
SAMPLE CHAPTER

JBoss in Action
Configuring the JBoss Application Server

by Javid Jamae
and Peter Johnson

Chapter 9

Copyright 2009 Manning Publications

vii

brief contents
PART 1 THE JBOSS APPLICATION SERVER 1

1 ■ Vote for JBoss 3

2 ■ Managing the JBoss Application Server 28

3 ■ Deploying applications 47

4 ■ Securing applications 73

PART 2 APPLICATION SERVICES.. 107

5 ■ Configuring JBoss Web Server 109

6 ■ Securing web applications 135

7 ■ Configuring enterprise applications 161

8 ■ JBoss Messaging 201

9 ■ Configuring Web Services 235

PART 3 JBOSS PORTAL .. 261

10 ■ The JBoss Portal and portlets 263

11 ■ Configuring the JBoss Portal 289

BRIEF CONTENTSviii

PART 4 GOING TO PRODUCTION.. 319

12 ■ Understanding clustering 321

13 ■ Clustering JBoss AS services 353

14 ■ Tuning the JBoss Application Server 374

15 ■ Going to production 408

235

Configuring Web Services

It was August of 2000 in Orlando, Florida. I (Peter) recall sitting in a frigid conference
room (the air conditioning was on high to combat the sweltering temperature out-
side) at the Professional Developer’s Conference (PDC) when Microsoft rolled out
their vision of the future complete with the .NET Framework and a thing called Web
Services. At the time, they didn’t have Visual Studio completely working with Web Ser-
vices. When they did roll out the beta version of Visual Studio .NET, you could create
a simple echoing web service with a few mouse clicks. The annotation capabilities in
the .NET Framework made creating Web Services simple; the tools and the Frame-
work handled the glue code that made it all possible.

 The next March I attended JavaOne in San Francisco. Almost every presenta-
tion mentioned the new hot topic: Web Services. Many of the presenters pointed

This chapter covers
■ Understanding Web Services
■ Developing a simple web service
■ Developing web service clients
■ Exploring JBoss Web Service-specific annotations
■ Securing a web service
■ Encrypting SOAP messages

236 CHAPTER 9 Configuring Web Services

out that EJBs, specifically stateless session beans, were a natural fit for Web Services
because they already supplied a similar capability within distributed applications.

 In addition, Sun Microsystems published a document that stated how a stateless
session bean could be converted into a web service endpoint. This process consisted
of around a dozen steps, running a wide variety of tools and performing a wide variety
of configuration steps, and only worked with Sun’s application server. Needless to say,
I never got my EJB-based web service working.

 Development of Java-based Web Services has come a long way since then. The
annotation support introduced in Java SE 5.0, and embraced by a wide variety of Java
technologies, makes creating and consuming Web Services in Java as easy as in the
.NET Framework.

 In this chapter, we describe Web Services and present a simple web service example,
showing how to develop and deploy that web service within JBoss AS. We focus on Web
Services defined using the Java API for XML-based Web Services (JAX-WS) as delineated
in JSR-181, implemented by JBoss Web Services 3.0, and provided in JBoss Application
Server 5.0. If you’re interested in the J2EE 1.4-compliant Web Services (JSR-109), see
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide, where this
topic is well documented. After the example, we present various configuration topics
such as describing web service annotation, securing a web service, and encrypting web
service messages.

 If you’re already familiar with Web Services or only want to learn how to configure
Web Services within JBossWS, you can skip to section 9.3. If you’re an administrator,
you might want to skip to section 9.4 and get right into the security configuration.

9.1 Understanding Web Services
What is a web service? A cynic might say that it’s nothing more than remote method
invocation (RMI) performed over HTTP using a text-based (an XML document in this
case) transport mechanism. And the cynic would be right. Web Services aren’t neces-
sarily a revolution but do represent an evolutionary step towards interoperability of
heterogeneous systems.

 There are two key concepts to Web Services. First, if two (or more) parties agree on
the format for a certain type of data, then they can exchange data. For example, if
hospitals and doctors agree on the layout of patient data, then a doctor could easily
transfer information about a patient to the hospital where the patient is scheduled for
surgery. Various industry groups have defined such data layouts for data of interest to
their industries. Using XML as the basic layout for such data has increased the chances
that such vertical industry data layouts will be developed and accepted.

 Second, this data, which is software readable, can be transmitted over a protocol
that can get through corporate firewalls. Performing standard Remote Method Invo-
cation (RMI) between companies isn’t usually possible because the firewalls block the
ports used for RMI. But HTTP ports 80 and 443 are typically opened in firewalls to
allow customers and other users to access a company’s web site. Web servers then
become responsible, not only for human-generated traffic to service web pages, but
also for application-generated traffic in the form of Web Services.

237Understanding Web Services

9.1.1 Understanding web service terminology

As with other technologies, Web Services
have their own jargon and set of mnemonics
that you have to learn. Although we don’t
provide an exhaustive list, we do want to
highlight a few of the terms that you’ll
encounter in this chapter. Figure 9.1 illus-
trates some of the relevant terminology for
Web Services.

 A web service is a collection of endpoints.
Each endpoint is implemented in Java as a
class. An endpoint can contain one or more
web methods. You can also use an interface to
define an endpoint and use a class to imple-
ment that endpoint. The endpoint interface
is always used on the client side to construct
a proxy that can marshal the arguments to the web method and unmarshal the result.

 The Web Services Description Language (WSDL) file is an XML document that
describes the web service. Although you can create a WSDL from scratch to define
your web service and then generate the necessary stubs from it, it’s usually easier to
define the web service in terms of the endpoint written in Java and generate the WSDL
from that. We present both mechanisms in this chapter.

 The Universal Description, Discovery, and Integration (UDDI) registry is a mecha-
nism used to publish Web Services. Think of it as a phone book with the WSDL as a
phone number. If you know the phone number (WSDL), you can make the call
directly. If you don’t know the phone number, you can look it up in the phone book
(UDDI) and then make the call.

 We don’t cover UDDI usage in this book because the subject of Web Services is
much bigger than what can be covered easily in a single chapter. This chapter presents
a simple introduction to Web Services and highlights various configuration topics
when using JBossWS.

9.1.2 Understanding SOAP binding styles

SOAP is a protocol that enables the exchange of data between heterogeneous systems.
It provides two different SOAP binding styles—document and Remote Procedure Call
(RPC)—to pass data to a web method. In the RPC style, clients typically pass numerous
parameters to a web method, and those parameters typically use simple data types
such as strings and integers. Such web services tend to be chatty, or fine grained, in
that the client calls on the service frequently to perform a single task.

