
M A N N I N G

Alvaro Videla
Jason J.W. Williams
FOREWORD BY
ALEXIS RICHARDSON

IN ACTION
Distributed messaging for everyone

Dottie
Text Box
SAMPLE CHAPTER

RabbitMQ in Action
Alvaro Videla

 Jason J.W. Williams

Chapter 1

Copyright 2012 Manning Publications

vii

brief contents
1 ■ Pulling RabbitMQ out of the hat 1

2 ■ Understanding messaging 12

3 ■ Running and administering Rabbit 37

4 ■ Solving problems with Rabbit: coding and patterns 60

5 ■ Clustering and dealing with failure 87

6 ■ Writing code that survives failure 107

7 ■ Warrens and Shovels: failover and replication 120

8 ■ Administering RabbitMQ from the Web 137

9 ■ Controlling Rabbit with the REST API 154

10 ■ Monitoring: Houston, we have a problem 167

11 ■ Supercharging and securing your Rabbit 195

12 ■ Smart Rabbits: extending RabbitMQ 216

1

Pulling RabbitMQ
out of the hat

We live in a world where real-time information is constantly available, and the
applications we write need easy ways to be routed to multiple receivers reliably and
quickly. More important, we need ways to change who gets the information our
apps create without constantly rewriting them. Too often, our application’s infor-
mation becomes siloed, inaccessible by new programs that need it without rewrit-
ing (and probably breaking) the original producers. You might be saying to
yourself, “Sure, but how can message queuing or RabbitMQ help me fix that?” Let’s
start by asking whether the following scenario sounds familiar.

 You’ve just finished implementing a great authentication module for your com-
pany’s killer web app. It’s beautiful. On every page hit, your code efficiently coordi-
nates with the authentication server to make sure your users can only access what

This chapter covers
 The need for an open protocol—AMQP

 Brief history of RabbitMQ

 Installing RabbitMQ

 First program—Hello World

2 CHAPTER 1 Pulling RabbitMQ out of the hat

they should. You’re feeling smug, because every page hit on your company’s world-
class avocado distribution website activates your code. That’s about when your boss
walks in and tells you the company needs a way to log every successful and failed per-
mission attempt so that it can be data mined. After you lightly protest that that’s the job
of the authentication server, your boss not so gently informs you that there’s no way to
access that data. The authentication server logs it in a proprietary format; hence this is
now your problem. Mulling over the situation causes a four-aspirin headache, as you
realize you’re going to have to modify your authentication module and probably break
every page in the process. After all, that wonderful code of yours touches every access to
the site. Let’s stop for a moment though. Let’s punch the Easy button and time warp
back to the beginning of the development of that great auth module. Let’s assume you
leveraged message queuing heavily in its design from day one.

 With RabbitMQ in place, you brilliantly leveraged message queuing to decouple
your module from the authentication server. With every page request, your authenti-
cation module is designed to place an authorization request message into RabbitMQ.
The authentication server then listens on a RabbitMQ queue that receives that
request message. Once the request is approved, the auth server puts a reply message
back into RabbitMQ where it’s routed to the queue that your module is listening on.
In this world, your boss’s request doesn’t faze you. You realize you don’t need to touch
your module or even write a new one. All you need to do is write a small app that con-
nects to RabbitMQ and subscribes to the authorization requests your auth module is
already publishing. No code changes. Nothing you already wrote knows anything has
changed. It’s so simple a smile almost breaks out on your face. That’s the power of
messaging to make your day job easier.

 Message queuing is simply connecting your applications together with messages that
are routed between them by a message broker like RabbitMQ. It’s like putting in a
post office just for your applications. The reality is that this approach isn’t just a solu-
tion to the real-time problems of the financial industry; it’s a solution to the problems
we all face as developers every day. We, the authors, don’t come from a financial ser-
vices background. We had no idea what “enterprise messaging” was when we needed
to scale. We were simply devs like you with an itch that needed scratching: an itch to
deal with real-time volumes of information and route it to multiple consumers quickly.
We needed to do it all without blocking the producers of that information … and
without them needing to know who the final consumers might be. RabbitMQ helped
us to solve those common problems easily, and in a standards-based way that ensured
any app of ours could talk to any other app, be it Python, PHP, or even Scala.

