn’t support mocking (faking external object communication) out of the box.
Therefore, I usually employ Mockito10 when I need to fake objects in my JUnit tests.

 If you’ve never used mocking in your unit tests, fear not, because this book covers
both theory and practice (with Spock). I strongly believe that mocking is one of the
pillars of well-written unit tests and I’m always puzzled when I see developers who
neglect or loathe mocks and stubs.

 The literature on mocking hasn’t reached a single agreement on naming the core
concepts. Multiple terms exist, such as these:

■ Mocks/stubs
■ Test doubles
■ Fake collaborators

All these usually mean the same thing: dummy objects that are injected in the class
under test, replacing the real implementations.

■ A stub is a fake class that comes with preprogrammed return values. It’s injected
in the class under test so that you have absolute control of what’s being tested
as input.

■ A mock is a fake11 class that can be examined after the test is finished for its inter-
actions with the class under test (for example, you can ask it whether a method
was called or how many times it was called).

Things sometimes get more complicated because a mock can also function as a stub if
that’s needed.12 The rest of this book uses the mock/stub naming convention because
Spock closely follows this pattern. The next examples show both.

3.3.1 The case of mocking/stubbing

After finishing with the nuclear-reactor monitor module, you’re tasked with testing
the temperature sensors of the same reactor. Figure 3.5 gives an overview of the
system.

10 Many mock frameworks are available for Java, but Mockito is the easiest and most logical in my opinion. Some
of its ideas have also found their way into Spock itself. See https://github.com/mockito/mockito.

11 Don’t sweat the naming rules. In my day job, I name all these classes as mocks and get on with my life.
12 The two hardest problems in computer science are naming things and cache invalidation.

https://github.com/mockito/mockito

77Isolating the class under test

Method
 by th
 und

Pr
 tempe

 re
Even though at first glance this temperature
monitor is similar to the previous system, it
has two big differences:

■ The system under test—the tempera-
ture monitor—doesn’t directly com-
municate with the temperature
sensors. It obtains the readings from
another Java system, the temperature
reader (implemented by a different
software company than yours).

■ The requirements for the tempera-
ture monitor indicate that the alarm
should sound if the difference in tem-
perature readings (either up or
down) is greater than 20 degrees.

Figure 3.5 A monitor that gets
temperatures via another system

You need to write unit tests for the temperature monitor. The implementation code to
be tested is shown in the next listing.

public class TemperatureReadings {

 private long sensor1Data;
 private long sensor2Data;
 private long sensor3Data;

 [...getters and setters here]
}

public interface TemperatureReader {
 TemperatureReadings getCurrentReadings();
}

public class TemperatureMonitor {

 private final TemperatureReader reader;
 private TemperatureReadings lastReadings;
 private TemperatureReadings currentReadings;

Listing 3.8 Java classes for the temperature monitor and reader

Alarm

Temperature
reader

Temperature
sensors

Temperature
monitor

Simple class that
contains temperatures

Current
temperature

Interface implemented
by the reader software

 called
e class
er test The class

under test
Injected field
of reader

evious
rature
adings

Latest temperature
readings

78 CHAPTER 3 A tour of Spock functionality

Co

Co
t

 public TemperatureMonitor(final TemperatureReader reader)
 {
 this.reader = reader;
 }

 public boolean isTemperatureNormal()
 {
 [...implementation here that compares readings...]
 }

 public void readSensor()
 {
 lastReadings = currentReadings;
 currentReadings = reader.getCurrentReadings();
 }

}

The specifications are based on temperature readings. Unlike the previous example
that used fixed values (for example, if pressure is more than 150, do this), here you
have to test consecutive readings (that is, take an action only if temperature is higher
compared to the previous reading).

 Reading the specifications, it’s obvious you need a way to “trick” the class under
test to read temperature readings of your choosing. Unfortunately, the temperature
monitor has no way of directly obtaining input. Instead, it calls another Java API from
the reader software.13 How can you “trick” the TemperatureMonitor class to read dif-
ferent types of temperatures?

