SAMPLE

rn
CHAPTER Lea

IN AMONTH OF LUNCHES

availabifi Yy
and redundancy

APPffbatfans
that scale

75 anaging
hetwork traffic

reco very,
é'ndf‘epffCation

Secun’t_y ieaming
Center and artificiy
aNd updates intelligence

[AIN FOULDS

/'l MANNING

Learn Azure in a Month of Lunches
by Iain Foulds

Chapter 19

Copyright 2018 Manning Publications

brief conients

PART 1 AZURE CORE SERVICES 1

OO N W N R

Before you begin 3

Creating a virtual machine 15
Azure Web Apps 32

Introduction to Azure Storage 46
Azure Networking basics 57

PART 2 HIGH AVAILABILITY AND SCALE 75

Azure Resource Manager 77

High availability and redundancy 91
Load-balancing applications 108
Applications that scale 127

Global databases with Cosmos DB 144
Managing network traffic and routing 162
Monitoring and troubleshooting 181

PART 3 SECURE BY DEFAULT 199

13
14
15
16

Backup, recovery, and replication 201

Data encryption 219

Securing information with Azure Key Vault 232
Azure Security Center and updates 249

viii BRIEF CONTENTS

PART 4 THE COOL STUFF 267

17 = Machine learning and artificial intelligence 269
18 = Azure Automation 284

19 = Azure containers 299

20 = Azure and the Internet of Things 314

21 = Serverless computing 331

19.1

Azure containers

Containers, Docker, and Kubernetes have gained a huge following in a few short
years. In the same way that server virtualization started to change how IT depart-
ments ran their datacenters in the mid-2000s, modern container tools and orches-
trators are now shaking up how we build and run applications. There’s nothing
that inherently connects the growth of containers with cloud computing, but when
combined, they provide a great way to develop applications with a cloud-native
approach.

Entire books have been written on Docker and Kubernetes, but let’s go on a
whirlwind introduction and see how you can quickly run containers in Azure.
There’s a powerful suite of Azure services dedicated to containers that aligns more
with the PaaS approach. You can focus on how to build and run your applications,
rather than how to manage the container infrastructure, orchestration, and cluster
components. In this chapter, we examine what containers are, how Docker got
involved, and what Kubernetes can do for you. To see how to quickly run either a
single container instance or multiple container instances in a cluster, we explore
Azure Container Instances (ACI) and Azure Kubernetes Service (AKS).

What are containers?

There’s been a huge wave of interest and adoption around containers over the last
few years, and I’d be impressed if you haven’t at least heard of one company that
has led this charge: Docker. But what, exactly, is a container, and what does Docker
have to do with it?

299

300 CHAPTER 19 Azure containers

First, let’s discuss a traditional virtualization host that runs VMs. Figure 19.1 is like
the diagram we looked at back in chapter 1, where each VM has its own virtual hard-
ware and guest OS.

/ Virtualization host \

VM 1 VM 2

Linux Guest OS Windows Guest OS

Core libraries + binaries Core libraries + binaries
Your application code Your application code

Figure 19.1 With a traditional VM infrastructure, the hypervisor on each virtualization host provides
a layer of isolation by providing each VM with its own set of virtual hardware devices, such as a virtual
CPU, virtual RAM, and virtual NICs. The VM installs a guest operating system, such as Ubuntu Linux or
Windows Server, which can use this virtual hardware. Finally, you install your application and any
required libraries. This level of isolation makes VMs very secure but adds a layer of overhead in terms
of compute resources, storage, and startup times.

A container removes the virtual hardware and guest OS. All that’s included in a con-
tainer are the core applications and libraries required to run your app, as shown in
figure 19.2.

Container host

Container runtime (such as Docker)
Container 1 Container 2
Core libraries + binaries Core libraries + binaries
Your application code Your application code

Figure 19.2 A container contains only the core libraries, binaries, and application code required to
run an app. The container is lightweight and portable, because it removes the guest 0S and virtual
hardware layer, which also reduces the on-disk size of the container and startup times.