 The document style of web services tends to be coarse grained; the client packages
up all the information into a single object, which is then passed to the web method. The
web method has all the necessary information to perform the task. In many cases, doc-
ument-style calls tend to be asynchronous; the client makes the call and then goes off

Client
application

Endpoint

Web method

Web method

Endpoint

Web method

Web method

Web service
request

response

WSDL

UDDI

defines

locates

lo
ok
s
up
W
S
D
Ls

gets
metadata

Figure 9.1 This figure illustrates Web Services
terminology, showing how the client relates to
the server and how Web Services are
constructed within the server.

238 CHAPTER 9 Configuring Web Services

to do other things. The client either checks later to see if there was a response to the call
or registers to be notified when the response comes in. Asynchronous, document-style
calls are preferred when using Web Services between companies.

 Now that you have a basic understanding of Web Services, let’s look at a simple web
service, which we use as an example for the rest of the chapter when discussing vari-
ous configuration topics.

9.2 Developing a web service
The example web service returns the sales tax for a purchase based on the customer’s
state. You input the two-character postal state code (such as CA for California), and
the service returns the sales tax rate. (Don’t we wish it were that easy! We don’t know
about other states, but in California, each county and, sometimes, even each city has
its own sales tax rate. We could expand the service to also require the postal ZIP code,
which would help pinpoint the exact sales tax rate. But to keep the example simple,
we assume that sales tax rates are also simple, with one per state.)

 Once we’ve shown how to code the web service, we then show how to deploy it and
how to write clients to access it. Yes, we mean clients, as in plural. Because the biggest sell-
ing point of Web Services is interoperability among heterogeneous systems, you’ll find
that people who use technologies other than Java will want to access your web services.
Therefore, we show you how to write clients in Java and in C# for the web service.

9.2.1 Coding the web service

There are two approaches to developing a web service, as follow:

■ The top-down approach—You first develop the WSDL and use a utility, such as the
wsconsume utility supplied by JBossWS, to generate the necessary glue code and
stubs. You then fill in the code for the business logic in the stub classes. This
approach works best when you’re collaborating with various other entities to
define the Web Services because the WSDL becomes the contract between
those involved.

■ The bottom-up approach—You code the web service first and then generate the
WSDL from the web service. You can generate the WSDL using a utility, such as
the wsprovide utility supplied by JBossWS, or you can package the web service
and deploy it. The Web Services deployer will automatically generate the WSDL.
This approach works best if you’re defining a web service that you’d like others
to use and there’s no preexisting WSDL.

For this example, we use the bottom-up approach. Once you generate the WSDL, we
briefly show how to use the WSDL for the top-down approach.

 Listing 9.1 contains the code for the web service.

package org.jbia.ws;
import java.util.HashMap;
import javax.jws.*;
@WebService

Listing 9.1 A simple web service

Imports web
service package

B

239Developing a web service

public class SalesTax {
 private HashMap<String, Double> tax;
 public SalesTax() {init();}
 public void init() {
 tax = new HashMap<String,Double>();
 tax.put("CA", 7.75);
 tax.put("NH", 0.0);
 }
 @WebMethod
 public double getRate(String state) {
 Double rate = tax.get(state);
 if (rate == null) rate = -1.0;
 return rate;
 }
}

Notice the annotations, @WebService B and @WebMethod D, which define the web
service and what methods it supports. This web service is based on a POJO, and not an
EJB, but you could have as easily added these annotations to a stateless session bean.
We choose to use a POJO to keep the example simple.

 In a real application, the code that initializes the tax rate hash table C would be
loaded from a database, but (again, to keep the example simple) we initialize it with a
few hard-coded values. Although we could put in values for all 50 states, that would
lengthen the example without adding anything to the discussion at hand.

9.2.2 Packaging the web service

You need to package the web service as a web application. Before you can do that, you
need to create a web.xml file declaring the web service class as a servlet. The web.xml
file is shown in listing 9.2.

<web-app>
 <servlet>
 <servlet-name>SalesTax</servlet-name>
 <servlet-class>org.jbia.ws.SalesTax</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SalesTax</servlet-name>
 <url-pattern>/tax</url-pattern>
 </servlet-mapping>
</web-app>

You’re now ready to package the web service. Create a
salestax.war file as indicated in figure 9.2.

 Optionally, you could package the web service in a
*.wsr file. For example, instead of packaging the exam-
ple in salestax.war, you could package it in salestax.wsr.
What’s the difference? From a content point of view,
nothing. A *.wsr file has the exact same content as a
*.war file. But the deployer deploys *.wsr files after *.war

Listing 9.2 The web.xml for the web service

C

D

Returns sales
tax rate

Identifies web
service class

Identifies context used
to access web service

Figure 9.2 The salestax.war file
contains only two files: the class
file that implements the web
service and the standard
descriptor file.

240 CHAPTER 9 Configuring Web Services

files. If it’s important to have a web service deployed after the web applications, name
the file *.wsr.
DEPLOYING AND ACCESSING THE WEB SERVICE

Deploying the web service is as easy as deploying any other web application; you copy
the WAR file to the deploy directory. The application server creates the WSDL automat-
ically. You can view web services deployed to the application server by going to the
URL http://localhost:8080/jbossws/services. Figure 9.3 shows the resulting page with
the SalesTax web service displayed.

Click the URL identified by Endpoint Address to access the WSDL. The WSDL URL is
important because you’ll need it to create the client application.

9.2.3 Manually generating the WSDL

Instead of letting the application server generate the WSDL, you could generate it
manually and include it in your WAR file. Run the wsprovide utility as follows:

wsprovide –o wsgen –c XXX –w org.jbia.ws.SalesTax

The –o option indicates that the output goes in the wsgen directory. The –c option
provides the class path (XXX in the example) where you can find the endpoint class,
SalesTax in this case. The –w option indicates to generate a WSDL file.

 The generated WSDL contains a placeholder for the web service URL; you must
supply the proper URL, as shown in listing 9.3.

...
 <service name='SalesTaxService'>
 <port binding='tns:SalesTaxBinding' name='SalesTaxPort'>
 <soap:address location='http://localhost:8080/salestax/tax'/>
 </port>
 </service>
...

Listing 9.3 Excerpt for the WSDL using an updated web service URL

Figure 9.3 This
screenshot displays
information about the
example web service.
The Endpoint Address
value is a hyperlink to
the WSDL for the web
service.

Web service URL

241Developing a web service

The wsprovide utility is only one of many web service utilities provided by the applica-
tion server. Table 9.1 lists those utilities, without the suffixes .bat and .sh, and
describes their purposes. You can find the utilities in the bin directory. For usage
details, run the utility passing –h as a parameter. You’ll see examples of how to use
each of the tools (other than wstools) in this chapter.

Now that you’ve generated the WSDL file, let’s look at how you create a web service
using the top-down approach.

9.2.4 Developing a web service using the top-down strategy

To develop a web service using a top-down approach, you need to start with the WSDL
file. Then you run wsconsume to generate the class stubs from the WSDL and provide
the business logic for the web methods.

