
BONUS CHAPTER

vii

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxii

PART 1 GETTING STARTED... 1

1 Introducing LINQ 3
1.1 What is LINQ? 4

Overview 5 ■ LINQ as a toolset 6 ■ LINQ as language
extensions 7

1.2 Why do we need LINQ? 9
Common problems 10 ■ Addressing a paradigm mismatch 12
LINQ to the rescue 18

1.3 Design goals and origins of LINQ 19
The goals of the LINQ project 20 ■ A bit of history 21

1.4 First steps with LINQ to Objects: Querying collections
in memory 23

What you need to get started 23 ■ Hello LINQ to Objects 25

viii CONTENTS

1.5 First steps with LINQ to XML: Querying XML
documents 29

Why we need LINQ to XML 30 ■ Hello LINQ to XML 32

1.6 First steps with LINQ to SQL: Querying relational
databases 37

Overview of LINQ to SQL’s features 37 ■ Hello LINQ to
SQL 38 ■ A closer look at LINQ to SQL 42

1.7 Summary 42

2 C# and VB.NET language enhancements 44
2.1 Discovering the new language enhancements 45

Generating a list of running processes 46 ■ Grouping results
into a class 47

2.2 Implicitly typed local variables 49
Syntax 49 ■ Improving our example using implicitly
typed local variables 50

2.3 Object and collection initializers 52
The need for object initializers 52 ■ Collection initializers 53
Improving our example using an object initializer 54

2.4 Lambda expressions 55
A refresher on delegates 56 ■ Anonymous
methods 58 ■ Introducing lambda expressions 58

2.5 Extension methods 64
Creating a sample extension method 64 ■ More
examples using LINQ’s standard query operators 68
Extension methods in action in our example 70
Warnings 71

2.6 Anonymous types 73
Using anonymous types to group data into an object 74
Types without names, but types nonetheless 74
Improving our example using anonymous
types 76 ■ Limitations 76

2.7 Summary 79

CONTENTS ix

3 LINQ building blocks 82
3.1 How LINQ extends .NET 83

Refresher on the language extensions 83 ■ The key elements
of the LINQ foundation 85

3.2 Introducing sequences 85
IEnumerable<T> 86 ■ Refresher on iterators 87
Deferred query execution 89

3.3 Introducing query operators 93
What makes a query operator? 93 ■ The standard query
operators 96

3.4 Introducing query expressions 97
What is a query expression? 98 ■ Writing query
expressions 98 ■ How the standard query operators relate
to query expressions 100 ■ Limitations 102

3.5 Introducing expression trees 104
Return of the lambda expressions 105 ■ What are
expression trees? 105 ■ IQueryable, deferred query
execution redux 108

3.6 LINQ DLLs and namespaces 109
3.7 Summary 111

PART 2 QUERYING OBJECTS IN MEMORY................. 113

4 Getting familiar with LINQ to Objects 115
4.1 Introducing our running example 116

Goals 116 ■ Features 117 ■ The business entities 117
Database schema 118 ■ Sample data 118

4.2 Using LINQ with in-memory collections 121
What can we query? 121 ■ Supported operations 126

4.3 Using LINQ with ASP.NET and Windows Forms 126
Data binding for web applications 127 ■ Data binding
for Windows Forms applications 133

x CONTENTS

4.4 Focus on major standard query operators 137
Where, the restriction operator 138 ■ Using projection
operators 139 ■ Using Distinct 142 ■ Using conversion
operators 143 ■ Using aggregate operators 145

4.5 Creating views on an object graph in memory 146
Sorting 146 ■ Nested queries 147 ■ Grouping 150
Using joins 151 ■ Partitioning 155

4.6 Summary 159

5 Beyond basic in-memory queries 160
5.1 Common scenarios 161

Querying nongeneric collections 162 ■ Grouping by multiple
criteria 164 ■ Dynamic queries 167 ■ LINQ to Text Files 178

5.2 Design patterns 180
The Functional Construction pattern 181 ■ The ForEach
pattern 184

5.3 Performance considerations 186
Favor a streaming approach 187 ■ Be careful about immediate
execution 189 ■ Will LINQ to Objects hurt the performance of my
code? 191 ■ Getting an idea about the overhead of LINQ to
Objects 195 ■ Performance versus conciseness: A cruel
dilemma? 198

5.4 Summary 200

PART 3 QUERYING RELATIONAL DATA..................... 203

6 Getting started with LINQ to SQL 205
6.1 Jump into LINQ to SQL 207

Setting up the object mapping 209 ■ Setting up the
DataContext 212

6.2 Reading data with LINQ to SQL 212
6.3 Refining our queries 217

Filtering 217 ■ Sorting and grouping 219
Aggregation 221 ■ Joining 222

CONTENTS xi

6.4 Working with object trees 226
6.5 When is my data loaded and why does it matter? 229

Lazy loading 229 ■ Loading details immediately 231

6.6 Updating data 233
6.7 Summary 236

7 Peeking under the covers of LINQ to SQL 237
7.1 Mapping objects to relational data 238

Using inline attributes 239 ■ Mapping with external XML
files 245 ■ Using the SqlMetal tool 247 ■ The LINQ to SQL
Designer 249

7.2 Translating query expressions to SQL 252
IQueryable 252 ■ Expression trees 254

7.3 The entity life cycle 257
Tracking changes 259 ■ Submitting changes 260
Working with disconnected data 263

7.4 Summary 266

8 Advanced LINQ to SQL features 267
8.1 Handling simultaneous changes 268

Pessimistic concurrency 268 ■ Optimistic concurrency 269
Handling concurrency exceptions 272 ■ Resolving conflicts using
transactions 276

8.2 Advanced database capabilities 278
SQL pass-through: Returning objects from SQL queries 278
Working with stored procedures 280 ■ User-defined
functions 290

8.3 Improving the business tier 294
Compiled queries 294 ■ Partial classes for custom business
logic 296 ■ Taking advantage of partial methods 299
Using object inheritance 301

8.4 A brief diversion into LINQ to Entities 306
8.5 Summary 309

xii CONTENTS

PART 4 MANIPULATING XML 311

9 Introducing LINQ to XML 313
9.1 What is an XML API? 314
9.2 Why do we need another XML programming API? 316
9.3 LINQ to XML design principles 317

Key concept: functional construction 319 ■ Key concept: context-
free XML creation 320 ■ Key concept: simplified names 320

9.4 LINQ to XML class hierarchy 323
9.5 Working with XML using LINQ 326

Loading XML 327 ■ Parsing XML 329 ■ Creating
XML 330 ■ Creating XML with Visual Basic XML literals 335
Creating XML documents 338 ■ Adding content to XML 341
Removing content from XML 343 ■ Updating XML
content 344 ■ Working with attributes 347 ■ Saving
XML 348

9.6 Summary 349

10 Query and transform XML with LINQ to XML 350
10.1 LINQ to XML axis methods 352

Element 354 ■ Attribute 355 ■ Elements 356 ■ Descendants
357 ■ Ancestors 360 ■ ElementsAfterSelf, NodesAfterSelf,

ElementsBeforeSelf, and NodesBeforeSelf 362 ■ Visual Basic XML
axis properties 363

10.2 Standard query operators 366
Projecting with Select 369 ■ Filtering with Where 370
Ordering and grouping 372

10.3 Querying LINQ to XML objects with XPath 376
10.4 Transforming XML 378

LINQ to XML transformations 378 ■ Transforming LINQ to
XML objects with XSLT 382

10.5 Summary 383

CONTENTS xiii

11 Common LINQ to XML scenarios 385
11.1 Building objects from XML 386

Goal 387 ■ Implementation 389

11.2 Creating XML from object graphs 392
Goal 392 ■ Implementation 393

11.3 Creating XML with data from a database 398
Goal 399 ■ Implementation 401

11.4 Filtering and mixing data from a database with
XML data 406

Goal 406 ■ Implementation 407

11.5 Reading XML and updating a database 411
Goal 412 ■ Implementation 413

11.6 Transforming text files into XML 428
Goal 428 ■ Implementation 429

11.7 Summary 432

PART 5 LINQING IT ALL TOGETHER 435

12 Extending LINQ 437
12.1 Discovering LINQ’s extension mechanisms 438

How the LINQ flavors are LINQ implementations 439
What can be done with custom LINQ extensions 441

12.2 Creating custom query operators 442
Improving the standard query operators 443 ■ Utility or
domain-specific query operators 446

12.3 Custom implementations of the basic query
operators 451

Refresh on the query translation mechanism 452 ■ Query
expression pattern specification 453 ■ Example 1: tracing
standard query operators’ execution 455 ■ Limitation: query
expression collision 457 ■ Example 2: nongeneric, domain-specific
operators 459 ■ Example 3: non-sequence operator 461

xiv CONTENTS

12.4 Querying a web service: LINQ to Amazon 463
Introducing LINQ to Amazon 463 ■ Requirements 465
Implementation 467

12.5 IQueryable and IQueryProvider: LINQ to Amazon
advanced edition 474

The IQueryable and IQueryProvider interfaces 474
Implementation 479 ■ What happens exactly 480