Many VMs can run on a single hypervisor, each VM with its own virtual guest OS, vir-
tual hardware, and application stack. The hypervisor manages requests from the
virtual hardware of each VM, schedules the allocation and sharing of those physical
hardware resources, and enforces the security and isolation of each VM. The work of
the hypervisor is shown in figure 19.3.

Multiple containers can also run on a single host. The container host receives the
various system calls from each container and schedules the allocation and sharing of

301

What are containers?

/ Virtualization host \
Physical CPU Physical RAM Physical NIC

Hypervisor

chenes|encnen

Linux Guest OS Windows Guest OS

kS

Figure 19.3 In a traditional VM host, the hypervisor provides the scheduling of requests from the virtual
hardware in each VM onto the underlying physical hardware and infrastructure. The hypervisor typically
has no awareness of what specific instructions the guest 0S is scheduling on the physical CPU time,

only that CPU time is required.

those requests across a shared base kernel, OS, and hardware resources. Containers
provide a logical isolation of application processes. The work of the container run-

time is shown in figure 19.4.

/ Container host \

Guest OS Guest kernel

Container runtime (such as Docker)

Shared guest OS and
kernel requests

Container 1 Container 2

Core libraries + binaries Core libraries + binaries
Your application code Your application code /

Figure 19.4 Containers share a common guest 0S and kernel. The container runtime handles the
requests from the containers to the shared kernel. Each container runs in an isolated user space, and
some additional security features protect containers from each other.

Containers are typically much more lightweight than VMs. Containers can start up
quicker than VMs, often in a matter of seconds rather than minutes. The size of a con-
tainer image is typically only tens or hundreds of MBs, compared to many tens of GBs

302

CHAPTER 19 Azure containers

for VMs. There are still security boundaries and controls in place, but it’s important to
remember that each container technically shares the same kernel as other containers
on the same host.

Try it now

It takes a few minutes to create an Azure Kubernetes Services cluster for use in the
upcoming exercises, so complete the following steps and then continue reading the
chapter.

Open the Azure portal, and select the Cloud Shell icon from the top menu.
Create a resource group. Provide a name, such as azuremolchapterl9, and a
location, such as eastus. Region availability of Azure Kubernetes Service may
vary, so pick a major region such as eastus or westeurope. For an up-to-date list
of region availability, see https://azure.microsoft.com/regions/services:

az group create --name azuremolchapterl9 --location westeurope

To create a Kubernetes cluster, all you need to specify is --node-count. In this
example, create a two-node cluster:

az aks create \

--resource-group azuremolchapterl9 \

--name azuremol \

--node-count 2 \

--generate-ssh-keys \

--no-wait
Why do you also generate SSH keys? Each node is a VM that has some additional com-
ponents installed. These components include a container runtime, such as Docker,
and some core Kubernetes components, such as the kubelet. The final --no-wait
parameter returns control to the Cloud Shell while the rest of your cluster is created.
Keep reading while the cluster is deployed.

Docker joined the container party with a set of tools and standard formats that
defined how to build and run a container. Docker builds on top of existing Linux and
Windows kernel-level features to provide a portable, consistent container experience
across platforms. A developer can build a Docker container on their laptop that runs
macOS, validate and test their app, and then run the exact Docker container, without
modification, in a more traditional Linux or Windows-based server cluster on-premises
or in Azure. All the required application binaries, libraries, and configuration files are
bundled as part of the container, so the underlying host OS doesn’t become a design
factor or constraint.

The importance of Docker shouldn’t be missed here. The terms container and
Docker are often used interchangeably, although that’s not technically accurate.
Docker is a set of tools that helps build and run containers in a consistent, reliable,
and portable manner. The ease of using these tools led to rapid adoption and brought
the underlying container technology that had been around in one shape or another

https://azure.microsoft.com/regions/services

19.1.1

What are containers? 303

for over a decade into the mainstream. Developers embraced containers and the
Docker platform, and IT departments have had to play catch-up ever since.