 To take the WSDL you generated and create the SalesTax class using the top-down
approach, you generate the stubs using wsconsume as follows:

wsconsume -o stubs -k wsgen/SalesTaxService.wsdl

The –o option causes the generated files to be placed in a directory named stubs. The
–k option indicates that the generated Java source files are to be kept; if this option
isn’t specified, the source files are removed and only the class files remain. Finally, the
WSDL file is the one generated by wsprovide earlier.

 When examining the files generated, you’ll notice that one of them is called Sales-
Tax.java. This file contains an interface that defines the web service. You need to make
a few changes to the original SalesTax class to use this interface, as noted in listing 9.4.

package org.jbia.ws;
import java.util.HashMap;
import javax.jws.*;
@WebService(endpointInterface="org.jbia.ws.SalesTax",
 portName="SalesTaxPort",
 wsdlLocation="WEB-INF/wsdl/SalesTaxService.wsdl")
public class SalesTaxImpl implements SalesTax {
 private HashMap<String, Double> tax;
 public SalesTaxImpl() {...}
 public void init() {...}
 public double getRate(String state) {...}

Table 9.1 Web service-related scripts

Script name Purpose

wsconsume Generates stubs or interfaces from a WSDL file. Used in top-down development.

wsprovide Generates a WSDL file from web service classes. Used in bottom-up development.

wsrunclient Runs a web service client and provides the necessary class path for that client.

wstools Script used for JSR-109 Web Services development.

Listing 9.4 A simple web service with top-down changes

B
C

D
E

No WebMethod
annotation

242 CHAPTER 9 Configuring Web Services

The class must be renamed to prevent the class name from clashing with the interface
name, and the class must implement the interface E. The @WebService annotation
must be modified to match the information in the WSDL file, so we add three elements:

■ The endpointInterface element B—Identifies the interface that defines the
web service. In the earlier bottom-up example, the class defined the web ser-
vice; therefore, you didn’t need this element in that example.

■ The portName element C—Identifies the port name. You get this information
from the WSDL file. If you don’t provide this information, the port name is
assumed to be derived from the class name (SalesTaxImplPort in this case).

■ The wsdlLocation element D—Identifies the location of the WSDL file. You can
specify any location within the web application, although a location within
META-INF or WEB-INF is generally preferred.

Note that the @WebMethod annotation isn’t required on the method because that
annotation is already on the method in the interface. We don’t show the contents of
the methods because they haven’t changed from the earlier example. Other than
these minor changes the class remains the same.

 You also have to make one change to the web.xml file, as shown in listing 9.5.
Because the servlet must refer to the class and not the interface, you have to change
the class name to reference SalesTaxImpl.

<web-app...>
 <servlet>
 <servlet-name>SalesTax</servlet-name>
 <servlet-class>org.jbia.ws.SalesTaxImpl</servlet-class>
 </servlet>
 ...
</web-app>

Now that you have all the files, compile the inter-
face and class, and package them along with the
WSDL and web.xml files in a WAR file, as illustrated
in figure 9.4. You can then deploy the WAR file and
access the web service.

 Now that you have your web service defined
using two different approaches, let’s turn our
attention to writing a client to access the service.

9.2.5 Developing the client

The example client is a simple command-line
application that takes a list of state codes on the
command line and prints the sales tax rate for
each state. First, you generate the stubs for the cli-
ent from WSDL. Note that this means that the

Listing 9.5 The web.xml file with top-down changes

The only
change

Figure 9.4 The salestax.war file
contains more files when you use a
top-down approach to construct web
services. Compare this list of files to
that shown in figure 9.2.

243Developing a web service

client is coded in a top-down approach. To generate the stubs, make sure that the appli-
cation server is running, the web service is deployed, and that you can access it from a
browser as shown earlier in section 9.2.2. Use the wsconsume utility to generate the stub
files as follows:

wsconsume http://localhost:8080/salestax/tax?wsdl

The wsconsume utility creates the stub files and compiles them. You’ll need to include
the generated classes in your class path when you compile the client and the classes in
the final JAR file for the client. If you develop the service and the client on the same
machine, make sure that the client doesn’t have visibility to the files that make up the
web service; otherwise, the compiler will get confused. For example, the generated
files contain an interface named org.jbia.ws.SalesTax, which is the same name as
the class that implements the web service if you used a bottom-up approach. If both
are available to the compiler or the runtime, the wrong one might be used.

 Now that you have the stubs, you can write the client. The code is shown in listing 9.6.

package org.jbia.ws;
public class Client {
 public static void main(String[] args) {
 if (args.length > 0) {
 SalesTaxService svc = new SalesTaxService();
 SalesTax tax = svc.getSalesTaxPort();
 for (int i = 0; i < args.length; i++) {
 double rate = tax.getRate(args[i]);
 System.out.println("Sales tax for " + args[i] + " is " + rate);
}}}}

The first step is to declare the service B. Once you have it, you can obtain the service
endpoint C and then call the method D. As we mentioned earlier, the SalesTax item
referenced is the interface generated by wsconsume, not the class that implements the
web service.

 That’s all there is to it. Using a web service isn’t that much different from using a local
library of classes in a JAR file. The secret is that the stubs and the JAX-WS implementation
within JBossWS handle all the plumbing code, enabling you to concentrate on the busi-
ness logic.
PACKAGING AND RUNNING THE CLIENT

Now you’re ready to compile and package the cli-
ent. Remember to include the generated class
files in the class path for the compiler and to add
them to the JAR file, as shown in figure 9.5.

 In the example, you coded the Client class.
The wsconsume utility generated the rest of the
class files.

 Use the wsrunclient script to run the client.
This script automatically adds to the class path
the JAR files needed to run web service clients.

Listing 9.6 The web services client

Creates service B

Obtains
service
endpoint

C

D Invokes service method

Figure 9.5 Here are the contents of the
client JAR file. Only the Client.class file is
hand-coded; the other files are generated
by the wsconsume utility.

244 CHAPTER 9 Configuring Web Services

 Here’s an example of running the client:

>wsrunclient -classpath $JBOSS_HOME/client/jbossall-client.jar:./client.jar

➥ org.jbia.ws.Client CA NH TX
Sales tax for CA is 7.75
Sales tax for NH is 0.0
Sales tax for TX is -1.0

TIP Did you add logging statements to your client and provide a log4j.prop-
erties file, but the expected log file never showed up? Examine the
wsrunclient script, and you’ll see that it sets the log4j.configuration
system property to wstools-log4j.xml, which you’ll not find anywhere. It
used to be in the client/jbossws-client.jar file, but now that file no lon-
ger appears. If you want to see logging output, remove that reference
from the wsrunclient script.

Now that you have a Java client for your web service, let’s look at writing a C# client.

9.2.6 Developing a C# client

The primary motivation behind Web Services is to enable organizations to exchange
data among heterogeneous systems. Therefore, we now show how to consume the web
service in the .NET Framework using C# and Visual Studio.