12.6 Summary 481

13 LINQ in every layer 482
13.1 Overview of the LinqBooks application 483

Features 483 ■ Overview of the UI 484 ■ The data model 486

13.2 LINQ to SQL and the data access layer 486
Refresher on the traditional three-tier architecture 487 ■ Do we
need a separate data access layer or is LINQ to SQL enough? 488
Sample uses of LINQ to SQL in LinqBooks 495

13.3 Use of LINQ to XML 502
Importing data from Amazon 502 ■ Generating RSS feeds 504

13.4 Use of LINQ to DataSet 505
13.5 Using LINQ to Objects 509
13.6 Extensibility 509

Custom query operators 509 ■ Creating and using a custom LINQ
provider 510

13.7 A look into the future 511
Custom LINQ flavors 511 ■ LINQ to XSD, the typed LINQ to
XML 513 ■ PLINQ: LINQ meets parallel computing 513
LINQ to Entities, a LINQ interface for the ADO.NET Entity
Framework 514

13.8 Summary 515

appendix: The standard query operators 517
resources 523
index 527

bonus chapter: Working with LINQ and DataSets
available online only from www.manning.com/LINQinAction

1

Working with
 LINQ and DataSets

This chapter covers:
■ LINQ to DataSet
■ A refresher on DataSets
■ Working with typed and untyped DataSets
■ Data binding LINQ to DataSet results

2 CHAPTER 14

Working with LINQ and DataSets

In the second part of this book, we demonstrated how LINQ to Objects can be
used to query in-memory objects. In this chapter, we’ll cover a different scenario.
We’ll still query in-memory objects, but the specific objects we’ll deal with here
are DataSets and DataTables. We’ll show you how a dedicated LINQ flavor named
LINQ to DataSet elegantly solves the problem of queries over DataSets.

 We’ll start this chapter with an overview of LINQ to DataSet and a quick
refresher on DataSets. We’ll then walk you through several examples that demon-
strate the kind of operations that can be performed with LINQ to DataSet.

 Before being able to query DataSets, we need to load them with data. This is
why we’ll first show you how to store the results of a LINQ query in a DataTable.
We’ll then demonstrate how it’s possible to query a DataSet without LINQ, before
showing how LINQ to DataSet makes it easier to retrieve data from a DataSet
using LINQ queries. Our last examples will show how to join tables in queries and
how to deal with relationships.

 We’ll show you examples of these operations with untyped DataSets as well as
typed DataSets. You’ll notice that in comparison to untyped DataSets, typed
DataSets allow us to write more reliable and type-safe LINQ queries.

 The last section of this chapter will provide a summary of the custom query
operators introduced by LINQ to DataSet. With this information, you’ll be
equipped to make the best out of LINQ to DataSet.

14.1 Overview of LINQ to DataSet

DataSets can be used as convenient memory-resident data stores, but until now
their query features were limited. If you want to query a DataSet using the classi-
cal methods, you have to write expressions using a specific syntax.1 Even if you
master this syntax, the query possibilities remain far less than what LINQ offers.
Also, these expressions are built using strings, which does not provide any com-
pile-time checking for validity.

 LINQ provides a unique opportunity to introduce rich query capabilities on
top of the DataSet class and in a way that integrates with the rest of the develop-
ment environment. With LINQ to DataSet, you’ll write queries in your usual devel-
opment language, like C# or VB.NET.

 We’ll show you how to write your first LINQ to DataSet code to execute in-
memory queries against DataSets (both untyped and typed). You’ll see that

1 You’ll see samples of this syntax in section 14.3.2 when we’ll demonstrate how to query DataSets with-
out LINQ.

Refresher on DataSets 3

LINQ to DataSet will greatly improve your experience with DataSets. You can
consider that LINQ to DataSet brings to DataSets what LINQ to SQL brings to
relational databases.

 To give you an idea of what to expect, here is a sample LINQ to DataSet query
over a typed DataSet:

from publisher in dataSet.Publisher
join book in dataSet.Book
 on publisher.ID equals book.Publisher
select new {
 Publisher = publisher.Name,
 Book = book.Title
};

As you can see, this query looks like any other LINQ query. This is what makes
LINQ great: It can be used with several data sources in a consistent way. This will
allow you to write LINQ queries against DataSets in no time.

 In case you’re not familiar with DataSets, before going further we’ll provide a
refresher on them.

14.2 Refresher on DataSets

This review of DataSets will allow you to discover them if you’re not used to work-
ing with them. It will also allow us to introduce some vocabulary as well as the
main classes we’ll use through this chapter.

 We’ll also give you an overview of the changes Visual Studio 2008 and .NET 3.5
introduced to enable LINQ queries against DataSets.

14.2.1 DataSet use cases and features

In contrast to other typical ADO.NET components like DataReaders, DataSets are
backend-agnostic and are used in a disconnected manner. The versatility of
DataSets makes them useful in a range of use cases, from quick-and-dirty applica-
tions—which benefit from the simplicity of DataSets and their built-in data stor-
age capabilities—to reporting solutions—where a discrete set of data is generated
and queried in memory.

 Table 14.1 lists the main features offered by DataSets and sample scenarios
they enable.

 Now that you have an idea why DataSets are powerful and when they’re useful,
let’s get a better idea of what they are.

4 CHAPTER 14

Working with LINQ and DataSets

14.2.2 What are DataSets?

A DataSet is an ADO.NET type that is frequently used as an in-memory data
store. DataSets can be compared to memory-resident minirelational databases. A
DataSet represents a complete set of data including the tables that contain the data,
as well as the relationships between the tables. Inside a DataSet—much like in a
relational database—there are tables, columns, relationships, constraints, views,
and all the appropriate metadata that describe the DataSet’s structure.

 Typically a DataSet is used to represent a
set of data required for a use case. Let’s imag-
ine you’re working on an author’s books. The
data you’d deal with would likely consist of
information such as the author’s ID, his first
name and last name, the list of books he has
written, and the details about each book,
such as the publisher and the book subject.
Usually, this data is stored in memory using a
dedicated Author business entity.

 One way to represent a business entity is to
use a DataSet. Figure 14.1 shows how the
author and books data could be represented
as a DataSet.

Table 14.1 DataSet’s features and the scenarios they enable

DataSet’s features Enabled scenarios

A DataSet can store data in multiple tables,
which can be related through foreign key
relationships.
A DataSet is independent of any data source.

Manipulate data from multiple sources (for example,
a mixture of data from more than one database,
from an XML file, and from a spreadsheet).
Navigate between multiple discrete tables of results.

Constraints are enforced on data at row level.
Calculated fields are supported.
Multiple versions of the data are stored for each
column and for each row in each table.
Ongoing data edits can be accepted or rejected.

Use transactional local data store.

A DataSet can be used in disconnected mode
(no permanent connection to a database is
required during the object’s lifetime).

Exchange data between tiers or using a web service.
Perform processing on data that takes too much
time to keep a database connection opened.

A DataSet can be serialized into a file or a
stream, in XML or binary format.

Cache data in memory or on the disk.

Figure 14.1 An Author entity
represented as a DataSet and the four
tables it contains. Later on, we’ll create a
simpler DataSet for our examples.

Refresher on DataSets 5

 The figure depicts a DataSet that contains four tables with relationships between
them. A row in AuthorTable is linked to multiple rows in BookTable. Each row in
BookTable points to one row in PublisherTable and one row in SubjectTable.

 This is what a typical DataSet looks like. Of course, the figure doesn’t show
how constraints or calculated columns can come into play. The goal here is not to
give you complete coverage of DataSets but to keep the book focused on LINQ.
You can find more information about DataSets in Microsoft’s official documenta-
tion and in books and web sites that cover ADO.NET.

 Although we can’t cover everything, there are still more things we’d like you to
know about DataSets that will help you to have a better understanding of the
working relationship between DataSets and LINQ to DataSet. Let’s dive into the
DataSet class and the associated classes.

DataSet-related classes
DataSets are made available in the System.Data namespace as a set of classes.
The main class is System.Data.DataSet. The class diagram in figure 14.2 shows
how the different classes relate to each other.

 To keep things simple, remember that a DataSet (DataSet class) is a collection
of tables (DataTable class) and table relationships (DataRelation class). A table
is a collection of columns (DataColumn class), rows (DataRow class), and con-
straints (Constraint class).

 What you’ll deal with in LINQ to DataSet queries are mostly DataTables and
DataRows. You may also use the relationships that exist between some tables.

 DataSets are usually used in two ways: as bare System.Data.DataSet objects
that expose System.Data.DataTable and System.Data.DataRow objects, or as
strongly typed objects that inherit from DataSet, DataTable, and DataRow. In the

Figure 14.2 Class diagram showing the classes involved with untyped DataSets. We’ll see in the next
section how typed DataSets extend this model.

6 CHAPTER 14

Working with LINQ and DataSets

latter case, we’ll speak of typed DataSets. Typed DataSets enable compile-time
validation of column types and names, as well as IntelliSense. In general, it’s bet-
ter to use typed DataSets and keep untyped DataSets for simple or generic code.