SOLUTIONS FOR FAKING INPUT FROM COLLABORATING CLASSES

A good start would be to contact the software company that writes the temperature-
reader software and ask for a debug version of the module, which can be controlled to
give any temperature you choose, instead of reading the real hardware sensors. This
scenario might sound ideal, but in practice it’s difficult to achieve, either for political
reasons (the company won’t provide what you ask) or technical reasons (the debug
version has bugs of its own).

 Another approach would be to write your own dummy implementation of
TemperatureReader that does what you want. I’ve seen this technique too many times
in enterprise projects, and I consider it an antipattern. This introduces a new class
that’s used exclusively for unit tests and must be kept in sync with the specifications.
As soon as the specifications change (which happens a lot in enterprise projects), you
must hunt down all those dummy classes and upgrade them accordingly to keep the
stability of unit tests.

 The recommended approach is to use the built-in mocking capabilities of Spock.
Spock allows you to create a replacement class (or interface implementation) on the

13 Notice that in this case I used constructor injection, but setter injection could also work.

nstructor
 injection Method that

needs unit tests

Called automatically
at regular intervals

mmunication with
emperature reader

79Isolating the class under test

D
i

e

C

d

Cl
spot and direct it to do your bidding while the class under test still thinks it’s talking to
a real object.

3.3.2 Stubbing fake objects with Spock

To create a unit test for the temperature-monitoring system, you can do the following:

1 Create an implementation of the TemperatureReader interface.
2 Instruct this smart implementation to return fictional readings for the first call.
3 Instruct this smart implementation to return other fictional readings for the

second call.
4 Connect the class under test with this smart implementation.
5 Run the test, and see what the class under test does.

In Spock parlance, this “smart implementation” is called a stub, which means a fake
class with canned responses. The following listing shows stubbing in action, as previ-
ously outlined.

class CoolantSensorSpec extends spock.lang.Specification{

 def "If current temperature difference is within limits everything is
 ok"() {
 given: "that temperature readings are within limits"
 TemperatureReadings prev = new
 TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new
 TemperatureReadings(sensor1Data:30,
 sensor2Data:45,sensor3Data:73);
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 TemperatureMonitor monitor = new TemperatureMonitor(reader)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "everything should be ok"
 monitor.isTemperatureNormal()
 }

 def "If current temperature difference is more than 20 degrees the
 alarm should sound"() {
 given: "that temperature readings are not within limits"
 TemperatureReadings prev = new
 TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new

Listing 3.9 Stubbing with Spock

Premade
temperature
readings

ummy interface
mplementation Instructing the

dummy interface
to return premad
readingslass under test

is injected with
ummy interface

ass under test calls
dummy interface

Assertion after two
subsequent calls

80 CHAPTER 3 A tour of Spock functionality
 TemperatureReadings(sensor1Data:30,
 sensor2Data:10,sensor3Data:73);
 TemperatureReader reader = Stub(TemperatureReader)
 reader.getCurrentReadings() >>> [prev,current]
 TemperatureMonitor monitor = new TemperatureMonitor(reader)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound"
 !monitor.isTemperatureNormal()
 }
}

The magic line is the Stub() call, shown here:

TemperatureReader reader = Stub(TemperatureReader)

Spock, behind the scenes, creates a dummy implementation of this interface. By
default the implementation does nothing, so it must be instructed how to react, which
is done with the second important line, the >>> operator:

reader.getCurrentReadings() >>> [prev, current]

This line indicates the following:

■ The first time the getCurrentReadings() method is called on the dummy
interface, return the instance named prev.

■ The second time, return the object named current.

The >>> operator is normally called an unsigned shift operator 14 in Java, but Spock over-
loads it (Groovy supports operator overloading) to provide canned answers to a stub.
Now the dummy interface is complete. The class under test is injected with the Spock
stub, and calls it without understanding that all its responses are preprogrammed. As
far as the class under test is concerned, the Spock stub is a real implementation.