 In Visual Studio, create a new C# console application project called TaxClient. Once
the project is created, add a web reference to the project, as indicated in figure 9.6.

Notice that the URL used for the WSDL is that same as that used earlier for the wscon-
sume utility. By default, Visual Studio uses the hostname as the web reference name;
we changed it to salestax.

 The C# client does the same thing as the earlier Java client; it accepts state codes
on the command line and prints the sales tax rate for each state. The code is given in
listing 9.7.

using System;
using System.Collections.Generic;

Listing 9.7 The C# Web Services client

Figure 9.6 To add a web
service reference to a
Visual Studio project,
provide the URL for the
WSDL file and a name for
the Web reference.

245Developing a web service

using System.Text;
using TaxClient.salestax;
namespace org.jbia.ws {
 class Client {
 static void Main(string[] args) {
 if (args.Length == 0) {
 Console.WriteLine
 ("usage: TaxClient <list-of-states>");
 } else {
 SalesTaxService svc = new SalesTaxService();
 for (int i = 0; i < args.Length; i++) {
 getRate rr = new getRate();
 rr.arg0 = args[i];
 getRateResponse resp = svc.getRate(rr);
 double rate = resp.@return;
 Console.WriteLine("Sales tax for " + args[i] + " is " + rate);
}}}}}

The namespace used for the web service is a combination of the name of the proj-
ect and the name given to the web reference B. The usage instructions are slightly
different because the project name is used for the program name (for readers unfa-
miliar with C#, the end result for a compile is an EXE file). The code then gets the
web service C. Within the for loop that iterates through the command line parame-
ters, the code builds the parameter to pass to the web method D, calls the web
method passing the parameter E, and extracts the returned result F before print-
ing out the result.

9.2.7 Revisiting the SOAP binding styles

If you did a double take on the code because it looks a little strange, don’t worry. It
is strange. There are two SOAP binding styles: document and RPC. This code reflects
how a C# client is coded if you’re using document style. If you’re wondering where
the SOAP binding style was declared, recall that the web service container now
provides reasonable defaults for any options you don’t explicitly declare. Because
you never stated which binding style to use, the web service container, when it
generated the WSDL using the bottom-up approach, used the logical
default—document style.

 Document style makes perfect sense for the typical web services usage. For exam-
ple, if the example service were for use in real-world scenarios, you’d probably code it
so that it returned a collection of all sales tax rates, instead of a single rate. This way,
the client could ask for the rates once when it came up and then cache the rates for
repeated use. In that case, the web service would be returning a complex data type.
The best way to deal with a complex data type in a heterogeneous environment is to
use the document style to return a complex object and let the client extract the data
from the complex type using methods or properties to get that data.

 If you’re dealing with simple types, such as in the example, then you could change
the web service to use the RPC-style SOAP binding. Add a @SOAPBinding annotation to
the SalesTax web service, as shown in listing 9.8.

B

Prints usage
instructions

C

D

E
F

246 CHAPTER 9 Configuring Web Services

import javax.jws.soap.SOAPBinding;
@SOAPBinding(style=SOAPBinding.Style.RPC)
@WebService()
public class SalesTax {

Then you rebuild and redeploy the web service. If you plan on using the Java client we
showed you earlier with this web service, run the wsconsume utility again to generate
updated stubs; fewer classes will be generated, and fewer classes will be in the client’s
JAR file. No change is necessary to the client source code. It still works.

 For the C# client, ask Visual Studio to reload the WSDL by right-clicking the Sales-
Tax entry under Web References within the Solution Explorer panel and selecting the
Update Web Reference option. Then change the else clause within the client as
shown in listing 9.9.

 } else {
 SalesTaxService svc = new SalesTaxService();
 for (int i = 0; i < args.Length; i++) {
 double rate = svc.getRate(args[i]);
 Console.WriteLine("Sales tax for " + args[i] + " is " + rate);
 }

Now this looks better and more closely matches the Java coding. You can run the cli-
ent as follows to verify that you can access the web service properly:

>taxclient CA NH TX
Sales tax for CA is 7.75
Sales tax for NH is 0
Sales tax for TX is -1

There you have it—a Java POJO-based web service with both Java and C# clients.

9.3 Exploring JBossWS annotations
As you saw in the example, much of the configuration of Web Services can be done
through annotations. Although we don’t explain the annotations defined by JSR-181
(you can learn about them from the JSR-181 specification), we do want to cover the
annotations provided by JBossWS itself. There are two such annotations: @WebContext
and @EndpointConfig. A third annotation used with Web Services is the @Security-
Domain annotation, which is EJB-related.

9.3.1 Understanding the WebContext annotation

You use the org.jboss.wsf.spi.annotation.WebContext annotation to define items
normally declared in the web.xml file. These items are identified in table 9.2.

 The default column provides the value used if that element isn’t specified, not the
default value of the element itself; each element typically defaults to an empty string.
For example, if you don’t provide a contextRoot element, its value will be an empty
string, but at the time it’s used, the Web Services server will choose to use the archive
name to build the context root.

Listing 9.8 Specifying a different SOAP binding

Listing 9.9 Updated C# client for RPC SOAP binding

New lines added

247Exploring JBossWS annotations

You might have noticed that most of the annotation elements come into play only if
the endpoint is also an EJB. To show how the WebContext annotation is used, we also
must show how to convert the earlier POJO into an EJB. Let’s do that next.
CONVERTING THE ENDPOINT TO AN EJB

Converting the SalesTax POJO web service into an EJB is fairly simple using annota-
tions. Listing 9.10 highlights the changes necessary.

import org.jboss.wsf.spi.annotation.WebContext;
import javax.ejb.Stateless;
@Stateless
@WebContext(contextRoot="/salestax", urlPattern="/tax")
@SOAPBinding(style=SOAPBinding.Style.RPC)

Table 9.2 WebContext annotation elements

Element name Default Description

contextRoot Name of JAR or
EAR file

The context used in the URL to access the web service.
This option is ignored if the endpoint isn’t an EJB.

virtualHosts -none- Specifies the virtual hosts to which the web service is
to be bound. Virtual hosts are defined in the server/
xxx/deployer/jbossweb.sar/server.xml file.

urlPattern Name of the class The name appended to the context root to form the full
URL. This option is ignored if the endpoint isn’t
an EJB.

authMethod -none- Identifies if the client needs to be authenticated to use
the web service. Valid values are BASIC and
CLIENT-CERT. This option is ignored if the endpoint
isn’t an EJB.

transportGuarantee NONE Indicates the level at which the transport mechanism
will guarantee that the transmitted data hasn’t been
tampered with. The possible values are

■ NONE—The data is passed using plain text (not
encoded). There’s no guarantee that the data
hasn’t been tampered with.

■ INTEGRAL—The transport mechanism guaran-
tees that the data can’t be modified while in transit.

■ CONFIDENTIAL—The data is encrypted before
being transmitted. This also guarantees that the
data can’t be modified.