Docker participates in the Open Container Initiative. The format and specifica-
tions that Docker defined for how a container should be packaged and run were some
of the founding principles for this project. The company’s work has continued and
has been built upon by others. Large contributors in the container space include IBM
and Red Hat, contributing some of the core designs and code that powers the current
container platforms. The Open Container Initiative and design format for container
packaging and runtimes is important because it lets each vendor layer its own tools on
top of the common formats, allowing you to move the underlying container between
platforms and have the same core experience.

The microservices approach to applications

If containers offer a concept of isolation similar to VMs, can you run the same kind of
workloads you do in a VM? Well, yes and no. Just because you can do something
doesn’t necessarily mean that you should! Containers can be used to run whatever
workloads you’re comfortable with, and there are benefits in terms of portability and
orchestration features that we examine later in the chapter. To maximize the benefits
of containers and set yourself up for success, take the opportunity to adopt a slightly
different mental model when you start work with containers. Figure 19.5 compares
the traditional application model with a microservices approach.

/ . T \ Microservices
Monolithic application

Order Payment Order Payment

processing processing

processing processing

Stock
information

Account
management information

Account
management

—— —

= /N

Figure 19.5 In a traditional monolithic application, the entire application runs as
a single application. There may be various components within the application, but
it runs from a single install and is patched and updated as a single instance. With
microservices, each component is broken down into its own application service
and unit of execution. Each component can be updated, patched, and scaled
independently of the others.

A standard VM includes a full guest OS install, such as Ubuntu or Windows Server.
This base OS install includes hundreds of components, libraries, and tools. You then
install more libraries and applications, such as for the NGINX web server or Microsoft
SQL Server. Finally, you deploy your application code. This VM typically runs a large
part, if not all, of the application. It’s one big application install and running instance.
To improve performance, you may add more memory or CPU to the VM (vertical scal-
ing, discussed in previous chapters) or increase the number of instances that run your

304

CHAPTER 19 Azure containers

application (horizontal scaling, as with scale sets). Creating multiple application
instances only works if your application is cluster-aware, and it often involves some
form of shared storage to enable a consistent state across the application instances.
This traditional form of deployment is called a monolithic application.

A different approach to how you design, develop, and run applications is to break
things down into smaller, bite-sized components. This is a microservices approach to
application development and deployment. Each microservice is responsible for a
small part of the wider application environment. Microservices can grow, scale, and be
updated independently of the rest of the application environment.

Although this model may offer challenges at first while development and IT teams
learn to adopt a different way to build and deploy applications, containers are a great
fit for the microservice approach. Developers are empowered to deploy smaller, more
incremental updates at a quicker pace than the monolithic approach to application
development. Microservices and containers are also a great fit for continuous integra-
tion and continuous delivery (CI/CD) workflows where you can more easily build,
test, stage, and deploy updates. Your customers receive new features or bug fixes faster
than they would otherwise, and hopefully your business grows as a result.

Microservices with Azure Service Fabric

This chapter mainly focuses on Docker containers and orchestration with Kubernetes,
but there’s another Azure service that’s similar in how it moves application development
toward a microservices model. Azure Service Fabric has been around for a number of
years and was historically a Windows-centric approach to building applications where
each component was broken down into its own microservice. Service Fabric keeps track
of where each microservice component runs in a cluster, allows the services to discover
and communicate with each other, and handles redundancy and scaling.

Many large Azure services use Service Fabric under the hood, including Cosmos DB.
That should give you a sense of how capable and powerful Service Fabric can be! Ser-
vice Fabric itself runs on top of virtual machine scale sets. You know a thing or two
about scale sets, right?

