
SAMPLE CHAPTER

The Tao of Microservices

by Richard Rodger

Chapter 8

Copyright 2018 Manning Publications

v

brief contents
PART 1 BUILDING MICROSERVICES ..1

1 ■ Brave new world 3

2 ■ Services 34

3 ■ Messages 65

4 ■ Data 99

5 ■ Deployment 130

PART 2 RUNNING MICROSERVICES ..171

6 ■ Measurement 173

7 ■ Migration 203

8 ■ People 228

9 ■ Case study: Nodezoo.com 246

228

People

Software development is a human activity, and that fact has a massive impact on
the outcomes of software development projects. This book communicates a strong
message: that the engineering problems of software development have for too
long been neglected in favor of meandering arguments about process. Microser-
vices are effective because they address the engineering problems. However, this
book doesn’t claim that microservices by themselves deliver great projects. They
must be implemented by people, and you can’t ignore the human factor. Nor can
you ignore the organizations where those people work. The behaviors of organiza-
tions are emergent properties of human nature and will definitely be your concern
as an architect.

In this chapter
 Navigating the politics of large organizations

 Accommodating stakeholder needs

 Understanding the new politics created by
microservices

 Organizing developers and teams for microservices

 Challenging the rituals of orthodox software
development

229Dealing with institutional politics

8.1 Dealing with institutional politics
Software development and institutional politics are both detail-oriented activities. As a
software architect, you’re probably better at politics than you think.

 This book doesn’t give you grand strategies for the victorious delivery of successful
software projects; rather, you must prepare for an unending war of attrition, using
many tactics on a daily basis to slowly change the organization and create an environ-
ment in which you can succeed. Your secret weapon is the technical efficiency of the
microservice approach, compared to the current state of the art for software architec-
tures. But that by itself isn’t enough. You must be prepared to work the system, build
trust, develop alliances and support, win over skeptics, neutralize foes, and apply
many disparate minor weapons. Accepting this fact is the first step on the road to suc-
cess. Every organization is unhappy in its own way, so you must also contextualize the
tactics discussed in the following sections.

8.1.1 Accepting hard constraints

Every organization contains entrenched power centers that impose constraints on
your working practices. Sometimes, you’ll have enough political capital to change
these constraints, but often, you won’t. The ambitious vice president who allocated
the budget for your project may not be prepared to go all in and may hedge on con-
tentious interactions with other parts of the organization. Don’t be surprised by this.
Even if you have the political capital to break a hard constraint, consider spending it
elsewhere, because you’ll have many important battles to fight.

 To handle hard constraints, you first need to enumerate them. Take time at the
start of the project to understand what you can and can’t do. It’s a serious error to
make assumptions or to take assurances at face value. Even if you’re told that you’ll be
able to do something, push deeper, and verify. Ask for policy documents, and talk to
lower-level staff in the relevant department. Make sure of the facts. Then, put your
understanding in writing, and copy all relevant parties.

 When you’ve identified the hard constraints, bring them into the light. Document
them, make them part of the project, and indicate how you’ll work with and around
them, and the impact they’ll have on the project. Use them to redefine the interpreta-
tion of success.

 If you’re lucky, something wonderful will happen: constraints that are hard at the
beginning of the project can soften when you build trust and confidence. Identifying
constraints early gives you the ability to keep highlighting them and discussing their
impact with stakeholders, which creates opportunities to defeat them. This is ugly
work, but it’s necessary.

8.1.2 Finding sponsors

Who is the primary sponsor of your project? Is it that ambitious vice president or a
mid-level manager? Do they understand and buy into the microservice approach, or is
their sponsorship based on personal affinity for you? Are you the sponsor?

230 CHAPTER 8 People

 Just because you have project approval doesn’t mean you’ll get the resources you
need to be successful. Nor does it mean other parts of the organization will get out of
your way. Finding and working with sponsors is another ugly piece of work, but you’re
introducing a new approach to your organization, so you need to do it—because
you’re vulnerable. Minor issues can be magnified by your foes. And sometimes, pro-
jects fail because the benign indifference of the universe works that way. To help avoid
these issues, you’ll need sponsorship.

 Nurturing sponsors is an ongoing task for you as the architect of the system. You
need to constantly strengthen existing sponsors and find new ones. How? Existing
sponsors need care and feeding—that means giving them information. Ask them what
format they prefer: a weekly meeting, a status-update email, a dashboard, and so on.
Make sure you keep your sponsors up to date, and never let them be caught by sur-
prise because you didn’t provide them with the information they needed.

 This is easy advice to give, but it’s difficult to do in practice. When you’re busy on a
project, it’s probably in your nature as a software developer to focus on the code and
put in long hours solving technical problems. You prioritize effort, and things like
weekly update emails get pushed to the side. Don’t do this. Prioritizing your sponsors
is one of the best ways to ensure project success.