Usually, any guarantee other than NONE causes the
data to be sent using SSL.
This option is ignored if the endpoint isn’t an EJB.

secureWSDLAccess True If the endpoint is secure (authentication is required to
access the endpoint), then this indicates if authentica-
tion is also required to access the WSDL. This setting
is ignored if the endpoint isn’t secure.

Listing 9.10 Implementing the endpoint as an EJB

B

C
D

248 CHAPTER 9 Configuring Web Services

@WebService()
public class SalesTax {...}

First, the packages that contain the annotations are imported B, then the @State-
less annotation C declares the class to be a stateless session bean, and finally the
@WebContext annotation D provides the context information that was supplied as
part of the web application when the web service was a POJO.

 Because the endpoint is now an EJB, you package it as an EJB JAR; you no longer
need a web.xml file. The complete JAR file contents are given in figure 9.7. If you
deploy this JAR file, remember to first undeploy
the salestax.war file. Once it’s deployed, the Java
and C# clients should still work.

 By the way, if you didn’t specify a contextRoot or
urlPattern element for the WebContext annota-
tion, the URL for the WSDL looks something like
http://jbiahost: 8080/salestax/SalesTax?wsdl. The
default values for contextRoot and urlPattern are
salestax (the JAR filename) and SalesTax (the class
name) for this example.

9.3.2 Understanding the EndpointConfig annotation

The org.jboss.ws.annotation.EndpointConfig annotation is used to identify the
configuration to use with the endpoint. Table 9.3 describes the elements that can be set.

Here’s an excerpt from the default JAX-WS configuration file:

<jaxws-config ...>
 ...
 <endpoint-config>
 <config-name>Standard WSAddressing Endpoint</config-name>
 <pre-handler-chains>
 <javaee:handler-chain>

Table 9.3 EndpointConfig annotation elements

Element name Default Description

configName -none- Identifies the configuration to use.

configFile server/xxx/deploy/
jbossws.sar/META-INF/
standard-jaxws-endpoint-config.xml

Identifies the file containing the endpoint config-
urations. This element is ignored if
configName isn’t supplied. If you‘re using the
old JAX-RPC style of web services, a correspond-
ing standard-jaxrpc-endpoint-config.xml configu-
ration file is used instead.
The location is relative to the application’s loca-
tion. For example, with the salestax.war file, you
could place a handlers.xml file into the WEB-INF
directory, in which case the value of
configFile would be WEB-INF/handlers.xml.

Figure 9.7 Here’s the salestax.jar
file containing an EJB endpoint. All
you need is the class that implements
the EJB.

249Securing a web service

 <javaee:protocol-bindings>##SOAP11_HTTP
 </javaee:protocol-bindings>
 <javaee:handler>
 <javaee:handler-name>WSAddressing Handler</javaee:handler-name>
 <javaee:handler-class>
 org.jboss.ws.extensions.addressing.jaxws.WSAddressingServerHandler
 </javaee:handler-class>
 </javaee:handler>
 </javaee:handler-chain>
 </pre-handler-chains>
 </endpoint-config>
 ...
</jaxws-config>

An endpoint configuration, denoted by the <endpoint-config> tag, has a number of
attributes, as shown in table 9.4.

Let’s now turn our attention to securing the web service.

9.4 Securing a web service
Securing a web service includes authorization (and its companion, authentication) and
encryption. We look at web service authorization and then venture into encryption.

9.4.1 Authorizing web service access

By default, anyone can call a web service. Although this might be acceptable for a web
service accessed only from within a company or for a general-purpose query such as

Table 9.4 Endpoint configuration attributes

Attribute Description

<config-name> Identifies the configuration. This name is used in the configName
element of the EndpointConfig annotation.

<pre-handler-chains> Identifies code that will process the message before it’s passed to the
endpoint. Typical handlers include the following:

■ Addressing service handler—Adds the addressing
information to the message context as the value for the
JAXWSAConstants.SERVER_ADDRESSING_
PROPERTIES_INBOUND property

■ Security handler—Handles access control

<post-handler-chains> Identifies code that processes the result after the endpoint has
responded to the messages and before the response is returned to
the client.

<feature> Identifies particular features to use. You can use this attribute to get
the Message Transmission Optimization Mechanism (MTOM) feature,
which is used to more efficiently serialize messages containing the
MIME types image/jpeg, text/xml, application/xml and
application/octet-stream. The usage is <feature>
http://org.jboss.ws/mtom</feature>.

<property> Used to identify name/value pairs of properties.

250 CHAPTER 9 Configuring Web Services

stock quotes, it’s probably not the best thing for a web service that, say, obtains some-
one’s medical records.

 In this section, we show you how to secure the SalesTax web service. First, we must
decide on a security realm, then define some accounts and roles in that realm, and
finally use that realm to provide authentication and authorization for the web service.

9.4.2 Defining the security realm

An examination of the server/xxx/conf/login-config.xml file shows that a security
realm, named JBossWS, is used to test security for web services. We use that realm
because it’s suitable for our purposes. You could easily define a security realm that
uses Lightweight Directory Access Protocol (LDAP) or a database to store the authenti-
cation information.

 The JBossWS realm uses the files server/xxx/conf/props/jbossws-users.properties
and jbossws-roles.properties to define the accounts and roles. Add a role, merchant,
and assign an account name and password to each merchant who contracts to use the
SalesTax web service. Assuming two merchants have signed up, the jbossws-users.prop-
erties would contain the following (although probably with stronger passwords):

TJs_Pizza=password1
A1_Auto_Repair=password2

And the jbossws-roles.properties file would contain the following:

TJs_Pizza=merchant
A1_Auto_Repair=merchant

Now that the realm is set up, let’s look into securing both the POJO and the EJB Web
Services.
SECURING THE POJO WEB SERVICE

Because a POJO web service is packaged in a WAR file and uses the same descriptors.
you set access control on the web service the same way as you would for a servlet or JSP.
Listing 9.11 highlights the new lines you need to add to the web.xml file.

<web-app ...>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Secure Sales Tax</web-resource-name>
 <url-pattern>/tax</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>merchant</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>

Listing 9.11 Security-related changes made to the web.xml file

Context
to secure

B

Secures only
POST requestsC

Authorized roleD

Uses BASIC
authentication

E

251Securing a web service

 <realm-name>JBossWS</realm-name>
 </login-config>
 <security-role>
 <role-name>merchant</role-name>
 </security-role>
</web-app>

Because the web service uses the /tax context, that’s the context that must be
secured B. This is the same value that would be placed into the urlPattern element
of the @WebContext annotation. The role name, merchant D, has to match the roles
defined in the jbossws-roles.properties file. For the example, we use BASIC authenti-
cation E.

 Only POST requests are secured C. The client uses POST requests to make the web
service calls and a GET request to access the WSDL. The JAX-WS API doesn’t provide a
mechanism to specify the account name and password when the client obtains the
WSDL; securing only POST requests ensures that the client still has access to the WSDL.