 The final result: you’ve implemented the unit test for the temperature reader com-
plying with the given requirements, even though the class under test never communi-
cates with the temperature sensors themselves.

3.3.3 Mocking collaborators

For simplicity, all the systems in these examples so far only recommend the suggested
action (for example, the alarm should sound). They assume that another external sys-
tem polls the various monitors presented and then takes the action.

 In the real world, systems are rarely this simple. Faking the input data is only half
the effort needed to write effective unit tests. The other half is faking the output

14 http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.html.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.html

81Isolating the class under test
parameters. In this case, you need to use mocking in the mix as well. To see how this
works, look at the extended temperature-monitor system shown in figure 3.6.

 Assume that for this scenario, business analysis has decided that the temperature
control of the reactor is mission critical and must be completely automatic. Instead of
sounding an alarm and contacting a human operator, the system under test is fully
autonomous, and will shut down the reactor on its own if the temperature difference
is higher than 50 degrees. The alarm still sounds if the temperature difference is
higher than 20 degrees, but the reactor doesn’t shut down in this case, allowing for
corrective actions by other systems.

 Shutting down the reactor and sounding the alarm happens via an external Java
library (over which you have no control) that’s offered as a simple API. The system
under test is now injected with this external API as well, as shown in the following listing.

public class TemperatureReadings {

 private long sensor1Data;
 private long sensor2Data;
 private long sensor3Data;

 [...getters and setters here]
}

Listing 3.10 Java classes for the temperature monitor, reader, and reactor control

Alarm

Temperature
reader

Temperature
sensors

Temperature
monitor

Reactor
control

Automatic
shutdown

Figure 3.6 A full system with input and output and side effects

Simple class that
contains temperatures

Current
temperature

82 CHAPTER 3 A tour of Spock functionality

Method
by th
und
public interface TemperatureReader {
 TemperatureReadings getCurrentReadings();
}

public class ReactorControl {
 public void activateAlarm()
 {
 [...implementation here...]
 }

 public void shutdownReactor()
 {
 [...implementation here...]
 }
}

public class ImprovedTemperatureMonitor {

 private final TemperatureReader reader;
 private TemperatureReadings lastReadings;
 private TemperatureReadings currentReadings;
 private final ReactorControl reactorControl;

 public ImprovedTemperatureMonitor(final TemperatureReader reader, final
 ReactorControl reactorControl)
 {
 this.reactorControl = reactorControl;
 this.reader = reader;
 }

 private boolean isTemperatureDiffMoreThan(long degrees)
 {
 [...implementation here that compares readings...]
 }

 public void readSensor()
 {
 lastReadings = currentReadings;
 currentReadings = reader.getCurrentReadings();

 [...sanity checks...]

 if(isTemperatureDiffMoreThan(20))
 {
 reactorControl.activateAlarm();
 }
 if(isTemperatureDiffMoreThan(50))
 {
 reactorControl.shutdownReactor();
 }
 }

}

Interface implemented by
the reader software called

e class
er test

Class with
side effects

Class under test

Injected field of reader
and reactor control

Class under test calls
method with side effects

83Isolating the class under test
Again, you’re tasked with the unit tests for this system. By using Spock stubs as demon-
strated in the previous section, you already know how to handle the temperature
reader. This time, however, you can’t easily verify the reaction of the class under test,
ImprovedTemperatureMonitor, because there’s nothing you can assert.

 The class doesn’t have any method that returns its status. Instead it internally calls
the Java API for the external library that handles the reactor. How can you test this?

OPTIONS FOR UNIT TESTING THIS MORE-COMPLEX SYSTEM

As before, you have three options:

1 You can ask the company that produces the Java API of the reactor control to
provide a “debug” version that doesn’t shut down the reactor, but instead prints
a warning or a log statement.