 How do you find new sponsors? Take every opportunity to network internally. The
sponsors you need are those with real power in the organization—and these people
aren’t necessarily the ones with titles. Identify people who are early employees,
who’ve been in the organization for years, who have external credibility, or who are
charming and influential. Go where they are, and meet them. Attend business events,
such as internal talks given by guest speakers. You’ll find the right kinds of sponsors
at these events, because influential people invest time in building their networks. You
should, too.

 Again, you may find it difficult to invest time in this activity when you get busy. This
is a mistake. Networking always pays off; many a project has been saved by a chance
encounter with the right person.

How to decide what to do next
There are many detailed, complex ways to decide what to work on next, and you can
spend a lot of time building prioritization matrixes for this purpose. But you probably
already have a reasonably rough idea of what’s important. Here’s a quick way to com-
municate your thinking to your team and thereby validate your analysis.

Start by listing your known deliverables and their deadlines. Then, estimate the full
effort to deliver each one, using a comfortable metric for estimation, such as devel-
oper days. These are rough estimates, and it’s more important that they be accurate
relative to each other than accurate in an absolute sense. Now, chart this data, as
shown here.

231Dealing with institutional politics

 1

1 The deadlines are charted independently of each other. You deliberately don’t take into account cumulative
resource expenditure. To do that, remove the highest-priority item, and rechart. But really, this is about iden-
tifying the single most important thing to do next.

(continued)

The bold line upward from the origin (Death/Survival) is the maximum amount of
effort you can exert in a given time: the line of the possible. Things above the line are
impossible; you’ll definitely fail to meet those deadlines, because you don’t have
enough resources in the given time frame. This is the Death zone. Below the line, you
have enough resources and time. This is the Survival zone.1

The Death zone has two subdivisions: Pray and Play. The Pray zone contains prob-
lems so bad you might as well ignore them (A) or else start praying, depending on
your world view. The descent phase of a thermonuclear warhead aimed at your loca-
tion would be a good example. The Play zone contains problems that can only be
solved by playing politics (B). Reducing the feature set sufficiently will move the prob-
lem vertically down below the line of the possible, so that you have enough resources
to deliver it. Extend the deadline, and the problem moves to the right, hopefully cross-
ing the line at some point.

Deliverables in the left half of the Play zone are your immediate political priority. In
terms of the chart, spend political capital on B, not C (deliverables that can wait
awhile).

The Survival zone also has two subdivisions: Work and Wait. The Work zone is where
you achieve feasible results. Deliverables in the left half of the Work zone are your
immediate development priority; work on D before E. The Wait zone contains deliver-
ables that require few resources and are far in the future (F). Don’t spend time on
these yet.

Survival chart

A

Pray

Play

Work

Time (when will I die?)

Wait

Death

Survival

Ef
fo

rt
(w

ha
t d

o
I n

ee
d?

)

B

D

C

E

F

232 CHAPTER 8 People

8.1.3 Building alliances2

In every job I’ve ever had, there are two key people I like to get friendly with as soon as
I can: the system and office administrators. They’re often busy and underappreciated,
yet hard-working and competent. They also have deep knowledge of the organization.
Align yourself with these key individuals, and your life will be much easier.

 It’s enough to show them that you understand the challenges of their world. Rec-
ognition is a powerful and ethical political act, and people appreciate it. It’s obvious
that you’ll need to spend time building alliances with senior people, and everybody
will be aware that you’re doing that. But alliances with people on the ground are valu-
able too and can help you solve different sorts of problems. Every time you solve a
problem using a senior ally’s authority, you burn political capital in a public way and
create enemies. It’s much better to receive voluntary help from others. Project success
can also depend on gatekeepers looking the other way when you need them to.

 You’ll need to build traditional alliances as well, but you knew that already. When
you’re building a microservice architecture for the first time, you need to find a way to
work with the operations and IT groups in your company. Of all the groups that can
stymie your efforts, these are the most dangerous. You’re the representative of many
bad things: DevOps culture, the move to the cloud, heterogeneous environments,3

pager calls at 4:00 a.m., compliance breaches, security headaches, and so on. Opera-
tions and IT have every reason to be wary. You won’t solve this one overnight, but you
must open a dialogue and try to create personal connections that can help overcome
the inevitable conflicts.

 It may be tempting to use senior allies to override the sysadmins. This must be a
last resort. You’ll pay dearly if you go to war with them.

8.1.4 Value-focused delivery

I’m repeating this tactic because it’s that important. You must get away from the
drudgery of feature delivery and arguing over bugs versus enhancements—you’ll lose
that battle every time. Business value isn’t an abstract concept; it’s shorthand for iden-
tifying the measurements that most closely track the business goals your leadership

2 This style of thinking is very much inspired by Andy Weir’s The Martian (Crown, 2014) and Neal Stephen-
son’s Seveneves (William Morrow, 2015). Consider both essential reading for the aspiring software architect.