The Service Fabric platform has matured, and it can now handle both Windows and
Linux as the guest OS, so you can build your app with any programming language you're
comfortable with. Here’s another example of choice in Azure: you have the flexibility to
choose how you want to manage and orchestrate your container applications. Both Ser-
vice Fabric and Azure Kubernetes Service have excellent benefits and use cases.

As a good starting point, if you currently develop, or would like to develop, microser-
vices outside of containers, Service Fabric is a great choice. It provides a unified
approach to handle both more traditional microservices applications and container-
based applications. If you then choose to adopt containers for other workloads, you
can use the same Service Fabric management tools and interface to manage all of
your application environments. For a more container-focused application approach
from the get-go, Azure Kubernetes Service may be a better choice, with the growth
and adoption of Kubernetes providing a first-class container experience.

19.2

19.2.1

Azure Container Instances 305

Azure Container Instances

Now that you understand a little more about what containers are and how you can use
them, let’s dive in and create a basic instance of the pizza store. This is the same exam-
ple from earlier chapters, where you created a basic VM that ran your website, or
deployed the app to web apps. In both of those cases, you had to create the VM or web
app, connect to it, and then deploy a basic web page to it. Can the power of containers
make your life that much easier? Absolutely!

A neat service called Azure Container Instances (ACI) lets you create and run con-
tainers in a matter of seconds. There are no upfront network resources to create and
configure, and you pay for each container instance by the second. If you’ve never used
containers and don’t want to install anything locally on your computer, ACI is a great
way to try the technology.

Creating a single container instance

To see how you can quickly run your pizza store, let’s create a container instance. It
takes only one command to run a container instance, but figure 19.6 shows how you
bring together many components to make this happen behind the scenes. We look at
the components of a Dockerfile and Docker Hub after you have the container
instance up and running.

Base image
. 1L -~ -
Dockerfile -
L e Azure Container
FROM nginx l Docker Hub Instances
2. Deplo
EXPOSE 80:80 mmn —_ — Map external port 80 iainfoulds: ploy ol
-> container port 80 el —
COPY index.htm| ; l
/Jusr/share/nginx/html = | ~Q7"
index.html
[t
Local container image
1 built from Dockerfile

pushed to public
Docker Hub repo

azuremol

Figure 19.6 A Dockerfile was used to build a complete container image, azuremol. This image was
pushed to an online public registry called Docker Hub. You can now create a container instance using
this prebuilt public image from Docker Hub, which provides a ready-to-run application image.

306

CHAPTER 19 Azure containers

Try it now
To create an Azure container instance that runs a basic website, complete the follow-

ing steps.

Open the Azure portal, and select the Cloud Shell icon from the top menu.
Create a container instance. Specify that you’d like a public IP address and to
open port 80. This exercise uses a sample image that I've created for you, which
we’ll examine a little more once the container is up and running:

az container create \
--resource-group azuremolchapterl9 \
--name azuremol \
--image iainfoulds/azuremol \
--ip-address public \
--ports 80

To see what was created, look at the details of the container:

az container show \
--resource-group azuremolchapterl9 \
--name azuremol

In the Events section, you can see as the image is pulled (downloaded) from
Docker Hub, a container is created, and the container is then started. Some
CPU and memory reservations are also assigned, which can be adjusted if
needed. A public IP address is shown, along with some information on the con-
tainer such as the provisioning state, OS type, and restart policy.

To open the basic website that runs in the container, you can query for just the
assigned public IP address:
az container show \

--resource-group azuremolchapterl9 \

--name azuremol \

--query ipAddress.ip \

--output tsv
Open the public IP address of your container instance in a web browser. The
basic pizza store should be displayed, as shown in figure 19.7.

[& | B Mol piza Store X4 - o x
/2 O @ © sisizse e = 2 Figure 19.7 When you create a
container instance, the pizza store
5 i s website runs without any additional
Month of Pizza Lunches in a container configuration. All the configuration and
Welcome to a basic stanc HTML page powered by contamers! Here are some of the conte!1t ar.e mCIUde(_’ WI“."n the i
Vummy pizzas vou can soon order online! container image. This qmck exercise
N G hlghllghts the portability am.i pO\fver of
Pepperoni $18 containers—once the container image
Veggie §$15 has been prepared, your app is up and
Hawaiian $12 running as soon as a new container

instance is deployed.