2 You can create your own implementation of ReactorControl and use that to
create your unit test. This is the same antipattern as stubs, because it adds extra
complexity and an unneeded maintenance burden to sync this fake object
whenever the Java API of the external library changes. Also notice that
ReactorControl is a concrete class and not an interface, so additional refactor-
ing effort is required before you even consider this route.

3 You can use mocks. This is the recommended approach.

Let’s see how Spock handles this testing scenario.

3.3.4 Examining interactions of mocked objects

As it does for stubbing, Spock also offers built-in mocking support. A mock is another
fake collaborator of the class under test. Spock allows you to examine mock objects for
their interactions after the test is finished. You pass it as a dependency, and the class
under test calls its methods without understanding that you intercept all those calls
behind the scenes. As far as the class under test is concerned, it still communicates
with a real class.

 Unlike stubs, mocks can fake input/output, and can be examined after the test is
complete. When the class under test calls your mock, the test framework (Spock in
this case) notes the characteristics of this call (such as number of times it was called or
even the arguments that were passed for this call). You can examine these characteris-
tics and decide if they are what you expect.

 In the temperature-monitor scenario, you saw how the temperature reader is
stubbed. The reactor control is also mocked, as shown in the next listing.

def "If current temperature difference is more than 20 degrees the alarm
 sounds"() {
 given: "that temperature readings are not within limits"
 TemperatureReadings prev = new TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new TemperatureReadings(sensor1Data:30,
 sensor2Data:10,sensor3Data:73);

Listing 3.11 Mocking and stubbing with Spock

84 CHAPTER 3 A tour of Spock functionality

C
test
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 ReactorControl control = Mock(ReactorControl)
 ImprovedTemperatureMonitor monitor = new
 ImprovedTemperatureMonitor(reader,control)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound"
 0 * control.shutdownReactor()
 1 * control.activateAlarm()
}

def "If current temperature difference is more than 50 degrees the reactor
 shuts down"() {
 given: "that temperature readings are not within limits"
 TemperatureReadings prev = new TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new TemperatureReadings(sensor1Data:30,
 sensor2Data:10,sensor3Data:160);
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 ReactorControl control = Mock(ReactorControl)
 ImprovedTemperatureMonitor monitor = new
 ImprovedTemperatureMonitor(reader,control)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound and the reactor should shut down"
 1 * control.shutdownReactor()
 1 * control.activateAlarm()
}

The code is similar to listing 3.9, but this time the class under test is injected with two
fake objects (a stub and a mock). The mock line is as follows:

ReactorControl control = Mock(ReactorControl)

Spock automatically creates a dummy class that has the exact signature of the
ReactorControl class. All methods by default do nothing (so there’s no need to do
anything special if that’s enough for your test).

 You let the class under test run its way, and at the end of the test, instead of testing
Spock assertions, you examine the interactions of the mock you created:

0 * control.shutdownReactor()
1 * control.activateAlarm()

Creating a stub
for an interface

Creating a mock
for a concrete class

lass under
 is injected
with mock
and stub. Mock methods are called

behind the scenes.

Verification of mock calls

85Isolating the class under test
■ The first line says, “After this test is finished, I expect that the number of times
the shutdownReactor() method was called is zero.”

■ The second line says, “After this test is finished, I expect that the number of
times the activateAlarm() method was called is one.”

This is equivalent to the business requirements that dictate what would happen
depending on different temperature variations.

 Using both mocks and stubs, you’ve seen how it’s possible to write a full test for the
temperature system without shutting down the reactor each time your unit test runs.
The reactor scenario might be extreme, but in your programming career, you may
already have seen Java modules with side effects that are difficult or impossible to test
without the use of mocking. Common examples are as follows:

■ Charging a credit card
■ Sending a bill to a client via email
■ Printing a report
■ Booking a flight with an external system

Any Java API that has severe side effects is a natural candidate for mocking. I’ve only
scratched the surface of what’s possible with Spock mocks. In chapter 6, you’ll see
many more advanced examples that also demonstrate how to capture the arguments
of mocked calls and use them for further assertions, or even how a stub can respond
differently according to the argument passed.