 This may be difficult to grasp if you aren’t familiar with DataSets, but don’t
worry; it will make more sense when we demonstrate how to use LINQ to DataSet
both with untyped and typed DataSets in sections 14.3 and 14.4. But before we
can explore these two scenarios, we should tell you more about typed DataSets.
This will help you to understand more precisely how our sample LINQ queries
against typed DataSets work.

Typed DataSets
When you use untyped DataSets, you deal directly with a set of classes provided by
the .NET Framework, namely DataSet, DataTable, and DataRow. In the case of
typed DataSets, you work with a set of ad hoc classes that inherit directly from the
DataSet family of classes. Each typed DataSet introduces new classes that inherit
from the DataSet, DataTable, and DataRow classes.

 Figure 14.3 shows the classes involved in a sample typed DataSet.

Figure 14.3
Class diagram showing
the classes involved in
a sample typed
DataSet. You can see
here in bold the custom
classes that extend
the standard shown in
figure 14.2.

Refresher on DataSets 7

In the class diagram, you can find the main classes that were already involved in
an untyped DataSet: DataSet, DataTable, and DataRow. The main class in the dia-
gram is LinqBooksDataSet; this is the DataSet. Of course, this class inherits from
the DataSet class. You can see that our typed DataSet contains three tables, each
one represented by a specific class: AuthorDataTable, BookDataTable, Pub-
lisherDataTable. All these tables inherit from the TypedTableBase<T> class,
which we’ll detail in a moment. The other classes in the diagram are used to rep-
resent rows in the tables: AuthorRow, BookRow, PublisherRow. They all extend the
DataRow class.

 A typed DataSet derives from the DataSet class, and its nested classes derive
from other standard classes. This means that you do not sacrifice any of the
DataSet functionality when you use a typed DataSet instead of an untyped one. A
typed DataSet remains a DataSet, but with more features.

 There are several benefits when using typed DataSets, which include type
checking at compile time and support from Visual Studio’s IntelliSense. For
example, instead of exposing the Title column of a row from a table of books, you
expose the Title property of a Book object. This allows a more object-oriented
approach and enables IntelliSense to display the list of a row’s fields as you type.
The type of each property also allows the compiler to enforce type safety.

 Usually, you don’t create the inherited classes by hand. A typed DataSet is typ-
ically created from an XML Schema Document (XSD). An XSD file allows you to
describe the structure and constraints you want in your DataSet. C# or VB.NET
code can then be generated based on the information contained in the XSD using
either the XSD.exe command-line tool or Visual Studio. Both solutions generate a
code file that contains the specific classes that constitute a typed DataSet. In
14.4.1, we’ll demonstrate how to create a typed DataSet using Visual Studio.

 Now that you have a good idea of what DataSets are, it may be useful to point
out what’s new in the latest versions of Visual Studio and .NET regarding DataSets.
This will allow you to make the transition to Visual Studio 2008 and .NET 3.5 if you’re
used to working with DataSets in previous versions of the platform.

14.2.3 What’s new in Visual Studio 2008 and .NET 3.5
to make LINQ queries against DataSets possible

In order to enable LINQ queries over DataSets, the code generator for typed
DataSets in Visual Studio 2008 and Xsd.exe has been improved. Previous versions
of Visual Studio represented a DataSet’s tables as classes inherited from Sys-
tem.Data.DataTable. The tables contained in the typed DataSets created by the

8 CHAPTER 14

Working with LINQ and DataSets

new generator are represented using classes inherited from a new class named
System.Data.TypedTableBase<T>.

 Figure 14.4 is a class diagram that shows the TypedTableBase<T> class and its
relation to the DataTable class.

 The new TypedTableBase<T> class still inherits from DataTable, so it’s an
enhancement that doesn’t break backward compatibility. TypedTableBase<T> adds
to DataTable implementations of System.Collections.Generic.IEnumera-

ble<T> and System.Collections.IEnumerable. This turns DataTables into query-
able collections, and allows you to query the tables contained in a typed DataSet
using LINQ.

 In addition to the TypedTableBase<T> class and the new typed DataSet gener-
ator, a set of extension methods has also been added to the .NET Framework’s
classes. These methods facilitate the integration of DataSets within LINQ queries.

 Now that we’ve shown you what DataSets are and when to use them, we can
get back to the focus of this chapter, which is LINQ to DataSet. We understand
that this brief introduction to DataSets may be difficult to follow, but as soon as
we get to the code examples, we believe that the fog will lift. The DataSet infra-
structure and the evolutions needed to support LINQ may seem complex at first.
You’ll see in the following sections that they’re mostly transparent when writing
code that combines DataSets and LINQ queries.

 We’ll now demonstrate how you can query DataSets with LINQ in similar ways
to how you’d query other data structures. LINQ to DataSet includes full support
for LINQ queries over both untyped and typed DataSets. We’ll demonstrate both
scenarios, starting with untyped DataSets.

14.3 Querying untyped DataSets

In this section, you’ll see how to write your first LINQ to DataSet queries. Before we
can query a DataSet, it needs to contain data. This is why we’ll start by showing you

Figure 14.4 Class diagram showing how the new System.Data.TypedTableBase<T> class extends
the System.Data.DataTable class by implementing IEnumerable<T> and IEnumerable.

Querying untyped DataSets 9

options for loading data into DataSets. We’ll demonstrate how to use DataAdapters
to fill a DataSet with data from a database, and then we’ll demonstrate another
approach that allows data from a LINQ query to be loaded into a DataSet.

 Once we have some data in a DataSet, we’ll show you how to write queries
against it, and right before writing LINQ to DataSet code, we’ll highlight the other
options for querying DataSets that were available before LINQ appeared. Finally,
we’ll write simple LINQ to DataSet queries as well as queries that join tables.

 For the moment, let’s load some data into DataSets.

14.3.1 Loading data into DataSets

Several means are available to load data into a DataSet. We’ll demonstrate two
approaches. The first consists of providing SQL queries and using them through a
DataAdapter. The second approach relies on LINQ to SQL.

 Inherently, a DataSet can save and load data to and from a stream or a file. A
DataSet also offers methods for serializing and deserializing data as an XML string.

 Most of the time, the data you’ll want to store in a DataSet comes from a rela-
tional database. But because the DataSet class was designed to be independent of
any data source, it doesn’t offer methods for loading data from a database and
pushing changes back into the database. ADO.NET includes classes that make it
easy to accomplish these tasks: DataAdapters.

Using a DataAdapter
A DataAdapter is an object that provides a bridge to retrieve and save data between
a DataSet and a database. A DataAdapter connects to a database to fill a DataSet.
Later on, the DataAdapter can connect back to the database to update the data
there, based on operations performed in-memory on the data held in the DataSet.

 Figure 14.5 shows the interactions between a DataSet, a DataAdapter, and a
database.

Figure 14.5 Interaction between a DataSet, a DataAdapter, and a database

10 CHAPTER 14

Working with LINQ and DataSets

A DataAdapter loads and persists data by means of SQL queries made against the
database. In order to load data into a DataSet, you need to provide a Data-
Adapter with SQL queries. You’ll then be able to invoke the DataAdapter’s Fill
method to actually load the data.

 Listing 14.1 shows a sample code snippet that demonstrates how to use a Data-
Adapter.

void FillDataSetUsingDataAdapter(DataSet dataSet)
{
 // Create the DataAdapter
 var dataAdapter = new SqlDataAdapter(
 @"SELECT ID, Name
 FROM Publisher
 ;
 SELECT ID, Title, Subject, Publisher, Price
 FROM Book
 WHERE DATEPART(YEAR, PubDate) > 1950 ",
 Properties.Settings.Default.LinqBooksConnectionString);

 // Map the results to tables in the DataSet
 dataAdapter.TableMappings.Add("Table", "Publisher");
 dataAdapter.TableMappings.Add("Table1", "Book");

 // Execute the SQL queries and load the data into the DataSet
 dataAdapter.Fill(dataSet);
}

NOTE We use the SqlDataAdapter class because we’re working with a SQL
Server database. Specific DataAdapter classes should be used for other
databases, such as OracleDataAdapter or SybaseDataAdapter. Option-
ally, you could use OleDbDataAdapter, which is not dependent on a spe-
cific DBMS.

Now that we have a method to fill a DataSet, we can display its content, as we do
using DataGridView controls in figure 14.6.

 Here is the code that you can use to create the DataSet and bind it to the Data-
GridViews:

var dataSet = new DataSet();
FillDataSetUsingDataAdapter(dataSet);

dataGridView1.DataSource = dataSet.Tables[0];
dataGridView2.DataSource = dataSet.Tables[1];

Listing 14.1 Loading data into a DataSet using a DataAdapter

Load the
DataSet

Display its
content

Querying untyped DataSets 11

We’ve just used the traditional method for loading data into a DataSet. Because
we now have LINQ in our toolset, it’d be a pity not to use it for this task. We’ll now
demonstrate how the result of a LINQ query can be stored in a DataTable.