 Over the next few chapters, we’ll take you on a ride. It starts by explaining how
message queuing works, its history, and how RabbitMQ fits in. Then we’ll take you all
the way through to real-world examples you can apply to your own scalability and
interoperability challenges … ending with how to make Rabbit purr like a well-oiled
machine in a “downtime is not acceptable!” environment.

3Living in other people’s dungeons

 This is the book we wished was on the shelves when we entered the messaging wil-
derness. We hope it will help you benefit from our experience and battle scars and
free you to make amazing applications with less pain. Before we’re done in this chap-
ter, you’ll have a short history of messaging under your belt, and RabbitMQ up and
running. Without further ado, let’s take a look at where all this messaging fun started.

1.1 Living in other people’s dungeons
The world of message queuing didn’t start out the dank and cramped one it is today,
with most folks subservient to lock-in overlords. It started with a ray of light in an oth-
erwise byzantine software landscape. It was 1983 when a 26-year-old engineer from
Mumbai had a radical question: why wasn’t there a common software “bus”—a commu-
nication system that would do the heavy lifting of communicating information from
one interested application to another? Coming from an education in hardware design
at MIT, Vivek Ranadivé envisioned a common bus like the one on a motherboard, only
this would be a software bus that applications could plug into. (See http://
hbswk.hbs.edu/archive/1884.html.) Thus, in 1983 Teknekron was born. A freshly
minted Harvard MBA in his hand and this powerful idea in his head, Vivek started
plowing a path that would help developers everywhere.

 Having the idea was one thing, but finding a killer application for it was something
completely different. It was at Goldman Sachs in 1985 that Ranadivé found his first
customer and the problem his software bus was born to solve: financial trading. A
trader’s stall at that time was packed to the brim with different terminals for each type
of information the trader needed to do his job. Teknekron saw an opportunity to
replace all those terminals and their siloed applications. In their place would be
Ranadivé’s software bus. What would remain would be a single workstation whose dis-
play programs could now plug into the Teknekron software bus as consumers and
allow the trader to “subscribe” to the information the trader wanted to see. Publish-
subscribe (PubSub) was born, as was the world’s first modern message queuing soft-
ware: Teknekron’s The Information Bus (TIB).

 It didn’t take long for this model of data transfer to find many more killer uses.
After all, an application publishing data and an application consuming it no longer
had to directly connect to each other. Heck, they didn’t even have to know each other
existed. What Teknekron’s TIB allowed application developers to do was establish a set
of rules for describing message content. As long as the messages were published
according to those rules, any consuming application could subscribe to a copy of the
messages tagged with topics it was interested in. Producers and consumers of informa-
tion could now be completely decoupled and flexibly mixed on-the-fly. Either side of
the PubSub model (producer/consumer) was completely interchangeable without
breaking the opposite side. The only thing that needed to remain stable was the TIB
software and the rules for tagging and routing the information. Since the financial
trading industry is full of information with a constantly changing set of interested
folks, TIB spread like wildfire in that sector. It was also noticed by telecommunications

http://hbswk.hbs.edu/archive/1884.html
http://hbswk.hbs.edu/archive/1884.html

4 CHAPTER 1 Pulling RabbitMQ out of the hat

and especially news organizations, who also had information that needed timely deliv-
ery to a dynamically changing set of interested consumers. That’s why mega news out-
fit Reuters purchased Teknekron in 1994.

 Meanwhile, this burgeoning new segment of enterprise software didn’t go unno-
ticed by Big Blue. After all, many of IBM’s biggest customers were in the financial ser-
vices industry. Also, Teknekron’s TIB software was frequently run on IBM hardware and
operating systems … all without the boys in White Plains getting a cut. Thus, in the late
’80s IBM began research into developing their own message-queuing software, leverag-
ing their extensive experience in information delivery from developing DB2 (see
http://www-01.ibm.com/software/integration/wmq/MQ15Anniversary.html). Devel-
opment began in 1990 at IBM’s Hursely Park Laboratories near Winchester, United
Kingdom. What emerged three years later was the IBM MQSeries family of message-
queuing server software. In the 17 years since, MQSeries has evolved into WebSphere
MQ and is today the dominant commercial message-queuing platform. During that
time, Ranadivé’s TIB hardly disappeared into the bowels of Reuters. Instead it has
remained the other major player in enterprise messaging, thriving through a renam-
ing to Rendezvous and Teknekron’s re-emergence as an independent company in the
form of TIBCO in 1997. The same year, Microsoft’s first crack at the messaging market
emerged: Microsoft Message Queue (MSMQ).