Azure Container Instances 307

Let’s examine the container image. I don’t want to get too far into the weeds of Docker
and how to build container images, but it’s important to understand where this image
came from and how it runs the website without any additional configuration.

The image is built from a configuration definition called a Dockerfile. In a Docker-
file, you define what the base platform is, any configuration you wish to apply, and any
commands to run or files to copy. Dockerfiles can be, and often are, more complex
than the following example, which was used to build the azuremol sample container:

FROM nginx
EXPOSE 80:80

COPY index.html /usr/share/nginx/html

When this Dockerfile was used to build a Docker container image, NGINX was used as
the source image, and the sample web page was copied into it. This container
was then pushed to Docker Hub, an online, public repository that Docker provides
to share and deploy containers. To deploy the container instance, you provided
iainfoulds/azuremol as the container image to use. Azure looked in Docker Hub and
found a repository named iainfoulds and, within it, an image named azuremol.

Let’s examine each line of the Dockerfile:

FROM nginx—In previous chapters, you created a basic VM, connected to it with
SSH, and then manually installed the NGINX web server. In the example Dock-
erfile, all of that is accomplished in one line. This line says to base the container
on an existing container image that’s preinstalled with NGINX.

EXPOSE 80:80—To allow access to your VM in previous chapters, you created an
NSG rule that allowed port 80. In the Dockerfile, this line tells the container to
open port 80 and map it to the internal port 80. When you created your con-
tainer instance with az container create, you also specified that the Azure
platform should permit traffic with --ports 80. That’s all the virtual network-
ing you have to think about!

COPY index.html /usr/share/nginx/html—The final partis to get your appli-
cation into the container. In previous chapters, you used Git to obtain the sam-
ple pizza store web page and then push that to your web app. With the
Dockerfile, you COPY the index.html file to the local /usr/share/nginx/html
directory in the container. That’s it!

For your own scenarios, you can define a Dockerfile that uses a different base image,
such as Node.js or Python. You then install any additional supporting libraries or pack-
ages required, pull your application code from source control, such as GitHub, and
deploy your application. This Dockerfile would be used to build container images that
are then stored in a private container registry, not a public Docker Hub repo like that
in the example.

308

19.3

CHAPTER 19 Azure containers

Azure Container Registry

You may think, Docker Hub sounds great: does Azure have such a wonderful thing?
It does! Because you need to create a Dockerfile and build a container image, unfor-
tunately it’s not a two-minute exercise, and there’s a lot to cover in this chapter. You
can build your own images from a Dockerfile in the Cloud Shell, though, and | encour-
age you to explore this if you have time. But Azure Container Registry (ACR) is the
route I'd choose to store my container images, for a couple of reasons.

First, it's a private registry for your container images, so you don’t need to worry about
potential unwanted access to your application files and configuration. You can apply
the same RBAC mechanisms we discussed in chapter 6. RBAC helps you limit and
audit who has access to your images.

Second, storing your container images in a registry in Azure means your images are
right there in the same datacenters as the infrastructure used to run your container
instances or clusters (which we look at next). Although container images should be
relatively small, often only tens of MB in size, that can add up if you keep downloading
those images from a remote registry.

ACR also provides built-in replication and redundancy options you can use to place
your containers close to where you deploy and run them for users to access. This
region locality is similar to how you used Cosmos DB global replication in chapter 10
to make those milliseconds count and provide your customers with the quickest pos-
sible access time to your applications.

If all this sounds exciting, check out the ACR quick starts to be up and running with
your own private repository in a few minutes: http://mng.bz/04rj.