Using LINQ to SQL to load data into DataSets
The problem with using DataAdapters is that it’s a brittle approach that requires
writing SQL queries. The SQL queries we write can easily become invalid, which
would lead to issues at run-time. LINQ to SQL already solves these kinds of prob-
lems, so it would be excellent if we could use it to load data into DataSets.

 LINQ to DataSet does not come with a built-in solution for storing the results
of a LINQ query in a DataTable, but it’s easy to write code that performs this task.

 Let’s demonstrate how listing 14.1 can be rewritten using LINQ to SQL. List-
ing 14.2 shows a new code snippet that uses two LINQ to SQL queries to add two
DataTables to a DataSet.

void FillDataSetUsingLinqToSql1(DataSet dataSet)
{
 DataTable table;

 var linqBooks =
 new LinqBooks(
 Properties.Settings.Default.LinqBooksConnectionString);

Listing 14.2 Loading data into a DataSet using LINQ to SQL

Figure 14.6 The content of a DataSet displayed using DataGridViews

Prepare the
LINQ to SQL
DataContext

12 CHAPTER 14

Working with LINQ and DataSets

 var publisherQuery =
 from publisher in linqBooks.Publisher
 select new { publisher.ID, publisher.Name };

 var bookQuery =
 from book in linqBooks.Book
 where book.PubDate.Value.Year > 1950
 select new {
 book.ID, book.Title, book.Subject, book.Publisher,
 Price = book.Price.HasValue ? book.Price.Value : 0
 };

 table = new DataTable();
 table.Columns.Add("ID", typeof(Guid));
 table.Columns.Add("Name", typeof(String));

 foreach (var publisher in publisherQuery)
 table.LoadDataRow(
 new Object[] {publisher.ID, publisher.Name}, true);

 dataSet.Tables.Add(table);

 table = new DataTable();
 table.Columns.Add("ID", typeof(Guid));
 table.Columns.Add("Title", typeof(String));
 table.Columns.Add("Subject", typeof(Guid));
 table.Columns.Add("Publisher", typeof(Guid));
 table.Columns.Add("Price", typeof(Decimal));

 foreach (var book in bookQuery)
 table.LoadDataRow(new Object[] {book.ID, book.Title,
 book.Subject, book.Publisher, book.Price}, true);

 dataSet.Tables.Add(table);
}

NOTES Here we use LINQ to SQL queries as the data sources. Any LINQ query
can be used to achieve the same result. The data can be stored in XML
documents and queried with LINQ to XML for example.

DataSets do not support nullable types. This is why we must test whether
the Price property of each book we retrieve from the database has a
value and we use 0 if it doesn’t B.

Early releases of LINQ provided two query operators to perform the same kind of
operation—LoadSequence and ToDataTable—but they’ve been removed in later

Nullable
types aren’t
supported

B

Query the
Publisher and

Book tables

Prepare the
Publisher
DataTable,
load data into
it, and add it

Prepare the Book
DataTable, load
data into it, and
add it

Querying untyped DataSets 13

releases of LINQ, and aren’t included in .NET 3.5. But they have been resurrected
by Andrew Conrad from Microsoft.

NOTE The source code for the ToDataTable and LoadSequence query operators
is available at http://blogs.msdn.com/aconrad/archive/2007/09/07/
science-project.aspx.

Note that they’ve been renamed CopyToDataTable instead of
ToDataTable and LoadSequence, but we’ve decided to keep the original
names to avoid confusion with the existing CopyToDataTable methods
from System.Data.DataTableExtensions.

Listing 14.3 shows how listing 14.2 can be simplified thanks to ToDataTable.

void FillDataSetUsingLinqToSql2(DataSet dataSet)
{
 DataTable table;

 // Prepare the LINQ to SQL DataContext
 var linqBooks =
 new LinqBooks(
 Properties.Settings.Default.LinqBooksConnectionString);

 // Query the Publisher table
 var publisherQuery =
 from publisher in linqBooks.Publisher
 select new { publisher.ID, publisher.Name };
 // Query the Book table
 var bookQuery =
 from book in linqBooks.Book
 where book.PubDate.Value.Year > 1950
 select new {
 book.ID, book.Title, book.Subject, book.Publisher,
 book.PageCount,
 Price = book.Price.HasValue ? book.Price.Value : 0
 };

 dataSet.Tables.Add(publisherQuery.ToDataTable());
 dataSet.Tables.Add(bookQuery.ToDataTable());
}

Now that we have some data in our DataSet, we can query it. We’ll first look at
how we can query DataSets without LINQ, and then with LINQ to DataSet to show
why LINQ is the best option.

Listing 14.3 Loading data into a DataSet using the ToDataTable query operator

Execute the queries
and load the data
into the DataSet

14 CHAPTER 14

Working with LINQ and DataSets

14.3.2 Querying DataSets without LINQ

Even without resorting to LINQ, DataSets offer some query features. A first option
you can use to query data within a DataSet is use the DataTable.Select method.
This method can be used to retrieve an array of all the DataRow objects that match
filter criteria, optionally in a specified sort order.

 Here are some examples:

DataRow[] publishers = dataSet.Tables[0].Select("LEN(Name) > 5");
DataRow[] books =
 dataSet.Tables[1].Select(
 "(Price > 15) AND (Title LIKE '*i*')", "Title DESC");

Another option for querying DataSets is made available through the Sys-
tem.Data.DataView class. A DataView can be used to sort and filter a DataTable:

dataGridView1.DataSource = new DataView(dataSet.Tables[0],
 "LEN(Name) > 5", String.Empty, DataViewRowState.Unchanged);
dataGridView2.DataSource = new DataView(dataSet.Tables[1],
 "(Price > 15) AND (Title LIKE '*i*')",
 "Title DESC",
 DataViewRowState.Unchanged);

One advantage of DataViews compared to the DataTable.Select method is that
they retain the metadata from the DataTables. This allows a direct binding to a
DataGridView, as in the previous code snippet. This results in the display shown in
figure 14.7.

Figure 14.7 The content of DataTables filtered using DataViews. Only the books
matching our criteria are displayed this time.

Querying untyped DataSets 15

The techniques offered by DataTable.Select and DataView can be used with
relationships. Let’s assume there is a relationship between the two tables in our
DataSet.

dataSet.Relations.Add("PublisherBooks",
 dataSet.Tables[0].Columns["ID"],
 dataSet.Tables[1].Columns["Publisher"]);

dataGridView1.DataSource = new DataView(dataSet.Tables[0],
 "COUNT(CHILD(PublisherBooks).Title) > 0",
 String.Empty,
 DataViewRowState.Unchanged);

Although DataTables and DataViews offer useful and flexible ways to filter and
sort data, these features aren’t as powerful as LINQ queries. We’ll now start work-
ing with LINQ to DataSet and write LINQ queries over DataSets and DataTables.

14.3.3 Querying untyped DataSets using LINQ to DataSet

In the previous section, we showed that DataSets can be queried without resort-
ing to LINQ. This works to a degree. Before LINQ to DataSet, queries over
DataSets were restricted to a limited set of operators and provided no compile-
time checking whatsoever. LINQ to DataSet enables a general mechanism for rich
querying over DataSet objects, which allows the full power of LINQ and the .NET
Framework to be utilized when writing queries.

 We’ll now demonstrate how LINQ to DataSet can be used to query DataSets
using the same features and syntax LINQ offers for other data stores. This section
focuses on untyped DataSets. We’ll start with a simple query and continue with
queries joining tables and using relationships. In section 14.4.3, we’ll do the same
operations but with typed DataSets.

Writing a simple query
In order to get started with LINQ to DataSet queries, let’s focus on a simple query.

 The code in listing 14.4 shows how to query a DataTable containing books.

var dataSet = new DataSet();
FillDataSetUsingLinqToSql2(dataSet);

DataTable bookTable = dataSet.Tables[1];

var filteredBooks =
 from book in bookTable.AsEnumerable()
 where book.Field<String>("Title").StartsWith("L")

Listing 14.4 Querying an untyped DataSet with LINQ to DataSet

Create a relationship
between a publisher
and its books

Display only
publishers that
have a book in
the table

Fill a DataSet
using LINQ to SQL

B Retrieve one
DataTable
contained in
the DataSet

Convert the DataTable into
an IEnumerable<DataRow>

C

D

16 CHAPTER 14

Working with LINQ and DataSets

 select new {
 Title = book.Field<String>("Title"),
 Price = book.Field<Decimal?>("Price")
 };

dataGridView1.DataSource = filteredBooks.ToList();

Several things are at play in the listing. Let’s describe them one by one:

■ Steps B and C are used to prepare a DataTable and load it using LINQ to
SQL with data coming from a database. This uses a technique we introduced
in section 14.3.1.

■ LINQ works on sources that are IEnumerable<T> or IQueryable<T>. As the
DataTable class doesn’t implement either interface, you must call the AsE-
numerable operator D and use the returned IEnumerable<DataRow> object
as the source in LINQ queries.