 You need a jboss-web.xml file to identify the JNDI name for the security realm. Use
the existing JBossWS realm, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
 <security-domain>java:/jaas/JBossWS</security-domain>
</jboss-web>

Now that you have all the files, you can package them
into the WAR file and deploy it. The contents of the
WAR file are illustrated in figure 9.8.

 Now that you have the web service running, you
need to modify the client to provide the proper cre-
dentials to access the web service. Let’s do that next.
MODIFYING THE CLIENT TO ACCESS A SECURE WEB SERVICE

The client needs to supply the username and pass-
word when accessing the web service. To keep the
changes to the client simple, we hard-code one of the
accounts into the client. You need to add several lines
right after getting the web services port. Listing 9.12 highlights the new lines in con-
text. (The first and last lines are from the earlier example.)

...
SalesTax tax = svc.getSalesTaxPort();
BindingProvider bp = (BindingProvider)tax;
Map<String, Object> rc = bp.getRequestContext();
rc.put(BindingProvider.USERNAME_PROPERTY, "TJs_Pizza");
rc.put(BindingProvider.PASSWORD_PROPERTY, "password1");
for (int i = 0; i < args.length; i++) {
...

Listing 9.12 Security-related changes to the client

Authorized roleD

B
C

D

Figure 9.8 Here are the contents
of the WAR file for a secured POJO
web service. The only additional file,
beyond what is listed in figure 9.2,
is the jboss-web.xml file.

252 CHAPTER 9 Configuring Web Services

The object returned by the getXXXPort method is versatile. Besides implementing the
web service endpoint, which is SalesTax in this example, that object also implements
the javax.xml.ws.BindingProvider interface B. This interface owns a Map contain-
ing properties used for the request C where you set the username and password D.

 Now that you have the client updated, compile it and run it as before, using the
wsrunclient script. You should once again get the desired sales tax rates. To verify
that the authentication is working, you can either scan the server log file looking for
entries from org.jboss.security.auth.spi.UsersRolesLoginModule, or you can
change the code to provide an invalid username or password—in which case, you
should get an HTTP 401 error reported.

 Now that the secured POJO version of the web service is running, let’s turn our
attention to securing the EJB version of the web service.
SECURING THE EJB WEB SERVICE

Use the WebContext annotation to define the security configuration information. List-
ing 9.13 shows the modified SalesTax EJB web service.

...
@WebService()
@WebContext(contextRoot = "/salestax", urlPattern = "/tax",
 authMethod = "BASIC",
 secureWSDLAccess = false)
@SecurityDomain(value = "JBossWS")
@Stateless
public class SalesTax {...}

You only need to change three lines to make the EJB secure. First, the authMethod ele-
ment for the @WebContext annotation indicates that the BASIC authentication mecha-
nism is used to authenticate the user B. This setting corresponds to the <auth-method>
tag in the web.xml file for the POJO web service. The secureWSDLAccess element is set
to false C so that the client, and others, can access the WSDL without supplying cre-
dentials. Finally, the value element of the @SecurityDomain annotation identifies the
name of the login module used D. This setting corresponds to the <security-domain>
tag within the jboss-web.xml file used for the POJO web service, although without the
java:/jaas/ prefix. You could also provide the prefix as part of the value element, such
as value="java:/jaas/JBossWS", but we recommend that you don’t.

 Compile the source file and package the class file into salestax.jar as you did ear-
lier. Once you deploy the JAR file (don’t forget to undeploy the salestax.war file first if
it’s still deployed), you should be able to access the WSDL via a browser without having
to log in. In addition, you should be able to run the client to access the web service.

9.5 Encrypting SOAP messages
For confidential information such as medical records, you’ll want to also encrypt the
message so that the contents can’t be monitored during transport. In this section, we
show you how to encrypt the SalesTax web service.

Listing 9.13 Security-related changes to the EJB web service

B
C

D

253Encrypting SOAP messages

 One of the unique aspects of encrypting a web service is that it can be done in two
different ways. First, you can use SSL to transport messages using HTTPS. The mecha-
nisms used to set this up are much the same as for using SSL with a web application.
You can also use WS-Security; the contents of the message are encrypted by the JAX-WS
implementation on both the client and the server. These two methods are illustrated
in figure 9.9. In this chapter, we
cover WS-Security only, but you can
refer to chapter 6 for information
on setting up SSL.

 The steps to encrypt the messages
are to generate the security certifi-
cates and to configure the server and
client to use those certificates. To
make this example complete, we
walk you through all the steps to
secure the web service, even the steps
to generate the certificates.

9.5.1 Generating the certificate

A web service request and response consists of two messages, each of which has to be
encrypted. This is illustrated in figure 9.9. Although you could use the same certificate
in both cases, you usually wouldn’t want to do so in a production environment because
it requires both the server and the client to have the same private key. Usually you want
to keep your private key, well, private.
Therefore, with a single client and a sin-
gle server you need two certificates so
that’s what you generate. We discuss
how you add more clients after we get
the single client example working.

 You need two keystores and two
truststores. Each keystore contains its
own certificate and the public key of
the certificate in the other keystore.
The truststores contain the public keys
of their corresponding certificates.
This configuration is illustrated in fig-
ure 9.10.

 Here are the commands used to set
up this configuration:

keytool -genkey -alias server -keyalg RSA -keystore server.keystore
keytool -genkey -alias client -keyalg RSA -keystore client.keystore
keytool -export -alias server -keystore server.keystore

➥ -file server_pub.key
keytool -export -alias client -keystore client.keystore

Client

JAX-WS

Transport

Web service

JAX-WS

Transport

WS-Security

HTTPS/SSL

request response

Figure 9.9 Web service requests and responses go
though both the JAX-WS and transport layers, so either
layer can be used to encrypt and decrypt the requests
and responses.

client.keystore

client certificate

server public key

server.keystore

server certificate

client public key

client.truststore

client public key

server.truststore

server public key

Client system Server system

Figure 9.10 Note the relationships among the
certificates stored in the keystores and truststores.
The sender uses the receiver’s public key, which is
stored in the keystore, to encrypt the message. The
receiver uses its certificate, which contains both its
public and private keys, to decrypt the message.

254 CHAPTER 9 Configuring Web Services

➥ -file client_pub.key
keytool -import -alias client -keystore server.keystore

➥ -file client_pub.key
keytool -import -alias server -keystore client.keystore

➥ -file server_pub.key
keytool -import -alias client -keystore client.truststore

➥ -file client_pub.key
keytool -import -alias server -keystore server.truststore

➥ -file server_pub.key

When you’re creating the certificates (the first two commands), the keytool command
asks for a password for both for the keystore and for the certificate. Remember the
passwords you used. You’ll need them later.