Mocking with Mockito

For comparison, I’ve included in the GitHub source code the same test with JUnit/
Mockito in case you want to compare it with listing 3.11 and draw your own conclu-
sions. Mockito was one of the inspirations for Spock, and you might find some simi-
larities in the syntax. Mockito is a great mocking framework, and much thought has
been spent on its API. It sometimes has a strange syntax in more-complex examples
(because it’s still limited by Java conventions). Ultimately, however, it’s Java’s ver-
bosity that determines the expressiveness of a unit test, regardless of Mockito’s
capabilities.

For example, if you need to create a lot of mocks that return Java maps, you have to
create them manually and add their elements one by one before instructing Mockito
to use them. Within Spock tests, you can create maps in single statements (even in
the same line that stubbing happens), as you’ve seen in Chapter 2.

Also, if you need a parameterized test with mocks (as I’ll show in the next section),
you have to combine at least three libraries (JUnit plus Mockito plus JUnitParams) to
achieve the required result.

86 CHAPTER 3 A tour of Spock functionality

Input te
with p

C

Cl
test i

w

ns
3.3.5 Combining mocks and stubs in parameterized tests

As a grand finale of this Spock tour, I’ll show you how to easily combine parameter-
ized tests with mocking/stubbing in Spock. I’ll again use the temperature scenario
introduced in listing 3.10. Remember the requirements of this system:

■ If the temperature difference is larger than 20 degrees (higher or lower), the
alarm sounds.

■ If the temperature difference is larger than 50 degrees (higher or lower), the
alarm sounds and the reactor shuts down automatically.

We have four cases as far as temperature is concerned, and three temperature sensors.
Therefore, a full coverage of all cases requires at least 12 unit tests. Spock can com-
bine parameterized tests with mocks/stubs, as shown in the following listing.

def "Testing of all 3 sensors with temperatures that rise and fall"() {
 given: "various temperature readings"
 TemperatureReadings prev =
 new TemperatureReadings(sensor1Data:previousTemp[0],
 sensor2Data:previousTemp[1], sensor3Data:previousTemp[2])
 TemperatureReadings current =
 new TemperatureReadings(sensor1Data:currentTemp[0],
 sensor2Data:currentTemp[1], sensor3Data:currentTemp[2]);
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 ReactorControl control = Mock(ReactorControl)
 ImprovedTemperatureMonitor monitor = new
 ImprovedTemperatureMonitor(reader,control)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound and the reactor should shut down if
 needed"
 shutDown * control.shutdownReactor()
 alarm * control.activateAlarm()

 where: "possible temperatures are:"
 previousTemp | currentTemp || alarm | shutDown
 [20, 30, 40]| [25, 15, 43.2] || 0 | 0
 [20, 30, 40]| [13.3, 37.8, 39.2] || 0 | 0
 [20, 30, 40]| [50, 15, 43.2] || 1 | 0
 [20, 30, 40]| [-20, 15, 43.2] || 1 | 0
 [20, 30, 40]| [100, 15, 43.2] || 1 | 1
 [20, 30, 40]| [-80, 15, 43.2] || 1 | 1
 [20, 30, 40]| [20, 55, 43.2] || 1 | 0
 [20, 30, 40]| [20, 8 , 43.2] || 1 | 0
 [20, 30, 40]| [21, 100, 43.2] || 1 | 1