3 No developer should ever need administrator access to their own machine. The very thought!

(continued)
It’s a useful exercise to rebuild the chart at the start of each iteration. Engineers are
prone to work on items in the Pray and Wait zones, because they’re the most, and
least, challenging. This is a mistake, because it’s the least optimal use of resources.

There’s an obvious mapping of microservices to deliverables, so this analysis can
help your team decide which microservices need to be built next.2

233Dealing with institutional politics

cares about. Get all those involved to agree to measure, get agreement about the mea-
surements, and then track them aggressively. Doing so will keep everyone honest.

 In every situation, ask, “Does this improve the numbers?” This will give you objec-
tive criteria for making and evaluating decisions. It will also protect you from higher-
ranking colleagues who are defending their territories. This tactic is the one to fight
for and on which you should expend political capital. Delightfully, it aligns perfectly
with the philosophy of microservices.

8.1.5 Acceptable error rates

This is a difficult point to win. It will be easier if you first win the point about measure-
ment, because measuring the error rate is predicated on the acceptability of measure-
ment as an activity.

 The best approach is to not reveal your hand at first. Ask lots of questions about
current problems: the level of customer dissatisfaction, the frequency of customer
complaints, and so on. Ask for data on performance, uptime, and failed transactions.
If it doesn’t exist, ask to track it.

 Once you’ve established a credible current error rate, you can use it as a baseline
to judge your team. If the business is surviving with a given error rate, then errors per
se can be seen as nonfatal. Reduce the power of errors to terrify, and you’re halfway
there.

 Now, you can argue that anything that improves the error rate is good, and that’s
what your team intends to do. Measure the error rate from the first day of the project,
and use the microservice deployment pipeline to manage your risk and stay below that
error rate, on average.

 The ability to deploy code into production on a continuous basis relies on the
company accepting that this will cause transient errors. Getting the business to under-
stand and accept that this trade-off is not only acceptable but also one of the key pro-
ductivity improvements delivered by the microservice architecture should be a
primary goal of your transition project.

8.1.6 Dropping features

Don’t be afraid to drop features. Software systems accumulate features over time,
because there’s little business incentive to remove them. This happens despite the sig-
nificant cost these legacy features impose through technical debt. The value of indi-
vidual features varies over time; if you chart the value, you’ll end up with a power-law
distribution.4 Now, chart those features against the complexity they introduce. The
measure of complexity can be crude (lines of code, anyone?)—it doesn’t matter for
the purposes of this analysis. Figure 8.1 shows the stereotypical 2 × 2 matrix beloved of
consultants everywhere.

4 Admittedly, this is anecdata from observation, experience, and reading, rather than repeated experiments. I’m
not aware of any studies on this topic.

234 CHAPTER 8 People

Complexity

Value

Quick wins Waste of time

Focus here One at a time

Figure 8.1 Value versus complexity
matrix

 The lower-right box is the problem: these
features deliver low value but have high com-
plexity. It’s valid to question their continued
existence. Removing a feature without cause is
asking for trouble—you have to expend effort,
and you might annoy a vocal minority. But if
reimplementing, refactoring, or providing sup-
porting logic for a feature has a negative impact
on your development velocity, you can legiti-
mately question the need for the feature. Pro-
pose that it be removed. You won’t always win,
but if you don’t ask, you won’t get.

8.1.7 Stop abstracting

Developers are trained to abstract the world. Abstractions are the things they develop
and then express in code. The trouble with abstractions is that they have unbounded
growth and eventually collapse under their own weight. Your challenge is to get your
team—many of whom may not be familiar with the core ideas of the microservice
architecture or may not completely buy into it—to stop abstracting.

 This is a difficult people-management challenge. Developers love abstracting and
get into a positive mental feedback loop when doing so. This is the dreaded sin of
overengineering. It’s much easier to control if you keep your microservices small and
default to implementing new features using new microservices. But your team will
push back, because they’ve been taught to solve problems by extending data models.
They need to learn to use pattern matching.

 You need to get your team to stop using the tactic of going from the specific to the
general, which is the common experience of programming, and instead go from the
general to the specific. This is a message you’ll need to broadcast and defend on a
daily basis. New team members will have to be brought on board. If you don’t keep an
eye on this, you’ll end up with a distributed monolith.

8.1.8 Deprogramming

Software projects are difficult to investigate using the scientific method. It’s hard to
distinguish between mere correlations and actual causation. Strong experiments with
proper protocols are expensive, and there are few examples of such experiments in
the literature.

 When humans try to comprehend things we don’t understand, we use our power-
ful pattern-matching brains to invent superstitions. Perhaps we can’t prove that super-
stitious rituals work,5 but we perform them anyway, just in case. One ritual might not

5 For example, it’s bad luck to wish an actor “Good luck!” before they go on-stage. “Break a leg!” is the preferred
send-off.

