
M A N N I N G

Andrew Lock

SAMPLE CHAPTER

ASP.NET Core in Action
by Andrew Lock

Chapter 13

 Copyright 2018 Manning Publications

v

brief contents
PART 1 GETTING STARTED WITH MVC.. 1

1 ■ Getting started with ASP.NET Core 3
2 ■ Your first application 28
3 ■ Handling requests with the middleware pipeline 61
4 ■ Creating web pages with MVC controllers 93
5 ■ Mapping URLs to methods using conventional routing 120
6 ■ The binding model: retrieving and validating user input 148
7 ■ Rendering HTML using Razor views 174
8 ■ Building forms with Tag Helpers 204
9 ■ Creating a Web API for mobile and client applications

using MVC 234

PART 2 BUILDING COMPLETE APPLICATIONS.............................. 265
10 ■ Service configuration with dependency injection 267
11 ■ Configuring an ASP.NET Core application 303
12 ■ Saving data with Entity Framework Core 334
13 ■ The MVC filter pipeline 369
14 ■ Authentication: adding users to your application with

Identity 400
15 ■ Authorization: securing your application 432
16 ■ Publishing and deploying your application 461

BRIEF CONTENTSvi

PART 3 EXTENDING YOUR APPLICATIONS...................................499
17 ■ Monitoring and troubleshooting errors with logging 501
18 ■ Improving your application’s security 534
19 ■ Building custom components 572
20 ■ Testing your application 607

369

The MVC filter pipeline

In part 1, I covered the MVC framework of ASP.NET Core in some detail. You
learned about MvcMiddleware and how routing is used to select an action method
to execute. You also saw model binding, validation, and how to generate a response
by returning an IActionResult from your actions. In this chapter, I’m going to
head deeper into MvcMiddleware and look at the MVC filter pipeline, sometimes
called the MVC action invocation pipeline.

This chapter covers
 The MVC filter pipeline and how it differs from

middleware

 Creating custom filters to refactor complex
action methods

 Using authorization filters to protect your action
methods

 Short-circuiting the filter pipeline to bypass
action execution

 Injecting dependencies into filters

370 CHAPTER 13 The MVC filter pipeline

 MVC uses a number of built-in filters to handle crosscutting concerns, such as
authorization (controlling which users can access which action methods in your appli-
cation). Any application that has the concept of users will use authorization filters as a
minimum, but filters are much more powerful than this single use case.

 This chapter describes the MVC filter pipeline in the context of an MVC request.
You’ll learn how to create custom filters that you can use in your own apps, and how
you can use them to reduce duplicate code in your action methods. You’ll learn how
to customize your application’s behavior for specific actions, as well as how to apply fil-
ters globally to modify all of the actions in your app.

 Think of the filter pipeline as a mini middleware pipeline running inside Mvc-
Middleware. Like the middleware pipeline in ASP.NET Core, the filter pipeline con-
sists of a series of components connected as a pipe, so the output of one filter feeds
into the input of the next.

 This chapter starts by looking at the similarities and differences between MVC fil-
ters and middleware, and when you should choose one over the other. You’ll learn
about all the different types of filters and how they combine to create the filter pipe-
line for a request that reaches MvcMiddleware.

 In section 13.2, I’ll take you through each filter type in detail, how they fit into the
MVC pipeline, and what to use them for. For each one, I’ll provide example imple-
mentations that you might use in your own application.

 A key feature of filters is the ability to short-circuit a request by generating a response
and halting progression through the MVC filter pipeline. This is similar to the way
short-circuiting works in middleware, but there are subtle differences. On top of that,
the exact behavior is slightly different for each filter, which I cover in section 13.3.

 You typically add MVC filters to the pipeline by implementing them as attributes
added to your controller classes and action methods. Unfortunately, you can’t easily
use DI with attributes due to the limitations of C#. In section 13.4, I’ll show you how to
use the ServiceFilterAttribute and TypeFilterAttribute base classes to enable
dependency injection in your filters.

 Before we can start writing code, we should get to grips with the basics of the MVC
filter pipeline. The first section of this chapter explains what the pipeline is, why you
might want to use it, and how it differs from the middleware pipeline.