9.5.2 Securing the server using WS-Security

For this example, we use the earlier RPC-style SalesTax POJO web service from sec-
tion 9.2.7. You have to complete two steps: configure the server to use its keystore and
truststore and configure the web service to use that configuration.

 The jboss-wsse-server.xml file identifies the keystore and the truststore to the
server. For a POJO web service, this file is placed into the WEB-INF directory; for an EJB
web service, you place it into the META-INF directory. In this file, you also indicate that
you want messages to be encrypted. Listing 9.14 shows the contents of the file.

<jboss-ws-security
 xmlns="http://www.jboss.com/ws-security/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/ws-security/config
http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
 <key-store-file>

 ➥WEB-INF/server.keystore</key-store-file>
 <key-store-type>jks</key-store-type>
 <key-store-password>password</key-store-password>
 <trust-store-file>

 ➥WEB-INF/server.truststore</trust-store-file>
 <trust-store-type>jks</trust-store-type>
 <trust-store-password>password</trust-store-password>
 <key-passwords>
 <key-password alias="server" password="serverpwd" />
 </key-passwords>
 <config>
 <encrypt type="x509v3" alias="client" />
 <requires>
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

The locations of the keystore B and truststore E files are relative to the base directory
of the WAR file. The keystore and truststore use the same password (D G); you probably
want to use stronger passwords. The <key-store-type> C and <trust-store-type> F

Listing 9.14 Encryption-related security configuration file: jboss-wsse-server.xml

B
C

D

E
F

G

H

I

J

255Encrypting SOAP messages

default to JKS, so you could leave these tags out. The server key password is provided by
the <key-passwords> tag H because that password is used to access the server certificate
in the keystore. The <encryption/> tag J requests that the message be encrypted using
the alias provided by the <encrypt> tag I. The client’s public key is used to encrypt
the message on the server and is decrypted at the client using the client’s private key
from the client’s keystore. You can also provide <signature/> and <sign> tags to per-
form authentication.

 Add the @EndpointConfig annotation to the SalesTax class to indicate that you
want to use WS-Security. Listing 9.15 is an excerpt from the updated SalesTax class,
highlighting the added lines.

...
import org.jboss.ws.annotation.EndpointConfig;
...
@EndpointConfig(configName="Standard WSSecurity Endpoint")
public class SalesTax {...}

The import statement imports the annotation class B, and the configName element
identifies the configuration you want to use C. The valid configurations can be found
in the file server/xxx/deploy/jbossws.sar/META-INF/standard-jaxws-endpoint-config.
xml. Listing 9.16 is an excerpt from that file, showing the Standard WSSecurity

Endpoint configuration.

<jaxws-config ...>
 ...
<endpoint-config>
<config-name>Standard WSSecurity Endpoint</config-name>
 <post-handler-chains>
 <javaee:handler-chain>
 <javaee:protocol-bindings>##SOAP11_HTTP</javaee:protocol-bindings>
 <javaee:handler>
 <javaee:handler-name>WSSecurity Handler</javaee:handler-name>
 <javaee:handler-class>

 ➥org.jboss.ws.extensions.security.jaxws.

 ➥WSSecurityHandlerServer
 </javaee:handler-class>
 </javaee:handler>
 </javaee:handler-chain>
 </post-handler-chains>
</endpoint-config>
</jaxws-config>

The configuration name given here B matches the configuration name used in the
EndpointConfig annotation. The WSSecurityHandlerServer class C handles the
encryption and decryption of the messages.

 You can add other handler chains to this configuration and even write your own han-
dler by extending the org.jboss.ws.core.jaxws.handler.GenericSOAPHandler class.

Listing 9.15 Encryption-related changes to the client

Listing 9.16 Endpoint-handler configuration file: standard-jaxws-endpoint-config.xml

B

C

Configuration
name

B

WS-Security
handler classC

256 CHAPTER 9 Configuring Web Services

Such a handler has access to and can manipulate the
full SOAP message.

 Now that you have all the files, you can package
them into the salestax.war file, as shown in figure 9.11,
and deploy the WAR file. If you have previously
deployed the salestax.jar file, remember to undeploy
it first.

 Note that the standard-jaxws-endpoint-config.xml
file isn’t included in the WAR file; it’s picked up from
its default location. If you’d like to place that file into
the WAR file, you could provide the location using
the configFile element on the @EndpointConfig
annotation. Once the WAR file deploys, you can
access the WSDL file through a browser.
ENCRYPTING AN EJB WEB SERVICE

The steps to encrypting an EJB web service are similar to that of a POJO web service,
except that the configuration files and the keystore go into the META-INF directory.
You’ll also have to change the location of
those files in the <key-store-file> and
<trust-store-file> tags in the jboss-
wsse-server.xml file. The packaged JAR file
is shown in figure 9.12.

 The configuration you have done so
far means that the server won’t recognize
a message unless it’s encrypted. You still
have to make the changes to get the cli-
ent to encrypt the message before send-
ing it. Let’s look at that next.

9.5.3 Securing the client using WS-Security

The client source files don’t require any changes to encrypt the message, although be
sure to use the earlier client from section 9.2.3 that doesn’t perform any login because
the server isn’t expecting it. The only thing you have to do is configure WS-Security.
You use two files to correspond to the two configuration files used for the server.

 First, provide the information regarding the keystore and truststore. You can do
this by creating a jboss-wsse-client.xml file and placing the necessary information into
it, as shown in listing 9.17.

<?xml version="1.0" encoding="UTF-8"?>
<jboss-ws-security
 xmlns="http://www.jboss.com/ws-security/config"

Listing 9.17 Client configuration file: jboss-wsse-client.xml

Figure 9.11 Here are the
contents of salestax.war when
using WS-Security. The additional
files, beyond what you saw in figure
9.2, are the keystore, truststore,
and jboss-wsse-server.xml file.

Figure 9.12 Here are the contents of
salestax.jar, which contains an EJB-based
endpoint, when using WS-Security. The keystore,
truststore, and the jboss-wsse-server.xml file are
the additional files, as in the previous figure, but
the files are placed into the META-INF directory.

257Encrypting SOAP messages

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/ws-security/config
 http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
 <key-store-file>

 ➥META-INF/client.keystore</key-store-file>
 <key-store-type>jks</key-store-type>
 <key-store-password>password</key-store-password>
 <trust-store-file>

 ➥META-INF/client.truststore</trust-store-file>
 <trust-store-type>jks</trust-store-type>
 <trust-store-password>password</trust-store-password>
 <key-passwords>
 <key-password alias="server"
 password="clientpwd" />
 </key-passwords>
 <config>
 <encrypt type="x509v3" alias="server"/>
 <requires>
 <encryption/>
 </requires>
 </config>
</jboss-ws-security>

The contents of this file look similar to that used by the server, the only difference
being that the keystore and truststore are located in the META-INF directory. The
server public key B is used to encrypt the message, which is decrypted at the server
using the server’s private key.