235Dealing with institutional politics

be too expensive, but accumulate a few together, and you can get a big drain on pro-
ductivity and resources.

 Software development methodologies, processes, and best practices are all suspect.
Everybody in development suffers from unsubstantiated beliefs, and developers are
the worst. There’s a reason for the cliché that developers are “religious.”6

 I guarantee that you and your team suffer from preconceptions. Some are benefi-
cial to microservices (decent unit testing), some are neutral (agile methodology du
jour), and some are harmful (Don’t Repeat Yourself). You’ll need to be honest and
explicit with your team about the fact that you’re going to break some established con-
ventions. You’ll have to ask for their trust. If you aren’t up front about this, your efforts
will be negatively affected by both conscious and subconscious performance of the
cargo-cult7 rituals of modern enterprise software development.

8.1.9 External validation

Many organizations actively promote themselves in the developer community, as a
recruitment tactic. If your organization already does this, you’re well placed to talk
about what you’re doing with your new, innovative microservice approach. If your
organization doesn’t do this, start talking to those who care about recruitment, and
show them how effective developer engagement can be.

 The benefit to you is that external validation builds internal political capital. You’re
making your organization and your boss look good, you’re solving a problem—recruit-
ment—for both yourself and others, and you’re generating enthusiasm for your efforts.
These effects combine to make organizational roadblocks easier to overcome.

 What if you aren’t naturally inclined to present your work in public? This is a skill
you need to develop, because it’s become essential for any significant architect role.
Start small: go to meetups, and get a feel for the territory and the types of talks they
look for. Trust me, all meetup organizers are desperate to fill their speaking calendars;
it’s a monthly headache. Many meetups encourage and support new speakers. They
want new people to present. Cut your teeth at meetups, and before you know it, you’ll
be speaking at conferences. You can give the same talk again and again—that’s what
everyone does. It’s how you end up with a professional, polished presentation.

8.1.10 Team solidarity

The microservice architecture is an engineering tactic that’s a partial solution to the
larger problem of effective software delivery. But it doesn’t free you from the prob-
lems of managing a team—you still have to get all the humans in the room to work
together.

6 Watch the “tabs versus spaces” scene from season 3, episode 6 of Silicon Valley. It’s worth it.
7 Cargo culting is the performing of rituals that have no effect or mechanism and can’t affect the thing you care

about. The term arises from the observed behaviors of indigenous islanders in the South Pacific, who copied
the appearance of airfields in the early twentieth century in the hope that planes filled with cargo would
appear and land. The term is pejorative.

236 CHAPTER 8 People

 There are time-honored practices for making a team work—far too many to enu-
merate or discuss here. It’s your duty and responsibility to study, learn, and apply
excellent professional practices for managing people, and to keep studying, learning,
and applying them.

 Your biggest weakness as a coder comes from your greatest strength: you can solve
problems with code, so you try to solve all problems with code. Trying to solve people
problems with code is a mistake, but we’ve all done it: instead of dealing with mis-
matched delivery expectations, we work all weekend to get it done the way “they” want
it, so we don’t have to deal with conflict. Try to swing the pendulum far in the other
direction. How many code problems can you solve by engaging with people? That’s
why you ask if you can drop features. Many other problem-resolution opportunities
are purely people based. Go look for them.

 You should also measure your team as a whole. Do this collaboratively; don’t
impose the process on them. The purpose is not to measure performance, but to
expose systematic issues. A weekly survey, which may or may not be anonymous, can
help to raise issues that are hidden or that everybody is collectively ignoring. It’s hard
to ignore bad numbers, and they’re a good way to start a discussion. You can score
these measures on a scale of 1 of 10, or use 5 stars or whatever works for you, as long as
you can quantify them. Here are some examples of things you can measure:

 Overall happiness—An emerging low score can tell you that organizational issues
you may not be aware of are affecting your team.

 Level of recommendation—Would team members recommend to a friend that they
join this team? This is a good way to get honest feedback about your perfor-
mance as a manager, because the question is indirect.

 Technical assessments—Is performance OK? Do team members expect cata-
strophic failures? Are they happy with code quality? These questions can help
you catch deviations from the team’s desired technical outcomes. Code rots
when you don’t pay attention to it.

8.1.11 Respect the organization

Microservices are sometimes portrayed as a way to escape from Conway’s Law. This is
the observation, made in 1967 by Melvin Conway, that “Any organization that designs
a system will produce a design whose structure is a copy of the organization’s commu-
nication structure.”8 In my first job, for a web consultancy in the 1990s, our version of
this was, “You need a menu tab for each department in the client company.”

 There’s no reason the organizational design of a group of political humans should
determine a good design for a system’s software architecture. Software developers rail
against Conway’s Law as an example of the polluting influence of corporate politics: if
only they were free to design the system properly without keeping the department
heads happy, then they could deliver on time.