13.1 Understanding filters and when to use them
The MVC filter pipeline is a relatively simple concept, in that it provides hooks into the
normal MVC request, as shown in figure 13.1. Say you wanted to ensure that users can
create or edit products on an e-commerce app only if they’re logged in. The app
would redirect anonymous users to a login page instead of executing the action.

 Without filters, you’d need to include the same code to check for a logged-in user
at the start of each specific action method. With this approach, MvcMiddleware would
still execute the model binding and validation, even if the user were not logged in.

371Understanding filters and when to use them

 With filters, you can use the hooks in the MVC request to run common code across
all, or a subset of, requests. This way, you can do a wide range of things, such as

 Ensuring a user is logged in before an action method, model binding, or valida-
tion runs

 Customizing the output format of particular action methods
 Handling model validation failures before an action method is invoked
 Catching exceptions from an action method and handling them in a

special way
In many ways, the MVC filter pipeline is like a middleware pipeline, but restricted to Mvc-
Middleware only. Like middleware, filters are good for handling crosscutting concerns
for your application and are a useful tool for reducing code duplication in many cases.

1. A request is received
to the URL /recipe/ .1 Request

2. The routing module matches the
request to the RecipeController.View
action and sets id= .1

Routing

Action

ViewResult Execution

MVC Controller

HTML

Model binding / validation
3. A variety of different MVC
filters run as part of the
MVC middleware.

4. Filters run before model
binding, before the action
method runs, and before
and after the IActionResult
is executed.

MvcMiddleware

Figure 13.1 Filters run at multiple points in MvcMiddleware in the normal
handling of a request.

372 CHAPTER 13 The MVC filter pipeline

In this section, I’ll describe the MVC filter pipeline and how it fits into the overall
MVC request. You’ll learn about the types of MVC filters, how you can add them to
your own apps, and how to control the order in which they execute when handling a
request.

13.1.1 The MVC filter pipeline

As you saw in figure 13.1, MVC filters run at a number of different points in the MVC
request. This linear view of an MVC request and the filter pipeline that you’ve used so
far doesn’t quite match up with how these filters execute. There are five types of filter,
each of which runs at a different stage in MvcMiddleware, as shown in figure 13.2.

 Each stage lends itself to a particular use case, thanks to its specific location in Mvc-
Middleware, with respect to model binding, action execution, and result execution.

 Authorization filters—These run first in the pipeline, so are useful for protecting
your APIs and action methods. If an authorization filter deems the request
unauthorized, it will short-circuit the request, preventing the rest of the filter
pipeline from running.

 Resource filters—After authorization, resource filters are the next filters to run in
the pipeline. They can also execute at the end of the pipeline, in much the same
way that middleware components can handle both the incoming request and
the outgoing response. Alternatively, they can completely short-circuit the
request pipeline and return a response directly.

Thanks to their early position in the pipeline, resource filters can have a vari-
ety of uses. You could add metrics to an action method, prevent an action
method from executing if an unsupported content type is requested, or, as they
run before model binding, control the way model binding works for that
request.

 Action filters—Action filters run just before and after an action is executed. As
model binding has already happened, action filters let you manipulate the argu-
ments to the method—before it executes—or they can short-circuit the action
completely and return a different IActionResult. Because they also run after
the action executes, they can optionally customize IActionResult before it’s
executed.

 Exception filters—Exception filters can catch exceptions that occur in the filter
pipeline and handle them appropriately. They let you write custom MVC-
specific error-handling code, which can be useful in some situations. For exam-
ple, you could catch exceptions in Web API actions and format them differently
to exceptions in your MVC actions.

 Result filters—Result filters run before and after an action method’s IAction-
Result is executed. This lets you control the execution of the result, or even
short-circuit the execution of the result.

373Understanding filters and when to use them

Exactly which filter you pick to implement will depend on the functionality you’re try-
ing to introduce. Want to short-circuit a request as early as possible? Resource filters
are a good fit. Need access to the action method parameters? Use an action filter.

 Think of the filter pipeline as a small middleware pipeline that lives by itself in
MvcMiddleware. Alternatively, you could think of filters as hooks into the MVC action
invocation process, which let you run code at a particular point in a request’s lifecycle.

 One of the main questions I hear when people learn about filters in ASP.NET Core
is “Why do we need them?” If the filter pipeline is like a mini middleware pipeline,
why not use a middleware component directly, instead of introducing the filter con-
cept? That’s an excellent point, which I’ll tackle in the next section.