■ The elements we iterate over are DataRow objects. In order to retrieve val-
ues, we use the Field query operator E. The Field operator requires the
type of the column to be specified as a type argument. The parameter it
takes is the name of the column. More information about the Field opera-
tor is available in section 14.6.1.

■ Note how nullable types are handled automatically by the Field operator F.
We don’t need to add special processing for the Price field to test for DBNull
as is usually the case for nullable fields. More on this in section 14.6.1 when
we cover the Field operator.

NOTE No additional namespaces need to be imported to use the Field and AsE-
numerable query operators or other LINQ to DataSet features. Everything
is available in the System.Data namespace. However, in order to use LINQ
to DataSet, you need to reference the System.Data.DataSetExten-
sions.dll assembly, where its query operators and classes are defined.

Field is an extension method provided by the System.Data.
DataRowExtensions class and AsEnumerable is an extension method pro-
vided by the System.Data.DataTableExtensions class. You don’t need
to use these classes directly. Importing the System.Data namespace is
enough to get access to the Field and AsEnumerable query operators.

LINQ to DataSet code in VB.NET is similar to code in C#. Here is how the LINQ to
DataSet query from listing 14.4 can be written using VB.NET:

Field values are retrieved
using the Field operator

E

The Field operator handles
nullable types transparentlyF

Querying untyped DataSets 17

From book In bookTable.AsEnumerable() _
Where book.Field(Of String)("Title").StartsWith("L") _
Select _
 Title = book.Field(Of String)("Title"), _
 Price = book.Field(Of Decimal)("Price")

In comparison to C#, VB.NET offers a specific syntax that can make queries
shorter. In VB.NET, an exclamation mark (also known as bang, pling, or the dictio-
nary lookup operator in VB) can be used in lieu of the Field operator. Here is the
same query as we just saw, but formulated with the simplified syntax:

From book In bookTable.AsEnumerable() _
Where book!Title.StartsWith("L") _
Select Title = book!Title, Price = book!Price

This syntactic sugar shortens the code and removes the need for specifying the
data types of the fields. The latter query can even be simplified because we keep
the name of the fields as the names of the properties in the select clause:

From book In bookTable.AsEnumerable() _
Where book!Title.StartsWith("L") _
Select book!Title, book!Price

NOTE An interesting observation is that Visual Basic’s support for late binding
allows queries against untyped DataSets to be easier to read than their C#
counterparts. In section 14.4, we’ll discuss how typed DataSets address
this issue making readability significantly better for both languages.

Now that you’ve written your first LINQ to DataSet queries, you should start to see
how this technology allows you to query DataSets using the LINQ syntax and
power you’re now becoming familiar with.

 Let’s move on to richer queries. In the next sections we’ll demonstrate how to
write queries that join tables, with or without a predefined relationship.

Joining DataTables
We’ve just seen a simple example, but LINQ to DataSet supports all the LINQ oper-
ators that make sense over a DataTable or a sequence of DataRow objects. One
common request for DataSets is support for joins across DataTables. This is now
possible with LINQ thanks to the join operators.

 Just like you’d do with LINQ to Objects, you can use the join clause in a LINQ
to DataSet query expression to join tables. Figure 14.8 shows an example of the
result we want to achieve.

 In the figure, you can see that data from both the Publisher and Book tables
have been projected into one collection.

18 CHAPTER 14

Working with LINQ and DataSets

Listing 14.5 is a sample code snippet that shows how to join the Book and Pub-
lisher tables.

var dataSet = new DataSet();
FillDataSetUsingLinqToSql2(dataSet);

DataTable publisherTable = dataSet.Tables[0];
DataTable bookTable = dataSet.Tables[1];

var publisherBooks =
 from publisher in publisherTable.AsEnumerable()
 join book in bookTable.AsEnumerable()
 on publisher.Field<Guid>("ID")
 equals book.Field<Guid>("Publisher")
 select new {
 Publisher = publisher.Field<String>("Name"),
 Book = book.Field<String>("Title")
 };

dataGridView1.DataSource = publisherBooks.ToList();

In the listing, we use a join clause B to establish a master-details relationship
between a publisher and its books. We then project publisher names and book
titles into an anonymous type C. The result is a collection of all the book titles
with the associated publisher’s name, as seen in figure 14.8.

 Instead of re-creating the relationship in every query, we could use a feature
provided by DataSets. A DataSet can contain information about the relationships
between its tables. We’ll use this the feature in the following section.

Listing 14.5 Joining untyped tables in a LINQ to DataSet query

Figure 14.8 Book and publisher tables projected into one table through a LINQ to DataSet join

Join the Publisher and Book
tables using the publisher ID
for the join criterion

B

Retrieve information
from both tables

C

Querying typed DataSets 19

Working with table relationships
In listing 14.5, we joined the Publisher and Book tables. In situations like this, it’s
possible to let the DataSet know that there is a relationship between two tables.
This way, instead of using a join clause in your query, you can use the
DataRow.GetChildRows method.

 Listing 14.6 is a code snippet equivalent to listing 14.5 that uses this technique.

dataSet.Relations.Add("PublisherBooks",
 publisherTable.Columns["ID"], bookTable.Columns["Publisher"]);

var publisherBooks =
 from publisher in publisherTable.AsEnumerable()
 from book in publisher.GetChildRows("PublisherBooks")
 select new {
 Publisher = publisher.Field<String>("Name"),
 Book = book.Field<String>("Title")
 };

With DataSet relationships, the code is simplified and easier to read. In the ver-
sion of the query that uses DataRow.GetChildRows, the fields forming the rela-
tionships aren’t specified. This information is part of the relationship present in
the DataSet. Also, the relationship is named, which makes it easier to understand
how the tables are joined. Note that it’s also possible to navigate the tables in the
opposite direction using DataRow.GetParentRow or DataRow.GetParentRows.

 This is all we’ll demonstrate for untyped DataSets because you already know the
rest. The queries you can write using LINQ to DataSet follow the same syntax and
rules as with the other flavors of LINQ. You can write query expressions and use the
standard query operators with DataSets as you would with other in-memory objects.

 We’ll now focus on typed DataSets. We’ll show you how to write the same kind
of queries you’ve just seen with untyped DataSets, but this time with typed
DataSets. This will allow you to see how it’s easier and safer to write LINQ queries
against typed DataSets than against untyped DataSets.

14.4 Querying typed DataSets

Since typed DataSets are still DataSets, the LINQ to DataSet queries you’ve seen
in the previous section about untyped DataSets also apply to typed DataSets.
Also, the capability of typed DataSets to expose table fields as strongly typed prop-
erties enables us to write improved and simplified queries.

Listing 14.6 LINQ to DataSet query on an untyped DataSet using relationships

Query the
DataTables

Create a
relationship
between a
publisher
and its
books

20 CHAPTER 14

Working with LINQ and DataSets

 Let’s take a second look at the query we wrote for untyped DataSets as part of
listing 14.4.

from book in bookTable.AsEnumerable()
where book.Field<String>("Title").StartsWith("L")
select new {
 Title = book.Field<String>("Title"),
 Price = book.Field<Decimal>("Price")
};

While LINQ to DataSet is a powerful tool when used as shown, the code suffers
from a number of limitations:

■ Field access is untyped by default (accessing a DataRow’s field returns an
untyped object). Use of the Field operator is required to handle type cast-
ing and null values.

■ Use of the Field operator clutters the code with types and column names in
quotes.

■ Column access is done in a late-bound way, which prevents the compiler
from checking column names at compile-time. Column names are evalu-
ated at run-time only, which can result in run-time errors.

NOTE While VB.NET offers a simplified syntax (see section 5.3.3), it still suffers
from the lack of compile-time checking due to the use of late binding.

If the schema of the DataSet is known at design-time then typed DataSets provide
a much better experience when using LINQ. Rows in typed DataSets have typed
members for each column, which makes access much easier. Additionally, typed
DataSets have properties for easy access to the various tables they contain.

 In this section, after we show you how to create a typed DataSet, we’ll compare
the queries we wrote for untyped DataSets with equivalent queries for typed
DataSets. This comparison should make it obvious that LINQ to DataSet and
typed DataSets work well together to enable strongly typed queries over an in-
memory relational data store.

14.4.1 Generating a typed DataSet
Before being able to query a typed DataSet, you need to generate one. Let’s
review the steps required to create a typed DataSet based on the data model of
our running LinqBooks example.

 The first step consists in adding a new DataSet to a Visual Studio project. This
can be achieved by clicking the Project menu and selecting Add New Item.... The
Add New Item dialog box appears, as shown in figure 14.9.

Querying typed DataSets 21

Select DataSet and name the item LinqBooksDataSet.xsd.
 The DataSet Designer is then available to visually create our typed DataSet, as

shown in figure 14.10.

Figure 14.9 Dialog for adding a new DataSet to a project

Figure 14.10 Editing a new typed DataSet using the DataSet Designer after
adding it to a project

22 CHAPTER 14

Working with LINQ and DataSets

We’ll select some tables from our database and
add them to the DataSet. Open the Server
Explorer and add a connection to the Linq-
Books database if you don’t have one yet.