8 For details of the original paper, see www.melconway.com/Home/Conways_Law.html.

http://www.melconway.com/Home/Conways_Law.html

237The politics of microservices

 Conway’s Law deserves a more subtle reading. It should be taken as an observation
of a natural force that creates movement in a certain direction, not as an immutable
law or something inherently bad. It’s a social observation. You can choose to fight it,
or you can choose to use it. Either response may be appropriate, depending on your
circumstances.

 How you handle Conway’s Law shouldn’t be determined by your choice of the
microservice architecture. Microservices don’t compel you to reverse Conway’s Law;
they just make it easier, if that’s what you want to do.

8.2 The politics of microservices
The microservice architecture creates its own political dynamics. The way these
dynamics will play out in the long term, and the best approaches to dealing with them,
will take years to understand fully. Therefore, if you’re leading a microservices project,
you’ll need to pay close attention to the forces that drive team behavior. Be prepared
to adjust course.

 The most important principle to preserve is the decision-making pathway that
decides what microservices to build. Begin with business requirements, express them
as message flows, and then assign the messages to services. Developers who are writing
services can undermine this principle by making individual services more important
than they should be. This is a form of technical debt that will slow you down. Services
must remain the least important thing in a microservices architecture.

8.2.1 Who owns what?

How do you distribute microservices among teams? Consider these scenarios:

 1–1—One team per service.9 These are probably macroservices.
 1–n—One team owns many services. These are probably microservices.
 n–1—Many teams own one service. This is a monolith.
 n–n—Everybody works on all services. These are microservices, without a hier-

archical ownership protocol.

As you migrate away from a monolith (n–1), you’ll end up with a configuration of 1–1
and 1–n teams. Ideally, you’ll end up with all teams in a 1–n configuration when the
last macroservice is retired, but this rarely happens in practice.

 The n–n configuration at the interteam level isn’t practical, because it essentially
negates the concept of a team; at the time of writing, no organization has demon-
strated defensible evidence that this degree of flatness can work.10 Even open source
development has loose hierarchies.

9 t–s, where t is number of teams and s is the number of services. Cardinalities are denoted by 1 for one and n
for many.

10 Holacracy is an organizational design that can be seen as a recent attempt to make this work. The results have
been mixed and inconclusive. Holacracy seems to require a great many rules in order to work, which tends to
defeat the purpose.

238 CHAPTER 8 People

 The n–n configuration within a team is a different story. This works and is the best
configuration. Every team member can work on every service owned by the team, and
no service is owned by any individual team member. This isn’t a natural state for a
team: team members will gravitate toward their specialties, assert implicit ownership
over code they wrote and architectural structures they proposed, and avoid code they
don’t understand. In other words, individuals tend toward the 1–n configuration. You
have to encourage n–n instead.

 Why is n–n best for teams? Because it removes privileged code. No code or micro-
service is special. Everything is disposable and reconfigurable.

 Microservices give you the technical ability to reconfigure your system cost effec-
tively, but they don’t automatically give you that on the human side. Be explicit with
your teams: teams, not individuals, own microservices.

The tyranny of shared libraries
The term shared library refers to code components that are used by more than one
microservice. They introduce complexity because you need to know which versions of
which library should run on which microservices, what the current distribution of ver-
sions is, and what the incompatibilities are. To update a version of a shared library,
you need to engage in complex planning that affects many microservices simultane-
ously. This is pretty much the opposite of what you’re looking for from the microser-
vice architecture.

There are two types of shared library: utility and business logic. Business logic in a
shared library is the real killer and is almost impossible to justify. It’s dangerous
because it necessarily describes behaviors of the system that affect users. Breakage
is highly noticeable—and breakage is what you’ll get when you try to keep that busi-
ness logic consistent over many teams and microservices. Instead, shared business
logic should go in a separate microservice and be accessed via message flows. This
is a fundamental tenet of the architecture.

Utility code is different, but not that different. Low-level utility code is safe enough—
especially open source libraries. Updates tend to be the local decision of a single
developer working on one microservice, so you should be able to catch breakage via
the deployment pipeline. You’re not trying to update the entire system at once.

Writing your own utility libraries can also be justified, but be conservative. These
libraries have to be maintained, and the maintainers will be a small group, so you’re
exposed if they aren’t available for some reason. Because the utility code is specific
to your project, it can introduce system-wide compatibility issues and require system-
wide updates. Nonetheless, you’ll probably end up with shared libraries for logging,
data access, and the like.

There’s one shared library you can’t avoid: the message abstraction layer. Fortu-
nately, if you build it to be lenient when accepting messages, you won’t suffer much
from compatibility issues, even if you run multiple version of the layer in production.