13.1.2 Filters or middleware: which should you choose?

The filter pipeline is similar to the middleware pipeline in many ways, but there are a
number of subtle differences that you should consider when deciding which approach
to use. When considering the similarities, they have three main parallels:

Authorization
filters

Model binding
/ validation

Resource filters

Ac
tio

n
fil

te
rs

Exception
filters

Result filters

Ac
tio

n
in

vo
ca

tio
n

IActionResult Execution

Authorization filters run first
for every MVC request. If the
request isn’t authorized, it will
short-circuit the pipeline.

Resource filters run next
before model binding runs.

Action filters run before and after
the action method executes. As
they run after model binding, you
can use them to customize the
arguments passed to the action.

If an exception occurs somewhere
in the pipeline, the ExceptionFilter
will execute.

If the action method
returns an IActionResult,
the result filters will execute
before and after the
IActionResult is executed.

Resource filters also run
at the end of the pipeline after
the result has been executed.

Request Response

Figure 13.2 The MVC filter pipeline, including the five different filter stages. Some filter stages
(resource, action, and result) run twice, before and after the remainder of the pipeline.

374 CHAPTER 13 The MVC filter pipeline

 Requests pass through a middleware component on the way “in” and responses pass
through again on the way “out.” Resource, action, and result filters are also two-
way, though authorization and exception filters run only once for a request.

 Middleware can short-circuit a request by returning a response, instead of passing it on to
later middleware. Filters can also short-circuit the MVC filter pipeline by return-
ing a response.

 Middleware is often used for crosscutting application concerns, such as logging, perfor-
mance profiling, and exception handling. Filters also lend themselves to crosscut-
ting concerns.

In contrast, there are three main differences between middleware and filters:

 Middleware can run for all requests; filters will only run for requests that reach
MvcMiddleware.

 Filters have access to MVC constructs such as ModelState and IActionResults.
Middleware, in general, is independent from MVC, so can’t use these concepts.

 Filters can be easily applied to a subset of requests; for example, all actions on a sin-
gle controller. Middleware doesn’t have this concept as a first-class idea (though
you could achieve something similar with custom middleware components).

That’s all well and good, but how should we interpret these differences? When should
we choose one over the other?

 I like to think of middleware versus filters as a question of specificity. Middleware is the
more general concept, so has the wider reach. If the functionality you need has no MVC-
specific requirements, then you should use a middleware component. Exception han-
dling is a great example of this; exceptions could happen anywhere in your application,
and you need to handle them, so using exception-handling middleware makes sense.

 On the other hand, if you do need access to MVC constructs, or you want to behave
differently for some MVC actions, then you should consider using a filter. Ironically,
this can also be applied to exception handling. You don’t want exceptions in your Web
API controllers to automatically generate HTML error pages when the client is
expecting JSON. Instead, you could use an exception filter on your Web API actions
to render the exception to JSON, while letting the exception-handling middleware
catch errors from elsewhere in your app.

TIP Where possible, consider using middleware for crosscutting concerns.
Use filters when you need different behavior for different action methods, or
where the functionality relies on MVC concepts like ModelState validation.

The middleware versus filters argument is a subtle one, and it doesn’t matter which
you choose as long as it works for you. You can even use middleware components
inside the filter pipeline as filters, but that’s outside the scope of this book.1

1 The “middleware as filters” feature was introduced in ASP.NET Core 1.1. If you’re interested, I wrote an intro-
duction to the feature here: http://mng.bz/Mg97.

http://mng.bz/Mg97

375Understanding filters and when to use them

TIP The middleware as filters feature was introduced in ASP.NET Core 1.1
and is also available in 2.0. The canonical use case is for localizing requests to
multiple languages. I have a blog series on how to use the feature here:
http://mng.bz/a6Rb.

Filters can be a little abstract in isolation, so in the next section, we’ll look at some
code and learn how to write a custom filter in ASP.NET Core.

13.1.3 Creating a simple filter

In this section, I show how to create your first filters; in section 13.1.4, you’ll see how
to apply them to your MVC actions. We’ll start small, creating filters that just write to
the console, but in section 13.2, we’ll look at some more practical examples and dis-
cuss some of their nuances.