 Figure 14.11 shows the Server Explorer with a
connection to the LinqBooks database.

 Drag and drop the Book and Publisher
tables onto the design surface, as in figure 14.12.

 Note that the relationships are created auto-
matically between the tables in the DataSet based
on the information contained in the database.

 When you save the new DataSet, Visual Studio
automatically creates a C# or VB.NET code file.
You can find it below the LinqBooksDataSet.xsd
file in the Solution Explorer. It’s named Linq-
BooksDataSet.Designer.cs or LinqBooksDataSet.
Designer.vb.

 The code generated for our DataSet looks
like listing 14.7.

Figure 14.12 The Book and Publisher tables designed using the DataSet Designer

Figure 4.11 Visual Studio’s Server
Explorer showing the LinqBooks
database and its tables

Querying typed DataSets 23

//---
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:2.0.50727.1433
//
// Changes to this file may cause incorrect behavior and will
// be lost if the code is regenerated.
// </auto-generated>
//---

#pragma warning disable 1591

namespace LinqInAction.Chapter14 {
 /// <summary>
 ///Represents a strongly typed in-memory cache of data.
 ///</summary>
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute(
 "System.Data.Design.TypedDataSetGenerator", "2.0.0.0")]
 [global::System.Serializable()]
 [global::System.ComponentModel.DesignerCategoryAttribute(
 "code")]
 [global::System.ComponentModel.ToolboxItem(true)]
 [global::System.Xml.Serialization.XmlSchemaProviderAttribute(
 "GetTypedDataSetSchema")]
 [global::System.Xml.Serialization.XmlRootAttribute(
 "LinqBooksDataSet")]
 [global::System.ComponentModel.Design.HelpKeywordAttribute(
 "vs.data.DataSet")]
 public partial class LinqBooksDataSet :
 global::System.Data.DataSet
 {
 private BookDataTable tableBook;
 private PublisherDataTable tablePublisher;
 private global::System.Data.DataRelation
 relationFK_Book_Publisher;
 private global::System.Data.SchemaSerializationMode
 _schemaSerializationMode =
 global::System.Data.SchemaSerializationMode.IncludeSchema;
 ...

This code file contains the classes for our typed DataSet, such as LinqBooks-
DataSet, BookDataTable, PublisherDataTable, BookRow, and PublisherRow.

 Our typed DataSet is now complete. Before being able to query it using LINQ
to DataSet, we need to load data into it.

Listing 14.7 Sample code generated for the typed DataSet we created and designed
 (LinqBooksDataSet.Designer.cs)

24 CHAPTER 14

Working with LINQ and DataSets

14.4.2 Loading data into typed DataSets

As with untyped DataSets, we have several options for loading data into typed
DataSets. We’ll demonstrate two options: using TableAdapters and using LINQ
to SQL.

Using TableAdapters
When we designed our typed DataSet, in addition to tables, Visual Studio created
a TableAdapter for each table. These TableAdapters are similar to the Data-
Adapters we used in section 14.3.1. The difference is that the generated Table-
Adapters are strongly typed.

 Here is how to use the TableAdapters to load data in our typed DataSet:

LinqBooksDataSet dataSet = new LinqBooksDataSet();
new LinqBooksDataSetTableAdapters.PublisherTableAdapter()
 .Fill(dataSet.Publisher);
new LinqBooksDataSetTableAdapters.BookTableAdapter()
 .Fill(dataSet.Book);

The generated TableAdapters already contain the SQL queries required to
retrieve the data from the database.

 If you prefer to stick to LINQ, you’ll be happy to know that it’s another option
you can use, as you’ll see next.

Using LINQ to SQL to load data into typed DataSets
In section 14.3.1, we used LINQ to SQL to load data into a DataTable. In the case
of typed DataSets, DataTables already exist in the DataSets. For example, our
LinqBooksDataSet class has Publisher and Book properties that point to the
DataTables available in our typed DataSet. This means that the code for loading
data from a LINQ query into a typed DataSet is simpler than the code for an
untyped DataSet.

 Listing 14.8 shows a sample method that loads data into our typed LinqBooks-
DataSet.

void FillDataSetUsingLinqToSql1(LinqBooksDataSet dataSet)
{
 var linqBooks =
 new LinqBooks(

Properties.Settings.Default.LinqBooksConnectionString);

 var publisherQuery =
 from publisher in linqBooks.Publisher
 select new { publisher.ID, publisher.Name };

Listing 14.8 Loading data into a typed DataSet using LINQ to SQL

Prepare the
LINQ to SQL
DataContext

Query the
tables

Querying typed DataSets 25

 var bookQuery =
 from book in linqBooks.Book
 where book.PubDate.Value.Year > 1950
 select new {
 book.ID, book.Title, book.Subject, book.Publisher,
 Price = book.Price.HasValue ? book.Price.Value : 0
 };

 foreach (var publisher in publisherQuery)
 {
 dataSet.Publisher.AddPublisherRow(
 publisher.ID, publisher.Name, null, null);
 }
 foreach (var book in bookQuery)
 {
 dataSet.Book.AddBookRow(book.ID, book.Title, book.Subject,
 dataSet.Publisher.FindByID(book.Publisher),
 DateTime.MinValue, book.Price, 0, null, null, null);
 }
}

NOTE Like the code for untyped DataSets, this code can be used to load data
coming from any LINQ query, not just from a LINQ to SQL query.

Just as we proposed a second way to load data into an untyped DataSet in sec-
tion 14.3.1, let’s rewrite listing 14.8 using the LoadSequence query operator.2

The rewritten code is shown in listing 14.9.

void FillDataSetUsingLinqToSql1(LinqBooksDataSet dataSet)
{
 var linqBooks =
 new LinqBooks(
 Properties.Settings.Default.LinqBooksConnectionString);

 var publisherQuery =
 from publisher in linqBooks.Publisher
 select new { publisher.ID, publisher.Name };
 var bookQuery =
 from book in linqBooks.Book
 where book.PubDate.Value.Year > 1950
 select new {
 book.ID, book.Title, book.Subject, book.Publisher,

2 See http://blogs.msdn.com/aconrad/archive/2007/09/07/science-project.aspx

Listing 14.9 Loading data into a typed DataSet using LINQ to SQL and
 the LoadSequence operator

Query the
tables

Execute the
queries and

load the data
into the
DataSet

26 CHAPTER 14

Working with LINQ and DataSets

 book.PageCount,
 Price = book.Price.HasValue ? book.Price.Value : 0
 };

 publisherQuery.LoadSequence(dataSet.Publisher, null);
 bookQuery.LoadSequence(dataSet.Book, null);
}

Equipped with these techniques for loading data into a typed DataSet, you can
now move on to actually querying typed DataSets. In section 14.3.2, we showed
you how to query untyped DataSets without using LINQ. The same technique can
be used with typed DataSets in the same way, so we won’t rehash it here. Instead,
we’ll focus on querying typed DataSets with LINQ to DataSet.

14.4.3 Querying typed DataSets using LINQ to DataSet

Querying a typed DataSet using LINQ to DataSet is not fundamentally different
than querying an untyped DataSet. Here we’ll focus on the differences between
queries on untyped and typed DataSets.

 We’ll cover the same operations as in section 14.3.3, starting with a simple
query and then demonstrating how to join tables with and without relationships.

Simple query
Let’s compare the simple query we wrote in section 14.3.3 with an equivalent one
against our typed DataSet.

 Here is our earlier query, using an untyped DataSet:

from book in dataSet.Tables[0].AsEnumerable()
where book.Field<String>("Title").StartsWith("L")
select new {
 Title = book.Field<String>("Title"),
 Price = book.Field<Decimal>("Price")
};

And here is the same query using a typed DataSet:

from book in dataSet.Book
where book.Title.StartsWith("L")
select new { book.Title, book.Price };

As you can see, the second query is significantly simpler. In addition to the benefits
that we presented in section 14.3, typed DataSets also make LINQ queries much eas-
ier to formulate and read in comparison to queries against untyped DataSets.

 Table 14.2 is a summary of the key differences that a LINQ query against a
typed DataSet presents compared to a LINQ query on an untyped DataSet.

Querying typed DataSets 27

The same benefits apply for all LINQ to DataSet queries over typed DataSets. This
is also the case when joining tables, as you’ll see next.

Joining tables
In order to demonstrate how to join tables in a query over a typed DataSet, list-
ing 14.10 shows some code equivalent to that in listing 14.5.

LinqBooksDataSet dataSet = new LinqBooksDataSet();
FillDataSetUsingLinqToSql2(dataSet);

var query =
 from publisher in dataSet.Publisher
 join book in dataSet.Book
 on publisher.ID equals book.Publisher
 select new {
 Publisher = publisher.Name,
 Book = book.Title
 };

dataGridView1.DataSource = query.ToList();

You can see that the code is simpler with typed DataSets, compared to that
required with untyped DataSets.