239The politics of microservices

8.2.2 Who’s on call?

The DevOps movement is independent of the microservice movement but has heavily
influenced the thinking about microservices. You can do DevOps without doing
microservices, but it’s difficult to do microservices without having a DevOps mentality.
Microservices move complexity into the network, and that complexity is most fully
understood by the developers writing the microservices.

 Does the term DevOps means developers get to touch live production machines?
Or does it mean developers and sysadmins should get better at collaborating? This is a
wide-ranging discussion, so let’s narrow our scope to the question of DevOps for
microservices.

 In the microservices world, nobody touches production machines. You have to
automate. This makes it much safer for amateurs, such as developers, to modify the
production system. But you still require expertise to run and maintain that system.
This expertise is necessarily specialist, especially for large systems.11

 The structure you end up using for the microservice architecture means the term
DevOps in a microservice context refers to the operation of the upper layer of the auto-
mation system, rather than the more traditional system administration duties that full
DevOps includes. This is where the developers affect the live system, through a well-
defined set of operations that enable microservice deployment patterns. The lower
layer is operated by systems engineers as a service for the developers.

 There are many variants of this architecture; the distinction between the upper
and lower layers isn’t a hard boundary, merely a limit that you naturally approach
when building very large systems. In the early days, when the greenfield microservice
system is small, members of the development team often work on the full stack, cross-
ing the boundary without restriction. The existing operations team runs the monolith
and slowly moves into roles supporting the lower layer as the system grows.

 Once the greenfield infrastructure is up and running, you have to address the
question of how a development team maintains a deployment pipeline and a produc-
tion system on an ongoing basis. Yes, the operations group is there to help and main-
tain the upper layer, but who operates it?

 The solution that works best is to rotate each developer on the team through an
on-call iteration (one week is best). For that week, the developer

 Doesn’t code. This is the most important rule. The on-call team member needs to
be in an interrupt-driven frame of mind. They can’t do good, focused work in
this state.12

 Does pager duty. Nobody likes this, but it’s the trade-off for flexible and faster
deployment to production. You need to be clear and up front with your team
about the need to commit to pager duty.

11 The Google role of Site Reliability Engineer is perhaps the best example of the need for systems specialists at scale.
12 This guideline derives from the observation that human minds can enter a state of high productivity and

focus, known as flow. Interruptions break flow, so you can’t write great code when you’re on call. For more,
see the writings of Mihály Csíkszentmihályi.

240 CHAPTER 8 People

 Becomes the team concierge. During each person’s on-call week, they clean the toi-
lets (figuratively—although, in a startup, it could be literally). Their job is to
remove technical roadblocks for the team. That means they’re on point for
bugs, issues, support, meetings, and moving furniture. They keep the deploy-
ment pipeline healthy, liaise with operations, and talk to other teams. But they
don’t do politics; that’s the job of the project leader and architect.

 Performs deployments. Only one person does deployments. Yes, technically you
have a deployment pipeline that can support free deployments by anyone,
because you’ve measured and contained the risk. But you don’t have an organi-
zation that can handle it. Somebody needs to be directly responsible and act as
the contact point with people outside the team.

Everyone on the team rotates through being on call—even you, the project leader.

8.2.3 Who decides what to code?

Distributed intelligence is a powerful way to solve problems. Let those who know the
most make the detailed decisions. Provide a set of common goals, and then sit back
and watch the magic happen.

 That’s the theory. In practice, it can go horribly wrong if you don’t put supporting
structures in place.

 If you allow teams and team members to pluck work items from a backlog, even if
you prioritize the backlog using some definition of business value, you’ll quickly lose
many of the benefits of the microservice architecture. It’s worth stressing again: micro-
services make it possible to go faster, but they don’t make it inevitable. Teams and indi-
vidual developers tend to Balkanize into antagonistic, isolated domains. This is a
natural social phenomenon: the formation of tribes. The effect is self-supporting.
Small initial variations will build until you’re back to the situation of ossified frontend
and backend developers, and frontend and backend teams. The benefits you were
hoping for, such as being able to quickly redeploy people and distribute knowledge to
create redundancy, will erode and disappear. Let’s look at some tactics you can use to
prevent this from happening.

AUTONOMY AND VALUES

The question of who decides what to code is really a question of how choices are
resolved. All decisions are reified in code,13 so you need to find a balance between full
autonomy and strict hierarchy. The former leads to Balkanization, the latter to low-
grade problem solving.

 This is one of the first discussions you need to have with your team. Openly discuss
the level of autonomy the team can expect. Acknowledge that the issue is difficult and
probably unsolvable. Collectively come up with a set of operating principles that

13 The lawyer and digital-rights advocate Lawrence Lessig has made the argument that, because code controls
much of the modern world, code is what determines what’s allowed, not people. Laws may say one thing, but
it’s their (perhaps inaccurate) translation into code that’s enforced.