 Through all of this evolution, message queuing (MQ) software primarily remained
the domain of large-budgeted organizations with a need for reliable, decoupled, real-
time message delivery. Why didn’t MQ find a larger audience? How did it survive the
information boom that was the late ’90s internet bubble without experiencing explo-
sive adoption? After all, everyone today from Twitter to Salesforce.com is scrambling
to create internal solutions to the PubSub problems that The Information Bus solved
25 years ago. Two words: vendor lock-in. The commercial MQ vendors wanted to help
applications interoperate, not create standard interfaces that would allow different
MQ products to interoperate or, Heaven forbid, allow applications to change MQ plat-
forms. Vendor lock-in has kept prices and margins high, and commercial MQ software
out of reach of the startups and Web 2.0 companies that are abounding today.

 As it turned out, smaller tech companies weren’t the only ones unhappy about the
high-priced walled gardens of MQ vendors. The financial services companies that
formed the bread and butter of the MQ industry weren’t thrilled either. Inevitably, the
size of financial companies meant that MQ products were in place from multiple ven-
dors servicing different internal applications. If an application subscribing to informa-
tion on a TIBCO MQ suddenly needed to consume messages from an IBM MQ, it
couldn’t easily be done. They used different APIs, different wire protocols, and defi-
nitely couldn’t be federated together into a single bus. From this problem was born
the Java Message Service (JMS) in 2001 (see http://en.wikipedia.org/wiki/Java_Message
_Service). JMS attempted to solve the lock-in and interoperability problem by provid-
ing a common Java API that hides the actual interface to the individual vendor MQ
products. Technically, a Java application only needs to be written to the JMS API, with
the appropriate MQ drivers selected. JMS takes care of the rest … supposedly. The

http://www-01.ibm.com/software/integration/wmq/MQ15Anniversary.html
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Java_Message_Service

5A brief history of RabbitMQ

problem is you’re trying to glue a single standard interface over multiple diverse inter-
faces. It’s like gluing together different types of cloth: eventually the seams come apart
and the reality breaks through. Applications could become more brittle with JMS, not
less. A new standards-based approach to messaging was needed.

1.2 AMQP to the rescue
In 2004, JPMorgan Chase required a better solution to the problem and started devel-
opment of the Advanced Message Queuing Protocol (AMQP) with iMatix Corporation (see
http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Development).
AMQP from the get-go was designed to be an open standard that would solve the vast
majority of message queuing needs and topologies. By virtue of being an open stan-
dard, anyone can implement it, and anyone who codes to the standard can interoperate
with MQ servers from any AMQP vendor.

 In many ways, AMQP promises to liberate us from the dungeons of vendors and ful-
fill Ranadivé’s original vision: dynamically connecting information in real time from
any publisher to any interested consumer over a software bus.

1.3 A brief history of RabbitMQ
In the early 2000s, a young entrepreneur out of the London financial sector co-
founded a company for caching Java objects: Metalogic. For Alexis Richardson, the
theory was simple enough: use Java objects for distributed computing and cache them
in transit for performance. The reality was far different. Varying versions of the Java
Virtual Machine, as well as differing libraries on the client and server, could make the

IBM
MQseries
launched

TIBCO spun
out from
Reuters

Teknekron &
"TIB"

acquired by
Reuters

Microsoft MQ
(MSMQ)

launched

Java
Messaging

Service
debuts

AMQP starts
development
at JPMorgan

Rabbit
Technologies

founded

RabbitMQ
1.0 launched

20031998199319881983

200720041997199419901985

Teknekron
founded

"The
Information
Bus" (TIB)
developed

IBM starts
development
on MQseries

1993 20011983 2006

AMQP spec
first released

Figure 1.1 Short timeline of message queueing

http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Development

6 CHAPTER 1 Pulling RabbitMQ out of the hat

objects unusable when they arrived. There were too many environment variables in
the real world for Metalogic’s approach to be widely successful. What did come out of
Metalogic was Alexis meeting Matthias Radestock.