 You can leave out the information about the keystore, truststore, their passwords,
and types, and provide that information using the following system properties:

■ org.jboss.ws.wsse.keyStore

■ org.jboss.ws.wsse.keyStorePassword
■ org.jboss.ws.wsse.keyStoreType
■ org.jboss.ws.wsse.trustStore
■ org.jboss.ws.wsse.trustStorePassword
■ org.jboss.ws.wsse.trustStoreType

If you specify this information both in the configuration file and as system properties,
the configuration file takes precedence. Additionally, because the same class handles
the jboss-wsse-client.xml and jboss-wsse-server.xml files, the system properties could be
used for the server also. Because the server might serve multiple Web Services, each
with their own WS-Security configuration, it makes sense that the settings in the con-
figuration file take precedence over the system properties.

 You have to state that you want to use WS-Security by creating a META-INF/stan-
dard-jaxws-client-config.xml file. An example of this file can be found at server/xxx/
deploy/jbossws.sar/META-INF/standard-jaxws-client-config.xml. Copy this file to your
project and edit it, removing the configurations that you don’t want. The only con-
figuration you should leave is Standard WSSecurity Client, as shown in list-
ing 9.18.

B Identifies password
for server key

Identifies
certificate alias

Requests message
encryption

258 CHAPTER 9 Configuring Web Services

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jaxws-config:2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee"
xsi:schemaLocation="urn:jboss:jaxws-config:2.0 jaxws-config_2_0.xsd"
>
<client-config>
 <config-name>Standard WSSecurity Client</config-name>
 <post-handler-chains>
 <javaee:handler-chain>
 <javaee:protocol-bindings>##SOAP11_HTTP</javaee:protocol-bindings>
 <javaee:handler>
<javaee:handler-name>WSSecurityHandlerOutbound</javaee:handler-name>
 <javaee:handler-class>

 ➥org.jboss.ws.extensions.security.jaxws.

 ➥WSSecurityHandlerClient
 </javaee:handler-class>
 </javaee:handler>
 </javaee:handler-chain>
 </post-handler-chains>
</client-config>
</jaxws-config>

The WSSecurityHandlerClient B is the client-side handler that corresponds to the
WSSecurityHandlerServer server-side handler. Both of these classes defer to the
WSSecurityHandler class to handle the messages.

 All that’s left to do is package the files
into a JAR file as illustrated in figure 9.13.
The classes are the same as from the earlier
example; only the files in META-INF are new.

 Once you have the JAR file, you can run
the client, once again using wsrunclient. It
should work. You can verify that the messages
are encrypted by turning on message tracing.
Uncomment the Enable JBossWS message
tracing entry in the jboss-log4j.xml file
before starting the application server. Then
look for the org.jboss.ws.core.MessageTrace
entries in the server.log file.

9.5.4 Signing the messages using WS-Security

WS-Security provides a mechanism to sign a message, providing an alternate means of
authenticating the user. To illustrate how this works, we modify the example that
encrypts messages.

 For signing a message, the sender uses his or her private key, and the receiver uses
the sender’s public key to verify the sender’s identity. This means that both the client’s
public key and the server’s public key must be in the server’s truststore. This configu-
ration is illustrated in figure 9.14.

Listing 9.18 Client configuration file: standard-jaxws-client-config.xml

Configuration
name

B WS-Security
handler class

Figure 9.13 Here are the contents of the
client.jar file when using WS-Security. All the
classes in the META-INF directory are new.

259Encrypting SOAP messages

Assuming that the keystores and truststores are already set up for encryption, here are
the additional commands used to create this configuration:

keytool -import -alias server -keystore client.truststore

➥ -file server_pub.key
keytool -import -alias client -keystore server.truststore

➥ -file client_pub.key

Once the keys are set up, you must modify the configuration files to use the keys to
sign the messages. Listing 9.19 shows an excerpt from the updated jboss-wsse-
server.xml file.

<jboss-ws-security ...>
 ...
 <config>
 <sign type="x509v3" alias="server" />
 <encrypt type="x509v3" alias="client" />
 <requires>
 <signature />
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

The server key is used to sign messages sent by the server B. The keystore and trust-
store-related settings are the same as for the earlier encryption example; only the two
lines identified were added.

 The changes to the jboss-wsse-client.xml file are similar, as shown in listing 9.20.

<jboss-ws-security ...>
 ...
 <config>
 <sign type="x509v3" alias="client" />
 <encrypt type="x509v3" alias="server" />

Listing 9.19 WS-Security configuration file, jboss-wsse-server.xml, changes

Listing 9.20 WS-Security configuration file, jboss-wsse-client.xml, changes

client.keystore

client certificate

server public key

server.keystore

server certificate

client public key

client.truststore

client public key

server.truststore

server public key

Client system Server system

client public keyserver public key

Figure 9.14 Here are the relationships among
the keystores and truststores for signing
messages. The only difference between this
and figure 9.10 is that the other system’s
public key has been added to the truststore.

Identifies certificate
used to sign message

B

Requires message
to be signed

Identifies certificate
used to sign message

B

260 CHAPTER 9 Configuring Web Services

 <requires>
 <signature />
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

In this case the client key is used to sign the messages B.
 Package up the server and deploy it, package up the client, and then run the cli-

ent. The messages are now signed. You can verify this by looking at the SOAP messages
in the server.log file (after turning on message tracing as indicated at the end of sec-
tion 9.5.3); you’ll see a <ds:Signature> entry has been added to the message.

9.6 Summary
This chapter introduced you to Web Services, including its terminology and how that
terminology applied to the web service architecture. You learned terms such as end-
points, WSDL, and UDDI. You examined the different SOAP binding styles and should
now know the difference between the RPC and document styles.

 You built a simple web service, which you then used to examine various configura-
tion topics. You learned how to package and deploy both POJO and EJB-style Web Ser-
vices. You created Web Services using both top-down and bottom-up approaches. You
learned how to use the wsconsume, wsprovide, and wsrunclient utilities. You
explored various annotations and configuration files that you can use to configure
your web service.

 You created both Java and C# clients to access the web service. Working with the C#
client led to a more in-depth discussion and understanding of the SOAP binding
styles.

 You learned how to secure your web service, using both mechanisms to secure web
applications and WS-Security. You learned how to use WS-Security to encrypt a mes-
sage and to sign a message, providing an alternative to standard web application
authentication and authorization.

9.7 References
JSR-181, Web Services Metadata for the Java Platform, specification—http://jcp.org/en/

jsr/detail?id=181
JSR-224, JAX-WS 2.0, specification—http://jcp.org/en/jsr/detail?id=224
JBossWS User Guide—http://jbws.dyndns.org/mediawiki/index.php?title=JBossWS
JAX-RPC User Guide—http://jbws.dyndns.org/mediawiki/index.php?title=

JAX-RPC_User_Guide

Requires message
to be signed