241The politics of microservices

produce the balance you and the team are looking for. Recognize that not only can you
change the principles over time to better reach the balance you seek, but you can also
change the balance point. You’ll need to change the balance point as the project
progresses and less freedom is required, given that many problems have been “solved.”

 This approach is an explicit rejection of the idea that there’s an optimal software
development methodology, that you should be a cult follower of one or another
school or author, and that the methodology, once in place, can never be changed.
The remaining tactics discussed in this section should all be considered in this light;
they’ve been found useful by many teams, but they aren’t religions.

EVERYBODY CODES

Everybody should write at least some code. To refine this idea, everybody should con-
tribute construction effort, not just coordination. Some code full time; others, espe-
cially at the higher levels, may be distracted by management duties, depending on
your organizational context.

 To make it possible for everybody to write a little code, consider some practical
approaches. Coding requires extended periods of concentration. Senior people will
have trouble achieving this unless you create formal time periods that are safe from
interruptions. This can be done, but it’s difficult to enforce. A better approach is for
senior people to restrict themselves to longer-term work, such as utility code or better
algorithm implementations, that can be worked on over a period of weeks without
affecting delivery. Senior people will also, of course, suffer the on-call rotation period-
ically, and will be able to flex their coding muscles on bug fixes.

 For those who aren’t able to write code, every project requires grunt work: manu-
ally verifying the user interface, replicating user-reported issues, doing usability test-
ing, performing detailed business analysis, and so on. There’s always something to do.

 If everybody codes, then everybody gets some exposure to the problems on the
ground. At a management level, it’s easy to solve problems with the blunt force of
labor. You command, and it’s done, usually by people working late. This means your
team ends up working hard when you need them to be working smart. You can’t
understand, evaluate, or direct solutions that reduce Toil14 when you don’t under-
stand its dynamics.

 If everybody codes, then knowledge of the system is deeper and more widely dis-
tributed. Group problem solving is more efficient because you can spend less time on
communication. Politics is fed by lack of shared understanding and lack of agreement
about shared facts: increase both of these, and you reduce the amount of energy you
have to expend on politics to get decisions made.

THE TOWER OF BABEL

Before you build your first production microservice system, you may view a polyglot
services architecture—one where any developer can build any service in whatever lan-
guage they like—as either a massive advantage or a terrible disadvantage. Here’s what

14 See section 5.7.2.

242 CHAPTER 8 People

happens in practice, regardless of your initial decision. Let’s say you decide to stick to
a single language. You’ll encounter situations where you need to use other lan-
guages—sometimes for performance, sometimes for specialist features, sometimes
because it’s the quickest way to turn existing code into a service. A small percentage of
services will be implemented in other languages.

 Conversely, let’s say you allow complete choice. One language will start off with a
small advantage. Perhaps it’s the new language everyone wants to learn, maybe it’s the
old language everyone already knows, or perhaps your most productive developer is
just cranking out code in their language of choice. Soon, everyone will have to work
with this language on a regular basis, and it will become the default choice for new
services because it has low friction. Over time, although other languages will be pres-
ent, one language will dominate.

 Whichever starting point you use, the result is the same: our old favorite, a power-
law distribution. Most services are written in the dominant language, and then there’s
a long tail of oddities. How do you deal with this situation from a maintenance per-
spective? Who looks after the oddities? If you lose a key person who understands the
language R, say, what happens when you need to make changes?

 This situation can’t be avoided. You will end up with nonstandard services. Use it as
an opportunity for team members to expand their knowledge of the programming
universe. Use the rotation already in place to make sure everybody is exposed to every-
thing over time. Make a team decision that if you introduce a language, you need to
mentor those who want to work with it.

 This won’t provide full backup, and losing key people will still hurt, but the
remaining people will include understudies who can keep things going. Also, remem-
ber that you can always replace services by rewriting them; this may be the best option,
even if you have to compromise on performance or capacity cost.

Starter kits
The strategy of refinement means you’ll build a lot of new services on an ongoing
basis. You should make it easy to build new services in your primary language. Doing
so will also reduce the enthusiasm for polyglot services, because building them will
be more difficult, with more manual labor: the capabilities of the non-primary lan-
guage will have to provide a significant advantage to overcome the ease of creating
a service using the primary language.

Create a set of templates so developers can quickly get started coding a new service.
At first, build a core template. Later, it may make sense to have different templates
for such things as data exposure, user interface elements, business rules, and so
forth. Who builds and maintains the templates? The same group that looks after the
messaging library.

243The politics of microservices

BIG-PICTURE THINKING

Despite the fact that the monolith is one large codebase in one large repository, devel-
opers can mentally isolate themselves from most of the system. To understand other
parts of the system, you have to read the code for those parts to see how everything fits
together—and that’s hard work. Monoliths are opaque, because it’s difficult to com-
prehend large-scale structures.