 Let’s do the same comparison with the query that uses relationships.

Working with relationships
In our example with untyped DataSets, we created a relationship between the
Publisher and Book tables. Remember that the relationship was automatically
defined when we designed the typed DataSet in section 14.4.1. The code genera-
tor also created methods for each relationship defined in the typed DataSet: The

Table 14.2 Benefits of typed DataSets compared to untyped DataSets

Differences Benefits

Access to the tables contained in the DataSet is
possible through members exposed by the DataSet.

Compile-time check on the table name
IntelliSense

No need to use AsEnumerable. Shorter and simpler code

No need to use the Field operator or to specify the
types of fields.

Compile-time check on the table name
IntelliSense
Shorter and simpler code

Listing 14.10 Joining untyped tables in a LINQ to DataSet query

Load a
DataSet

Query the
DataTables

Display the
results

28 CHAPTER 14

Working with LINQ and DataSets

PublisherRow.GetBookRows method is one of them. This method can be used to
navigate from a publisher to its books.

 Again, let’s compare the code we wrote for untyped DataSets in listing 14.6 to
the code we can write for typed DataSets. Here is the code with an untyped DataSet:

from publisher in publisherTable.AsEnumerable()
from book in publisher.GetChildRows("PublisherBooks")
select new {
 Publisher = publisher.Field<String>("Name"),
 Book = book.Field<String>("Title")
};

Here is the same code, but with a typed DataSet:

from publisher in dataSet.Publisher
from book in publisher.GetBookRows()
select new {
 Publisher = publisher.Name,
 Book = book.Title
};

Table 14.3 sums up the benefits of a LINQ query over a typed DataSet using rela-
tionships in comparison to the equivalent query on an untyped DataSet.

Thanks to this section and the previous one, you should now be able to start writ-
ing your own LINQ to DataSet queries. In addition, the comparison between the
queries written for untyped DataSets and the queries written for typed DataSets
should help you to choose between both kinds of DataSets.

 So far, you’ve seen how great LINQ is for querying various sorts of data sources.
However, querying is just one of the operations commonly encountered when
dealing with data. Another common operation is data binding. We’ll now see how
LINQ to DataSet supports data binding with CopyToDataTable and AsDataView.

14.5 Binding LINQ to DataSet query results to UI controls

At this stage, you may have noticed that LINQ to DataSet suffers from one major
weak point: GUI binding. Using LINQ to DataSet the way we did in the previous

Table 14.3 Benefits of using typed DataSets instead of untyped DataSets in a LINQ query

Differences Benefits

Typed DataRows expose a method for each
relationship to provide access to related rows.

Compile-time check on the table name
IntelliSense

Relationships are predefined in the DataSet
and don’t have to be redefined using code

Simpler code

Binding LINQ to DataSet query results to UI controls 29

sections comes with a disadvantage: LINQ to DataSet queries allow one-way projec-
tions only. No round-trips are possible with the data source. This means that the
source DataSet can’t be updated directly when the data is edited in DataGrid-
Views or other controls. It also means that updates performed in the source
DataSet aren’t reflected in the query results and the controls.

 Solutions to these problems come in the form of two query operators—Copy-

ToDataTable and AsDataView—provided by LINQ to DataSet. The first allows us
to copy the results of a LINQ to DataSet query into a DataTable. The second can
be used for two-way data binding of LINQ to DataSet query results. Let’s first intro-
duce CopyToDataTable.

14.5.1 Using CopyToDataTable to move LINQ
to DataSet results into a DataTable

CopyToDataTable is a query operator that can be used to convert the results of
LINQ to DataSet queries into a DataTable. The advantage of doing this is that the
new DataTable can be bound to graphical controls and edited. This allows the
results of your LINQ to DataSet queries to be updated and used wherever a DataT-
able is required, which in itself makes for an interesting feature.

 The most frequent use case for CopyToDataTable is when results need to be
merged with the source DataTable. This can be used to propagate the updates to
a database with a DataAdapter, for instance. In this scenario, the results of the
LINQ to DataSet query are not linked to the source DataSet, but they can still be
round-tripped to a database.

 Here is the typical use of the CopyToDataTable operator:

1 Data is loaded from a database into a DataSet.

2 The DataSet is queried using LINQ to DataSet, which allows all the power-
ful LINQ operations such as joins, grouping, and sorting.

3 The results of the LINQ query are stored in a DataTable thanks to CopyTo-
DataTable.

4 The content of the DataTable is edited.

5 The DataTable content is merged back into the source DataTable.

6 The data is used to update the database using a DataAdapter object.

The first step can be achieved using the techniques we demonstrated in sec-
tions 14.3.1 and 14.4.2.

30 CHAPTER 14

Working with LINQ and DataSets

 Here is an example of how to achieve the second and third steps:

var books =
 from book in dataSet.Book
 where book.Title.Contains("a")
 orderby book.Title
 select book;

dataGridView2.DataSource = books.CopyToDataTable()

Now that the results of the query are bound to a DataGridView, they can be
edited. This is the fourth step of our scenario. Once this is done, the updated data
can be merged back into the original DataSet, as described in the fifth step:

DataTable dataTable = (DataTable)dataGridView2.DataSource;
dataSet.Book.Merge(dataTable);

Finally, you can update the database using the Update method of a DataAdapter
or simply deal with the changes in any other way. In the following code snippet,
we look at the changes that have been performed:

DataTable changesTable = dataSet.Book.GetChanges();
if (changesTable == null || changesTable.Rows.Count < 1)
{
 MessageBox.Show("No changes");
 dataGridView1.DataSource = null;
}
else
{
 var changes =
 from change in changesTable.AsEnumerable()
 select new {
 State = change.RowState,
 OriginalTitle = change.Field<String>(
 "Title", DataRowVersion.Original),
 NewTitle = change.RowState != DataRowState.Deleted ?
 change.Field<String>("Title", DataRowVersion.Current) :
 String.Empty
 };

 dataGridView1.DataSource = changes.ToList();
}

When this is executed, a display like the one in figure 14.13 can result if you
delete one book and update another.

 Now that you’ve seen how to use CopyToDataTable and why it’s useful, let’s
focus on how it works.

Binding LINQ to DataSet query results to UI controls 31

LINQ to DataSet queries return a sequence of DataRows. CopyToDataTable moves
these into a DataTable. Two overloads of CopyToDataTable are available:

DataTable CopyToDataTable<T>(this IEnumerable<T> source)
 where T: DataRow;
void CopyToDataTable<T>(this IEnumerable<T> source,
 DataTable table, LoadOption options)
 where T: DataRow;

The first version of CopyToDataTable returns a new DataTable containing copies
of the DataRows contained in the source sequence. The second version of CopyTo-
DataTable loads the DataRows from the source sequence into an existing DataT-
able. The parameter of type LoadOption can be used to control how the values
from the data source will be applied to existing rows in the DataTable. This
parameter specifies how changes are registered and what happens to row versions.

 The schema of the destination table is based on the schema of the first
DataRow in the source sequence. For a typed DataTable, types are not preserved.
The data and schema are transferred, but the resulting rows of the output table
will not be of the typed DataRow’s type.

NOTE The CopyToDataTable query operator is an extension method provided
by the System.Data.DataTableExtensions class. You don’t need to
use this class directly. Referencing System.Data.DataSetExten-
sions.dll and importing the System.Data namespace is all you need
to get access to CopyToDataTable.

Figure 14.13 Sample display obtained with CopyToDataTable used to detect changes
in a DataSet

32 CHAPTER 14

Working with LINQ and DataSets

We’ve introduced the CopyToDataTable query operator and shown how you can
bind LINQ to DataSet query results to UI components to reflect updates. We’d like
to present another query operator named AsDataView. It enables richer data
binding scenarios, namely two-way data binding.

14.5.2 Two-way data binding with AsDataView

Data binding is the process that establishes a connection between application UI
and data. Basic data binding is used to easily display data in graphical compo-
nents, like the Windows Forms DataGridView control. If the binding has the cor-
rect settings and the data provides the proper notifications then when the data
changes its value, the elements that are bound to the data reflect changes auto-
matically. If the graphical components also allow you to edit the data and your
changes are reflected in the data source, this becomes two-way data binding.

 In the examples we’ve seen so far in this book, only one-way data binding was
used. The data displayed in the graphical components can’t be edited to update
the underlying DataSet. When two-way data binding is required, you can use the
AsDataView query operator. AsDataView is an extension method provided by the
System.Data.DataTableExtensions class. It creates a DataView instance for a col-
lection of DataRows returned by a LINQ to DataSet query.

 AsDataView enables data binding scenarios for LINQ to DataSet. A DataView
returned by AsDataView represents a LINQ to DataSet query itself and is not a
view on top of the query.

 The following are some benefits of the DataView returned by AsDataView:

■ It’s fully bindable

■ It’s fully updatable

■ It reflects the changes happening in the underlying DataTable

■ It keeps track of the LINQ to DataSet query’s filtering and sorting expres-
sions.