Azure Kubernetes Service

Running a single container instance is great, but that doesn’t give you much redun-
dancy or ability to scale. Remember how we spent entire chapters earlier in the book
talking about how to run multiple instances of your application, load balance, and
automatically scale them? Wouldn’t it be great to do the same with containers? That’s
where you need a container orchestrator.

As the name implies, a container orchestrator manages your container instances,
monitors their health, and can scale as needed. Orchestrators can, and often do, han-
dle a lot more than that, but at a high level, a primary focus is handling all the moving
parts involved in running a highly available, scalable, container-based application.
There are a few container orchestrators, such as Docker Swarm and datacenter oper-
ating system (DC/OS), but one has risen above the rest to become the go-to orches-
trator of choice—Kubernetes.

Kubernetes started as a Google-led and -sponsored open source project that grew
out of the company’s internal container orchestration tooling. Widely accepted by the
open source community, Kubernetes is one of the largest and fastest-growing open

http://mng.bz/04rj

Azure Kubernetes Service 309

source projects on GitHub. Many large technology companies, including Red Hat,
IBM, and Microsoft, contribute to the core Kubernetes project.

In this section, let’s take the same sample web app from the previous exercise with
ACI to run a redundant, scalable deployment in Kubernetes. You’ll end up with a few
components, as shown in figure 19.8.

Azure Kubernetes Kubernetes
Service deployment

— o — oy

Kubernetes service I

iainfoulds: Run
! E— Node 1 |l Load balancer I
azuremol TCP port 80

Node 2 \———J

Docker Hub Kubernetes cluster

Pod 1

Pod 2

Figure 19.8 Your sample container from Docker Hub runs on a two-node Kubernetes
cluster that you create in Azure Kubernetes Service. The Kubernetes deployment
contains two logical pods, one on each cluster node, with a container instance
running inside each pod. You then expose a public load balancer to allow your web
app to be viewed online.

19.3.1 Creating a cluster with Azure Kubernetes Services

In chapter 9, we looked at how virtual machine scale sets reduce the complexity of
deploying and configuring the underlying infrastructure. You say how many VM
instances you want in a scale set, and the rest of the network, storage, and configura-
tion is deployed for you. Azure Kubernetes Service (AKS) works in much the same way
to offer a resilient, scalable Kubernetes cluster, with management handled by the
Azure platform.

Try it now
To view the information on your AKS cluster, complete the following steps.

Open the Azure portal, and select the Cloud Shell icon from the top menu.
Earlier in the chapter, you created a Kubernetes cluster. The process took a few
minutes, but hopefully it’s ready now! Look at the status of cluster as follows:

az aks show \
--resource-group azuremolchapterl9 \
--name azuremol

provisioningState should report Succeeded.

310

19.3.2

CHAPTER 19 Azure containers

If your cluster is ready, obtain a credentials file that allows you to use the Kuber-
netes command-line tools to authenticate and manage resources:

az aks get-credentials \

--resource-group azuremolchapterl9 \

--name azuremol
That’s all it takes to get Kubernetes up and running in Azure! You may be wondering,
“Can’tI just build my own cluster with VMs or scale sets, and manually install the same
Docker and Kubernetes components?” You absolutely can. The parallel is the IaaS and
PaaS approach of VMs versus web apps. The web app approach offers many benefits:
you only worry about high-level configuration options, and then you upload your
application code. A managed Kubernetes cluster, as offered by AKS, reduces the level
of complexity and management—your focus becomes your applications and your cus-
tomers’ experience.

In the same way that you may choose VMs over web apps, you may choose to
deploy your own Kubernetes cluster rather than use AKS. That’s fine—both
approaches end up using the same Azure services components. VMs, scale sets, load
balancers, and NSGs are all topics you’ve learned about in previous chapters, and all
are still present with AKS clusters, although they’re abstracted away. From a planning
and troubleshooting perspective, you should have the skills to understand what’s hap-
pening under the hood to make the managed Kubernetes offering work. Your com-
fort level, and how much time you want to spend managing the infrastructure, will
help guide your decision-making process as you build a new application around con-
tainers in Azure.