Listing 3.12 Mocking/stubbing in a Spock parameterized test

mperature
arameters

reation of
dummy

 interface

Instrumenting return
value of interface

Mocking of
concrete classass under

s injected
ith mock
and stub

Class under test calls stub
and mock behind the scenes

Verification of mock
using parameters

All parameter variatio
and expected results

87Summary
 [20, 30, 40]| [22, -40, 43.2] || 1 | 1
 [20, 30, 40]| [20, 35, 76] || 1 | 0
 [20, 30, 40]| [20, 31 ,13.2] || 1 | 0
 [20, 30, 40]| [21, 33, 97] || 1 | 1
 [20, 30, 40]| [22, 39, -22] || 1 | 1
}

This code combines everything you’ve learned in this chapter. It showcases the
following:

■ The expressiveness of Spock tests (clear separation of test phases)
■ The easy tabular format of parameters (matching business requirements)
■ The ability to fake both input and output of the class under test

As an exercise, try replicating this functionality using Java and JUnit in fewer lines of
code (statements). As I promised you at the beginning of the book, Spock is a cohe-
sive testing framework that contains everything you need for your unit tests, all
wrapped in friendly and concise Groovy syntax.

3.4 Summary
■ Spock tests have a clear structure with explicit given-when-then blocks.
■ Spock tests can be named with full English sentences.
■ JUnit reporting tools are compatible with Spock tests.
■ Spock tests allow for parameterized tests with the where: block.
■ Parameters in Spock tests can be written directly in a tabular format (complete

with header).
■ Unlike JUnit, Spock can have an unlimited number of parameterized tests in

the same class.
■ A stub is a fake class that can be programmed with custom behavior.
■ A mock is a fake class that can be examined (after the test is finished) for its

interactions with the class under test (which methods were called, what the
arguments were, and so forth).

■ Spock can stub classes/interfaces and instrument them to return whatever you
want.

■ The triple-right-shift/unsigned shift (>>>) operator allows a stub to return dif-
ferent results each time it’s called.

■ Spock can mock classes/interfaces and automatically record all invocations.
■ Spock can verify the number of times a method of a mock was called.
■ Combining stubs, mocks, and multiple parameters in the same Spock test is easy.

Konstantinos Kapelonis

S
pock combines the features of tools like JUnit, Mockito,
and JBehave into a single powerful Java testing library.
With Spock, you use Groovy to write more readable and

concise tests. Spock enables seamless integration testing, and
with the intuitive Geb library, you can even handle functional
testing of web applications.

Java Testing with Spock teaches you how to use Spock for a
wide range of testing use cases in Java. You’ll start with a quick
overview of Spock and work through writing unit tests using
the Groovy language. You’ll discover best practices for test de-
sign as you learn to write mocks, implement integration tests,
use Spock’s built-in BDD testing tools, and do functional web
testing using Geb. Readers new to Groovy will appreciate
the succinct language tutorial in chapter 2 that gives you just
enough Groovy to use Spock effectively.

What’s Inside
● Testing with Spock from the ground up
● Write mocks without an external library
● BDD tests your business analyst can read
● Just enough Groovy to use Spock

Written for Java developers. Knowledge of Groovy and JUnit
is helpful but not required.

Konstantinos Kapelonis is a software engineer who works with
Java daily.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/java-testing-with-spock

$44.99 / Can $51.99 [INCLUDING eBOOK]

JAVA TESTING WITH SPOCK

JAVA

M A N N I N G

“Goes beyond mere
exploration of Spock’s API
and feature set to include

general testing practices and
real-world application.”

—From the Foreword by
Luke Daley

Spock founding contributor

“An awesome guide to one
of the most useful test

 frameworks for Java.”
—Christopher W. H. Davis, Nike

“Discover the power of Spock
and Groovy, step-by-step.”

—David Pardo, Amaron

“Does an excellent job of
exploring features of Spock

that are seldom, if ever,
mentioned in other online
resources. If you care about

producing quality tests, then
this book is for you!”—Annyce Davis

The Washington Post

SEE INSERT

	Kapelonis-JTS-SC-front
	SampleCh03
	SCh-03
	Kapelonis-JTS-ebook-back