 Matthias was working for LShift, where Alexis was subleasing office space while at
Metalogic. LShift at the time was heavily involved in language modeling and distrib-
uted computing contracts for a major software vendor. The background in these areas
triggered Matthias’s interest in Erlang, the programming language that Ericsson had
originally developed for their telephone switching gear. What grabbed Matthias’s
attention was that Erlang excelled at distributed programming and robust failure
recovery, but unfortunately at the time it wasn’t open source. In the meantime, Meta-
logic had closed operations and LShift was in the process of winding down their pri-
mary distributed computing contract. But Alexis had learned two valuable lessons
from his experience at Metalogic: what works in a distributed computing environ-
ment, and what companies want for those environments.

 Alexis knew he wanted to start a new company to solve the problems of communi-
cating in a distributed environment. He also knew the next company he started would
be open source and build on the model just proved successful by JBoss and MySQL.
Looking back at where the Metalogic solution had run into problems, Alexis started to
see that messaging was the right answer to distributed computing. More important, in
the tech world circa 2004 a huge gap existed for open source messaging. No one was
providing a messaging solution except for the big commercial vendors, and while
“enterprise” open source was flourishing with databases (MySQL) and application
servers (JBoss), no one was touching the missing component: messaging. Interest-
ingly, it was in 2004 that AMQP was just starting to be developed at JPMorgan Chase.
Through his background in the financial industry, Alexis had been introduced to the
principal driver of AMQP at JPMorgan, John O’Hara (future founder of the AMQP
Working Group). Through O’Hara, Alexis became acquainted with AMQP, and started
lining up the building blocks for what would become RabbitMQ.

 Around 2005, Alexis cofounded CohesiveFT. He and his cofounders in the U.S.
started the company to provide an application stack and tools for what has today
become cloud computing. That a key part of that stack would be distributed messag-
ing seemed obvious to Alexis, who (still in the same office as LShift) started talking to
Matthias about AMQP. What was clear to Matthias was that he’d just found the applica-
tion he’d been looking for to write in Erlang. But before any of this could get started,
Alexis and Matthias focused on three questions that they knew would be critical to an
open source version of AMQP being successful if it was written in Erlang:

1 Would large financial institutions care whether their messaging broker was writ-
ten in Erlang?

2 Was Erlang really a good choice for writing an AMQP server?
3 If it was written in Erlang, would that slow down adoption in the open source

community?

7A brief history of RabbitMQ

The first issue was quickly dispatched by a financial company who confirmed they
didn’t care what it was written in if it helped reduce their integration costs. The sec-
ond question was answered by Francesco Cesarini at Erlang Solutions: from his analy-
sis of AMQP, the specification implied an architecture present in every telephone
switch. In other words, you couldn’t pick a better implementation language than
Erlang for building an AMQP broker. The final question was put to rest by an entirely
different messaging server: ejabberd. By 2005, Extensible Messaging and Presence Protocol
(XMPP) had become a respected standard for open instant messaging, and one of the
foremost implementations was the Erlang-based ejabberd server package by Alexey
Shchepin. ejabberd was widely in use by many different organizations, and its imple-
mentation in Erlang didn’t seem to be slowing anyone down.

 With the three major questions answered, Alexis and Matthias convinced
CohesiveFT and LShift to jointly back the project. The first thing they did was contract
Matthew Sackman (now a core Rabbit developer) to write a prototype in Erlang to test
latency. They quickly discovered that using the distributed computing libraries built
into Erlang produced incredible latency that was comparable to using raw sockets.
There was also the question of what to call this thing: everyone agreed on Rabbit. After
all, rabbits are fast and they multiply like crazy, making it a great name for distributed
software. Not the least of the reasons for this choice is that Rabbit is easy to remember.
Thus, in 2006 Rabbit Technologies was born: a joint venture between CohesiveFT and
LShift that would hold the intellectual property for what we know today as RabbitMQ.

 The timing couldn’t have been more perfect because, around the same time, the
first public draft of the AMQP specification had become available. As a new specifica-
tion, AMQP was rapidly changing. This was an area where Erlang proved critical. By
using Erlang, RabbitMQ could be developed quickly and keep pace with a moving tar-
get: the AMQP standard. Amazingly, version 1.0 of RabbitMQ was written in only two
and a half months by core developer Tony Garnock-Jones. From the beginning,
RabbitMQ has implemented a key feature of AMQP that differentiates it from TIBCO
and IBM: provisioning resources like queues and exchanges can be done from within
the protocol itself. With the commercial vendors, provisioning is done by specialized
staff at specialized administrative consoles. RabbitMQ’s provisioning capabilities make
it the perfect communication bus for anyone building a distributed application, par-
ticularly one that leverages cloud-based resources and rapid deployment.