Running a basic website in Kubernetes

You created a Kubernetes cluster in the previous section, but there’s no application
running. Let’s change that! You now need to create the Kubernetes deployment that
you saw earlier in figure 19.8; see figure 19.9.

Azure Kubernetes Kubernetes

Service deployment
—— — oy
Docker Hub Kubernetes cluster e ES samiiee I

iainfoulds: Node 1 I Load balancer
azuremol TCP port 80 I
Node 2 \ — = =

Pod 1
Pod 2

)

Figure 19.9 With the Kubernetes cluster created in AKS, you can now create a
Kubernetes deployment and run your app. Your container runs across both nodes,
with one logical pod on each node; you need to create a Kubernetes service that
exposes a public load balancer to route traffic to your app.

Azure Kubernetes Service 311

Try it now
To deploy an application to your Kubernetes cluster, complete the following steps.

You interact with a Kubernetes cluster using a command-line utility called
kubectl. Use the same iainfoulds/azuremol container image from Docker Hub
that you ran as a container instance:

kubectl run azuremol \

--image=docker.io/iainfoulds/azuremol:latest \

--port=80
It may take a minute or so to download the container image from Docker Hub
and start the application in Kubernetes. The application runs in a pod: a logical
construct in Kubernetes that houses each container. Pods can contain addi-
tional helper-components, but for now, monitor the status of your container by
looking at the pod:

kubectl get pods --watch

Even when the status of the pod reports as Running, you won’t be able to access your
application. The container instance you created earlier could route traffic over a pub-
lic IP address directly to that one instance, but what do you think is needed for a
Kubernetes cluster to route traffic to containers? If you guessed, “a load balancer,” con-
gratulations! Right now, you have only one pod—a single container instance. You scale
out the number of pods in the end-of-chapter lab, and for that to work, you need a way
to route traffic to multiple instances. So, let’s tell Kubernetes to use a load balancer.
Here’s where the integration between Kubernetes and Azure becomes cool. When

you tell Kubernetes that you want to create a load balancer for your containers, under
the hood, Kubernetes reaches back into the Azure platform and creates an Azure load
balancer. This Azure load balancer is like the one you learned about in chapter 8.
There are frontend and backend IP pools and load-balancing rules, and you can con-
figure health probes. As your Kubernetes deployment scales up or down, the load bal-
ancer is automatically updated as needed.

To expose your application, tell Kubernetes that you want to use a load bal-

ancer. Add a rule to distribute traffic on port 80:

kubectl expose deployment/azuremol \
--type="LoadBalancer" \
--port 80

As before, watch the status of your service deployment:

kubectl get service azuremol --watch

Once the public IP address is assigned, that means the Azure load balancer has
finished deploying, and the Kubernetes cluster and nodes are connected. Open
the public IP address of your service in a web browser to see your web applica-
tion running.

312

CHAPTER 19 Azure containers

Application deployments in Kubernetes are often much more involved than this basic
example. You typically define a service manifest, similar to a Resource Manager tem-
plate, that defines all the characteristics of your application. These properties can
include the number of instances of your application to run, any storage to attach, load-
balancing methods and network ports to use, and so on. What'’s great about AKS is that
you don’t have to worry about the Kubernetes installation and configuration. As with
other PaaS services like web apps and Cosmos DB, you bring your applications and let
the Azure platform handle the underlying infrastructure and redundancy.

Keeping it clean and tidy

Remember to clean up and delete your resource groups so you don’t end up consum-
ing lots of your free Azure credits. As you start to explore containers, it becomes even
more important to pay attention to what Azure resources you leave turned on. A single
web app doesn’t cost much, but a five-node AKS cluster and a few Container
instances with georeplicated Azure Container Registry images sure can!