 You implement an MVC filter for a given stage by implementing one of a pair of
interfaces—one synchronous (sync), one asynchronous (async):

 Authorization filters—IAuthorizationFilter or IAsyncAuthorizationFilter
 Resource filters—IResourceFilter or IAsyncResourceFilter
 Action filters—IActionFilter or IAsyncActionFilter
 Exception filters—IExceptionFilter or IAsyncExceptionFilter
 Result filters—IResultFilter or IAsyncResultFilter

You can use any POCO class to implement a filter, but you’ll typically implement them
as C# attributes, which you can use to decorate your MVC controllers and actions, as
you’ll see in section 13.1.4. You can achieve the same results with either the sync or
async interface, so which you choose should depend on whether any services you call
in the filter require async support.

NOTE You should implement either the sync interface or the async interface,
not both. If you implement both, then only the async interface will be used.

Listing 13.1 shows a resource filter that implements IResourceFilter and writes to
the console when it executes. The OnResourceExecuting method is called when a
request first reaches the resource filter stage of the filter pipeline. In contrast, the
OnResourceExecuted method is called after the rest of the pipeline has executed;
after model binding, action execution, result execution, and all intermediate filters
have run.

public class LogResourceFilter : Attribute, IResourceFilter
{
 public void OnResourceExecuting(
 ResourceExecutingContext context)
 {
 Console.WriteLine("Executing!");
 }

Listing 13.1 Example resource filter implementing IResourceFilter

Executed at the start
of the pipeline, after
authorization filters.

The context contains the
HttpContext, routing details,
and information about the
current action.

http://mng.bz/a6Rb

376 CHAPTER 13 The MVC filter pipeline

 public void OnResourceExecuted(
 ResourceExecutedContext context)
 {
 Console.WriteLine("Executed”");
 }
}

The interface methods are simple and are similar for each stage in the filter pipeline,
passing a context object as a method parameter. Each of the two-method sync filters
has an *Executing and an *Executed method. The type of the argument is different
for each filter, but it contains all of the details for the filter pipeline.

 For example, the ResourceExecutingContext passed to the resource filter con-
tains the HttpContext object itself, details about the route that selected this action,
details about the action itself, and so on. Contexts for later filters will contain addi-
tional details, such as the action method arguments for an action filter and the Model-
State.

 The context object for the ResourceExecutedContext method is similar, but it also
contains details about how the rest of the pipeline executed. You can check whether
an unhandled exception occurred, you can see if another filter from the same stage
short-circuited the pipeline, or you can see the IActionResult used to generate the
response.

 These context objects are powerful and are the key to advanced filter behaviors
like short-circuiting the pipeline and handling exceptions. We’ll make use of them in
section 13.2 when creating more complex filter examples.

 The async version of the resource filter requires implementing a single method, as
shown in listing 13.2. As for the sync version, you’re passed a ResourceExecuting-
Context object as an argument, and you’re passed a delegate representing the remain-
der of the filter pipeline. You must call this delegate (asynchronously) to execute the
remainder of the pipeline, which will return an instance of ResourceExecutedContext.

public class LogAsyncResourceFilter : Attribute, IAsyncResourceFilter
{
 public async Task OnResourceExecutionAsync(
 ResourceExecutingContext context,
 ResourceExecutionDelegate next)
 {
 Console.WriteLine("Executing async!");
 ResourceExecutedContext executedContext = await next();
 Console.WriteLine("Executed async!");
 }
}

Listing 13.2 Example resource filter implementing IAsyncResourceFilter

Executed after model
binding, action execution,
and result execution.

Contains additional context
information, such as the

IActionResult returned by the action

Executed at the start of the pipeline,
after authorization filters.

You’re provided a delegate, which
encapsulates the remainder of the

MVC filter pipeline.

Called before
the rest of

the pipeline
executes. Called after the rest of

the pipeline executes.

Executes the rest of the
pipeline and obtains a

ResourceExecutedContext
instance

377Understanding filters and when to use them

The sync and async filter implementations have subtle differences, but for most pur-
poses they’re identical. I recommend implementing the sync version if possible, and
only falling back to the async version if you need to.

 You’ve created a couple of filters now, so we should look at how to use them in the
application. In the next section, we’ll tackle two specific issues: how to control which
requests execute your new filters and how to control the order in which they execute.