 That brings us to today, where RabbitMQ is used by everyone from small Silicon
Valley startups to some of the largest names on the internet. That’s perhaps the best
thing about RabbitMQ, and the thing that surprised its founders: its largest block of
users are tech firms, not financial companies. RabbitMQ fulfills Ranadivé’s vision for
the rest of us with smaller budgets and the same real problems. That’s what drew us to
RabbitMQ. We didn’t know that we were looking for message-queueing software. All
we knew was that we had real problems to solve integrating applications and serving
high transaction loads. RabbitMQ provides a powerful toolkit for solving those prob-
lems, and brings to the masses the rich history of messaging … and finally a pluggable
information bus for everyone that needs one.

8 CHAPTER 1 Pulling RabbitMQ out of the hat

1.4 Picking RabbitMQ out of the hat
(and other open options)
Today, RabbitMQ isn’t the only game in town for open messaging. Options like
ActiveMQ, ZeroMQ, and Apache Qpid all providing different open source
approaches to message queuing. The question is, why do we think you should pick
RabbitMQ?

 Except for Qpid, RabbitMQ is the only broker implementing the AMQP open
standard.

 Clustering is ridiculously simple on RabbitMQ because of Erlang.
 Your mileage may vary, but we’ve found RabbitMQ to be far more reliable and

crash resistant than its competitors.

Perhaps the most important reason is that RabbitMQ is incredibly easy to install and
use. Whether you need a simple one-node setup for your workstation, or a seven-
server cluster to power your web infrastructure, RabbitMQ can be up and running in
about 30 minutes. With that in mind, it’s about time we fired up the little critter.

1.5 Installing RabbitMQ on Unix systems
So far we’ve discussed the motivation behind the AMQP protocol and the history of the
RabbitMQ server. Now it’s time to get the broker up and running and start doing cool
stuff with it. The operating system requirements for running RabbitMQ are flexible
because we can run it on several platforms including Linux, Windows, Mac OS X, and
other Unix-like systems. In this chapter we’ll go through the process of setting up the
server for a generic Unix system (all examples and instructions in the book assume a
UNIX environment unless otherwise noted). Since RabbitMQ is written in Erlang, we
need to have installed the language libraries to run the broker.

1.5.1 Why environment matters—living la vida Erlang

We recommend that you use the latest version of Erlang, which at the time of this writing
is R14A. You can obtain a copy of Erlang from its website (http://www.erlang.org/).
Please follow the installation instructions provided there. By running the latest version
of Erlang on your system, you’ll be sure to have all the updates and improvements for
the foundations RabbitMQ will run on. Every new release of Erlang includes perfor-
mance improvements that are worth having.

 Once you have RabbitMQ dependencies solved, create a folder where you can per-
form our tests. Assuming that you’re running a Unix-flavored system, fire up a termi-
nal to start typing commands:

$ mkdir rabbitmqinaction
$ cd rabbitmqinaction

http://www.erlang.org/

9Installing RabbitMQ on Unix systems

1.5.2 Getting the package

Then download the RabbitMQ Server from the server download page: http://
www.rabbitmq.com/server.html. Select the package for a generic Unix system and
download it:1

$ wget http://www.rabbitmq.com/releases/rabbitmq-server/v2.7.0/\
rabbitmq-server-generic-unix-2.7.0.tar.gz

Your next step is to unpack the tarball and change to the rabbitmq_server-2.7.0
directory inside the package:

$ tar -xzvf rabbitmq-server-generic-unix-2.7.0.tar.gz
$ cd rabbitmq_server-2.7.0/

1.5.3 Setting up the folder structure

You’re nearly ready to start the broker, but there are a couple of folders to create before
you do that. The first one is where RabbitMQ will write the logs. You can look into this
folder in case you need to troubleshoot your installation. The second folder is for the
Mnesia database that RabbitMQ uses to store information about the broker, like queue
metadata, virtual hosts, and so on. Type the following commands at the terminal:

$ mkdir -p /var/log/rabbitmq
$ mkdir -p /var/lib/rabbitmq/mnesia/rabbit

You may need to run those commands as a super user. If you have to do so, then don’t
forget to chown the folders to your system user.

TIP When we run RabbitMQ in production, we usually create a rabbitmq
user and then we grant the folder privileges to that user instead of running all
the commands with a normal user account.