ACI instances are charged for by the second, and the cost quickly adds up if they’re
left running for days or weeks. An AKS cluster runs a VM for each node, so if you scale
up and run many VMs in your cluster, you're paying for one VM for each node.

There’s no charge for the number of containers each of those AKS nodes runs, but
as with any VM, an AKS node gets expensive when left running. What's great about
Kubernetes is that you can export your service configurations (the definition for your
pods, load balancers, autoscaling, and so on) to deploy them elsewhere. As you build
and test your applications, you don’t need to leave an AKS cluster running—you can
deploy a cluster as needed and deploy your service from a previous configuration.

This has also been a warp-speed introduction to containers and Kubernetes, so don’t
worry if you feel a little overwhelmed right now! Manning has several great books that
can help you dive further into Docker, microservices application development, and
Kubernetes. Check them out if this chapter sounds exciting and you want to explore
further!

19.4 Lab: Scaling your Kubernetes deployments

The basic example in this chapter created a two-node Kubernetes cluster and a single
pod that runs your website. In this lab, explore how you can scale the cluster and num-
ber of container instances:

You can see how many nodes are in your Kubernetes cluster with kubectl get

nodes. Scale up your cluster to three nodes:

az aks scale \
--resource-group azuremolchapterl9 \
--name azuremol \
--node-count 3

Lab: Scaling your Kubernetes deployments 313

It takes a minute or two to scale up and add the additional node. Use kubectl
again to see the status of your nodes. Look at your current deployment with
kubectl get deployment azuremol. Only one instance was created earlier.
Scale up to five instances, or replicas:

kubectl scale deployment azuremol --replicas 5

Use kubectl again to examine the deployment. Look at the pods, the running
container instances, with kubectl get pods. Within a matter of seconds, all
those additional replicas were started and were connected to the load balancer.

CLOUD/AZURE
Learn

IN A MONTH OF LUNCHES

Iain Foulds

ith hundreds of features and prebuilt services,
N N / the Microsoft Azure cloud platform is vast and
powerful. To master it, you need a trustworthy

guide. In this hands-on book, Microsoft engineer and Azure

trainer Iain Foulds focuses on the core skills you need to
create and maintain cloud-based applications.

Learn Azure in a Month of Lunches teaches you the
foundational techniques for writing, deploying, and running
cloud-based applications in Azure. In it, you'll master the
basics, including setting up cloud-based virtual machines,
deploying web servers, and using hosted data stores. As you
work through the book’s 21 carefully planned lessons, you’ll
explore big-picture concerns like security, scaling, and
automation. You'll even dabble in Azure’s prebuilt services
for machine containers, and serverless computing!

WHAT'S INSIDE

» Getting started, from your first login

» Writing and deploying web servers

» Securing your applications and data

* Automating your environment

* Azure services for machine learning, serverless computing,
and more

Readers should be able to write and deploy simple web
or client/server applications.

Iain Foulds is an engineer and senior content developer
with Microsoft.

To download their free eBook in PDF. ePub, and Kindle formats, owners of this book
should visit www.manning.com/books/learn-azure-in-a-month-of-lunches

M MANNING $44.99/Can $59.99 [INCLUDING eBOOK]

“A great way to understand
the breadth of Azure offerings
by following a concise,
activity-focused approach.”

—Dave Corun, Avanade

“Excellent introduction to
Azure with many hands-on
examples. Covers a broad
range of current topics.”

—Sven Stumpf, ING-DiBa

“An incredible, information-
packed book for learning
both core and advanced
Azure concepts in a month!”

—Sushil Sharma, Galvanize

“Azure is like an ocean.This
book keeps you afloat by
providing a month of lessons
rich in practice and examples”

—Roman Levchenko
Microsoft MVP

ISBN-13: 978-1-61729-517-1
ISBN-10: 1-61729-517-5

“l “ I“ “ Il
97781617"295171 “

	Foulds_Azure_front
	Copyright
	BriefContents
	SampleCh19
	Foulds_Azure_back