 The microservice architecture is different because it offers another level above the
code: message flows. Although this level will grow in time to be on the order of many
hundreds or thousands of message flows, it’s possible for a single human mind to
understand the bigger picture in a usefully detailed way. With the monolith, all devel-
opers may understand the top-level architecture, but they’ll find it difficult to get infor-
mation about anything below that (apart from the local code they’re working on).

 Everybody can move from business requirements to messages. As the system grows,
you can create conceptual groupings to organize messages. This aids global under-
standing: all team members can participate in and understand big-picture architec-
tural discussions, because a large element of those discussions is the message flows
they engender or the effect of the message flows on infrastructure decisions.

DISPOSABLE CODE

The idea that code can be disposable isn’t something that requires microservices, but
is something they enable. This book has argued that by following the basic principles
of the architecture, you’ll end up with microservices that can mostly be rewritten from
scratch in one iteration. You can dispose of any given microservice by writing a
replacement. As I’ve said multiple times, “replaceable within one iteration” is an
excellent standard for determining the right size for a microservice.

 What does this mean from a political perspective? First, you should openly discuss
and acknowledge this principle with your team. Anyone’s code can be replaced. Write
something better, deploy it side by side with the existing code in production, measure
the results, and may the best microservice win. Of course, you probably wouldn’t want
your team to be aggressively competitive in this manner—it’s more that everybody is
aware that their code is ephemeral and transient. This has the following effects:

 Mistakes are easier to unwind because you can focus on the technical decision,
rather than the emotional impact. Nobody has too much skin in the game; even
if a change stings a little, it’s only one microservice among many.

 Technical debt is kept in check because there’s no point in investing in com-
plexity within one microservice, and little time to do so.

 Utility code and shared libraries are better quality. They aren’t ephemeral and
will be used by many generations of microservices. The effort to write quality
code, which is a long-term effort involving many revisions, goes into core code,
rather than business logic, which can be swept away in an instant if business
strategy changes.

244 CHAPTER 8 People

From a business perspective, disposability makes it easier to perform business experi-
ments. The technical team won’t actively push back. When working on a traditional
monolith, you push back forcefully, because you can’t afford the time for experi-
ments—and you’ll be blamed for the breakage they cause elsewhere.

 In the e-commerce example in this chapter, you can perform complex A/B testing
of new user-interaction flows and expect to dispose of most of them. It’s worth it to
find the user interactions that work well. Or consider a feature such as special offers.
You can use the scatter/gather pattern to implement an ongoing evolution of many
different kinds of special offers; then, you can measure which ones are more effective
and allow those to dominate over time.15

VALUABLE MISTAKES

There will be mistakes. There will be downtime.16 How you deal with this will directly
affect your development speed and your ability to succeed in the long term. If your
team is afraid of making mistakes, then they’ll slow down to reduce risk, and you’ll
lose most of the benefits you’re looking for. Monolithic development is slow in part
because people are so afraid of breaking things.

 Allow mistakes. Let people learn from them. When a mistake happens, let the per-
son who made the mistake run the post mortem and explain it to others. Hold this
meeting on a blame-free basis. You’ll need to work hard to make this possible: remind
everybody that complex systems fail because they are complex, and sometimes there’s
no root cause.

 You also need to make sure information about mistakes isn’t presented or leaked
in the wrong way higher up the chain of command. Aim to establish a feedback loop
that prevents you from making the same mistake twice.

 Just because mistakes are allowed doesn’t mean you should invite them. You need
to maintain trust with the rest of the organization. You’ve agreed to an acceptable
error rate—stick to it! Stay safe by using your deployment process to manage risk, as
described in chapter 5.

8.3 Summary
 Microservices create a new environment for software development, one that’s

conducive to getting things done. But this is an engineering advance, not a
political one. You must turn it into a political tool. Be aware that you’re a dis-
ruptive influence in an established political scene, and prepare to face the con-
sequences.

 Focus on visibly and quantifiably delivering business value. Doing so builds
trust, and thus political capital, allowing you to remove even more roadblocks
and accelerate even faster.

15 Consider using multi-armed bandit algorithms.
16 Section 3.6 reminds you of all the ways microservices can fail.

245Summary

 When you move fast, you break things. To create enough safe space to do this,
get the organization to accept that there’s an existing error rate and that you
can operate below it. Make errors acceptable, to reduce their impact. This is
one of the more difficult political battles you’ll face, but it’s essential to win.

 There are many other tactics and considerations you’ll need to pay attention to.
Large human organizations are complex things; you must embrace the work of
politics and accept that it’s as important as getting the technical details right.

 The microservices architecture isn’t a promised land that removes politics from
the creation of software. It brings its own pitfalls and forces. Design your rules
of ownership carefully, and recognize the difference between the way teams
interact and the way developers on a team interact.