1.5.4 Firing Rabbit up for the first time

Now you’re all set to fire up the server. Type the final command to do so:

$ sbin/rabbitmq-server

RabbitMQ will output some information about the startup progress. If all went as
expected, you’ll see ASCII art of the RabbitMQ logo and the message broker running,
as seen in figure 1.2.

 Now open a new terminal window and check the status of the server. Type the
following:2

$ cd path/to/rabbitmqinaction/rabbitmq_server-2.7.0/
$ sbin/rabbitmqctl status

1 Pre-build installation packages for RabbitMQ are available for Windows, Debian/Ubuntu and RedHat (RPM)
from http://www.rabbitmq.com/download.html.

2 If you installed from an RPM or Ubuntu/Debian package, you may need to run rabbitmqctl as root.

http://www.rabbitmq.com/server.html
http://www.rabbitmq.com/server.html
http://www.rabbitmq.com/download.html

10 CHAPTER 1 Pulling RabbitMQ out of the hat

As you can see in figure 1.3, this command will output the status of the broker, the
running applications, and nodes. At this point you have a RabbitMQ broker running
in your computer with the default configuration.

 Let’s review what we did:

 Downloaded the server package
 Unpacked it in a tests folder
 Set up the required folder structure
 Started the RabbitMQ server
 Checked the server status

With those easy steps you got started with RabbitMQ. Now more theory about messag-
ing, and then we’ll start running some examples against the broker.

1.6 Summary
Now you can see why we love RabbitMQ so much. Despite being the progeny of tech-
nology from the financial industry, it’s dead simple to set up. You get complex routing
and reliability features pioneered by folks like TIBCO and IBM but in a package that’s
easier to manage and use. And the best part, it’s open source! We’ve shown how far
messaging has come in the past 30 years, from a simple software bus linking together

Figure 1.2 RabbitMQ welcome message

11Summary

financial traders, to message routing monsters that are the beating heart of everything
related to financial exchanges, to the manufacturing lines at semiconductor fabs. Now
you have that kind of power running on your dev laptop, and we’ve only finished
chapter 1! With RabbitMQ running, it’s time to dive into the building blocks of mes-
saging: queues, bindings, exchanges, and virtual hosts. Let’s see how they all fit
together and get Rabbit saying “Hello World”!

Figure 1.3 Checking RabbitMQ status

Videla ● Williams

T
here’s a virtual switchboard at the core of most large applica-
tions where messages race between servers, programs, and
services. RabbitMQ is an effi cient and easy-to-deploy queue

that handles this message traffi c eff ortlessly in all situations,
from web startups to massive enterprise systems.

RabbitMQ in Action teaches you to build and manage scalable
applications in multiple languages using the RabbitMQ mes-
saging server. It’s a snap to get started. You’ll learn how message
queuing works and how RabbitMQ fi ts in. Th en, you’ll explore
practical scalability and interoperability issues through many
examples. By the end, you’ll know how to make Rabbit run like
a well-oiled machine in a 24 x 7 x 365 environment.

What’s Inside
● Learn fundamental messaging design patterns
● Use patterns for on-demand scalability
● Glue a PHP frontend to a backend written in anything
● Implement a PubSub-alerting service in 30 minutes fl at
● Confi gure RabbitMQ’s built-in clustering
● Monitor, manage, extend, and tune RabbitMQ

Written for developers familiar with Python, PHP, Java, .NET,
or any other modern programming language. No RabbitMQ
experience required.

Alvaro Videla is a developer and architect specializing in
MQ-based applications.
Jason J. W. Williams is CTO of DigiTar, a messaging service
provider, where he directs design and development.

For access to the book’s forum and a free eBook in all formats, owners
of this book should visit manning.com/RabbitMQinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

RabbitMQ IN ACTION

ENTERPRISE ARCHITECTURE

M A N N I N G

“In this outstanding work,
two experts share their years
of experience running large-
scale RabbitMQ systems.”
— Alexis Richardson, VMware

Author of the Foreword

“Well-written, thoughtful,
and easy to follow.”—Karsten Strøbæk, Microsoft

“Soup to nuts on
RabbitMQ; a wide variety of

in-depth examples.”
—Patrick Lemiuex, Voxel Internap

“Th is book will take you
to a messaging wonderland.”

—David Dossot
coauthor of Mule in Action

SEE INSERT

	Copyrigh
	BriefTOC
	RabbitMQ_sampleCH01