NOTE AsDataView can also create a DataView from a DataTable, providing a
default view of that table.

But because the AsDataView query operator is available only for
DataTable and EnumerableRowCollection<T>, it doesn’t allow data
binding scenarios for anonymous types. This means that it can’t be used
for joins and projections like the one we used in previous sections (see
listing 14.12). Keep in mind that you can use AsDataView with a LINQ to
DataSet query only if the query returns a collection of DataRows.

Binding LINQ to DataSet query results to UI controls 33

Here is the typical scenario where AsDataView is used:

1 Data is loaded from a database into a DataSet.

2 The DataSet is queried using LINQ to DataSet, which allows all the power-
ful LINQ operations like joins, grouping, and sorting.

3 A DataView is created from the results thanks to AsDataView.

4 The DataView is bound to a DataGridView.

5 The data is edited in the DataGridView.

6 The original DataSet has been updated automatically by the DataView and
can be used to update a database using a DataAdapter object.

Let’s review sample code that demonstrates how to use AsDataView in another
scenario. The method in listing 14.11 is used to bind a LINQ to DataSet DataView
to a DataGridView.

private void btnTypedDataView_Click(object sender, EventArgs e)
{
 LinqBooksDataSet dataSet = new LinqBooksDataSet();
 FillDataSetUsingLinqToSql2(dataSet);

 var books =
 from book in dataSet.Book.AsEnumerable()
 where book.Title.Length > 10
 orderby book.Title
 select book;

 DataView view = books.AsDataView();
 dataGridView1.DataSource = view;

 dataGridView2.DataSource = dataSet.Book;
}

After the method has been executed, you can try to sort and update the data in the
DataGridViews. You’ll notice that the changes in either grid are reflected in the
other one because the underlying DataSet is updated. You can also try to replace
the title of a book with a shorter one to see that the filtering condition of the query
is applied. Books with titles shorter than 10 characters aren’t displayed in the first
grid because the DataView applies the filter where book.Title.Length > 10.

Listing 14.11 Sample code that demonstrates the AsDataView query operator
 (FormMain.cs)

Load a
DataSet

Query a
DataTable

Create a view on the query and
bind it to the first DataGridView

Bind the Book DataTable to
the second DataGridView

34 CHAPTER 14

Working with LINQ and DataSets

 You’ve now seen how to query DataSets with LINQ and how to use the query
results. Before ending this chapter, we’d like to provide a reference for two
major query operators that come with LINQ to DataSet—Field and SetField—
and introduce a utility class that allows you to use set operators with LINQ to
DataSet: DataRowComparer.

14.6 Using query operators with LINQ to DataSet

This section provides a quick reference concerning two query operators that are
useful when querying DataSets. These query operators are provided as extension
methods for the DataRow and DataTable classes. We’ll first give you more infor-
mation on the Field operator, which you’ve already seen. We’ll also introduce the
SetField operator, which is similar to Field, but for assignments. These opera-
tors will help you write richer LINQ queries against DataSets. We’ll also review the
DataRowComparer class provided with LINQ to DataSet.

14.6.1 Field<T> and SetField<T> operators for DataRows

Two query operators are provided as extension methods for DataRow: Field and
SetField. These extension methods are provided by the System.Data.DataRow-
Extensions class.

Field<T>
We used Field<T> throughout this chapter, but it’s good to review the purpose it
serves. The Field<T> operator provides a way to get the value of a column within
a DataRow without having to worry about the different representations of null val-
ues in DataSets and LINQ.

 Let’s look at the problem the Field operator solves. In DataSets, null values
are represented using System.DBNull.Value. This is inconsistent with the way
LINQ deals with null values. LINQ uses the support for nullable types introduced
in the .NET Framework 2.0 release.

 In our sample DataSet, the Price field accepts null values. DataSets don’t sup-
port nullable types, so you can’t write the following query:

from book in bookTable.AsEnumerable()
where (Decimal?)book["Price"] > 10

The problem here is that when the Price field is null, book["Price"] returns
DBNull.Value. DBNull is not convertible to Nullable<Decimal>, so the where
clause throws an InvalidCastException if there’s a row that has no value for the
Price field.

Using query operators with LINQ to DataSet 35

 In order to write safe code, you have to check whether the Price field is null
prior to trying to access its value. Here’s what the same query looks like with the
check:

from book in bookTable.AsEnumerable()
where !book.IsNull("Price") && ((Decimal)book["Price"] > 10)
select book;

Here’s how to rewrite the query using the Field operator:

from book in bookTable.AsEnumerable()
where book.Field<Decimal?>("Price") > 10
select book;

As you can see, the Field operator enables less verbose and less error prone que-
ries because it automatically handles the conversion to nullable types.

SetField<T>
The SetField operator is provided as a companion to the Field operator to per-
form assignments that automatically handle null values.

 Without the SetField operator, assigning a value to a DataRow’s field that can
be null requires using a test such as the following to replace null with
DBNull.Value:

book["Price"] = theValue ?? (Object)DBNull.Value;

NOTE In our code, we use the ?? operator. This is C#’s null coalescing operator.
The test expression is equivalent to the following expression that uses the
ternary conditional operator:
theValue == null ? (Object)DBNull.Value : theValue

With SetField, you can write the following:

book.SetField<Decimal?>("Price", theValue);

The benefit is not obvious, because the use of SetField doesn’t really shorten the
instruction, but SetField is here to mirror the Field operator.

 Let’s now introduce the DataRowComparer class.

14.6.2 Set operators and DataRow
comparison with DataRowComparer

A number of set operators (Distinct, Union, Intersect, Except) exist in the stan-
dard query operators (see chapter 3). The problem with these operators is that they
compare the equality of source elements by calling the GetHashCode and Equals
methods on each collection of elements. In the case of DataRows, this performs a

36 CHAPTER 14

Working with LINQ and DataSets

reference comparison, which is generally not the ideal behavior for set operations
over tabular data. For set operations, you usually want to determine whether the ele-
ment values are equal and not the element references. Therefore, the DataRow-
Comparer class has been added to LINQ to DataSet. This class can be used to
compare row values.

 The DataRowComparer class contains a value comparison implementation for
DataRow, so this class can be used for set operations such as Distinct.

NOTE The DataRowComparer class can’t be directly instantiated. Instead, the
Default property of the class provides a singleton instance ready for use.

The Equals method of the DataRowComparer class is called when two DataRow
objects should be compared. This method returns true if the ordered set of col-
umn values in both DataRow objects it receives as input parameters are equal; oth-
erwise, it returns false.

 Here’s a sample use of the Intersect query operator:

private void btnIntersect_Click(object sender, EventArgs e)
{
 LinqBooksDataSet dataSet = new LinqBooksDataSet();
 FillDataSetUsingLinqToSql2(dataSet);

 var query1 =
 from book in dataSet.Book.AsEnumerable()
 where book.Price < 30
 select book;
 var query2 =
 from book in dataSet.Book.AsEnumerable()
 where book.PageCount > 100
 select book;
 var books1 = new LinqBooksDataSet.BookDataTable();
 query1.CopyToDataTable(books1, LoadOption.PreserveChanges);
 var books2 = new LinqBooksDataSet.BookDataTable();
 query2.CopyToDataTable(books2, LoadOption.PreserveChanges);

 IEqualityComparer<LinqBooksDataSet.BookRow> comparer =
 new DataRowComparer<LinqBooksDataSet.BookRow>();
 var books = books1.AsEnumerable()
 .Intersect(books2.AsEnumerable(), comparer)
 .Select(book => new { book.Title, book.Price, book.PageCount });

 dataGridView2.DataSource = books.ToList();
}

For this sample to work with typed DataSets, we created a custom generic com-
parer. Here’s how it’s implemented:

Load a
DataSet

Create
two tables

Find the
intersection of
the two tables

Display books costing
less than 30 that have
more than 100 pages

Summary 37

public class DataRowComparer<TDataRow> :
 IEqualityComparer<TDataRow>
 where TDataRow: DataRow
{
 public bool Equals(TDataRow x, TDataRow y)
 {
 return DataRowComparer.Default.Equals(x, y);
 }

 public int GetHashCode(TDataRow obj)
 {
 return DataRowComparer.Default.GetHashCode(obj);
 }
}

With DataRowComparer, you can use the set operators in your LINQ to DataSet
queries and have them behave as expected.

14.7 Summary

LINQ to DataSet is a part of the LINQ toolset that joins LINQ to Objects, LINQ to
XML, and LINQ to SQL to enable language-integrated queries in a wide range of
scenarios. In this chapter, you’ve seen how LINQ to DataSet enables scenarios that
involve DataSets and LINQ queries. This LINQ flavor is important because
DataSets are commonly used in .NET applications.

 If you already use DataSets, you can now to improve your existing code with
rich queries. If you don’t already use DataSets, you may reconsider them in light
of their new querying capabilities.

 Again, one big advantage of LINQ is that it enables a consistent querying infra-
structure for a variety of data structures. If you already know LINQ to Objects or
the standard query operators, you’ll be able to use LINQ to DataSet easily.