13.1.4 Adding filters to your actions, your controllers, and globally

In section 13.1.2, I discussed the similarities and differences between middleware and
filters. One of those differences is that filters can be scoped to specific actions or con-
trollers, so that they only run for certain requests. Alternatively, you can apply a filter
globally, so that it runs for every MVC action.

 By adding filters in different ways, you can achieve a number of different results.
Imagine you have a filter that forces you to log in to view an action. How you add the
filter to your app will significantly change your app’s behavior:

 Apply the filter to a single action—Anonymous users could browse the app as normal,
but if they tried to access the protected action, they would be forced to log in.

 Apply the filter to a controller—Anonymous users could access actions from other
controllers, but accessing any action on the protected controller would force
them to log in.

 Apply the filter globally—Users couldn’t use the app without logging in. Any
attempt to access an action would redirect the user to the login page.

NOTE ASP.NET Core comes with just such a filter out of the box, Authorize-
Filter. I’ll discuss this filter in section 13.2.1, and you’ll be seeing a lot more
of it in chapter 15.

As I described in the previous section, you normally create filters as attributes, and for
good reason—it makes applying them to MVC controllers and actions easy. In this sec-
tion, you’ll see how to apply LogResourceFilter from listing 13.1 to an action, a con-
troller, and globally. The level at which the filter applies is called its scope.

DEFINITION The scope of a filter refers to how many different actions it applies
to. A filter can be scoped to the action method, to the controller, or globally.

You’ll start at the most specific scope—applying filters to a single action. The follow-
ing listing shows an example of an MVC controller that has two action methods: one
with LogResourceFilter and one without.

public class HomeController : Controller
{
 [LogResourceFilter]
 public IActionResult Index()
 {
 return View();
 }

Listing 13.3 Applying filters to an action method

LogResourceFilter will
run as part of the
pipeline when executing
this action.

378 CHAPTER 13 The MVC filter pipeline

 public IActionResult About()
 {
 return View();
 }
}

Alternatively, if you want to apply the same filter to every action method, you could
add the attribute at the controller scope, as in the next listing. Every action method in
the controller will use LogResourceFilter, without having to specifically decorate
each method:

[LogResourceFilter]
public class HomeController : Controller
{
 public IActionResult Index ()
 {
 return View();
 }

 public IActionResult SendInvoice()
 {
 return View();
 }
}

Filters you apply as attributes to controllers and actions are automatically discovered
by MvcMiddleware when your application starts up. For common attributes, you can
go one step further and apply filters globally, without having to decorate individual
controllers.

 You add global filters in a different way to controller- or action-scoped filters—by
adding a filter directly to the MVC services, when configuring MVC in Startup. This
listing shows three equivalent ways to add a globally scoped filter.

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc(options =>
 {
 options.Filters.Add(new LogResourceFilter());
 options.Filters.Add(typeof(LogAsyncResourceFilter));
 options.Filters.Add<LogAsyncResourceFilter>();

 });
 }
}

Listing 13.4 Applying filters to a controller

Listing 13.5 Applying filters globally to an application

This action method has no
filters at the action level.

The LogResourceFilter Is
added to every action on
the controller.

Every action in the
controller is decorated
with the filter.

Adds filters using
the MvcOptions
object

Alternatively, the
framework can
create a global
filter using a
generic type
parameter.. . . or pass in the Type of the filter

and let the framework create it.

You can pass
an instance
of the filter
directly. . .

379Understanding filters and when to use them

With three different scopes in play, you’ll often find action methods that have multi-
ple filters applied to them, some applied directly to the action method, and others
inherited from the controller or globally. The question then becomes: Which filters
run first?

13.1.5 Understanding the order of filter execution

You’ve seen that the filter pipeline contains five different stages, one for each type of
filter. These stages always run in the fixed order I described in section 13.1.1. But
within each stage, you can also have multiple filters of the same type (for example,
multiple resource filters) that are part of a single action method’s pipeline. These
could all have multiple scopes, depending on how you added them, as you saw in the
last section.

 In this section, we’re thinking about the order of filters within a given stage and how
scope affects this. We’ll start by looking at the default order, then move on to ways to
customize the order to your own requirements.

THE DEFAULT SCOPE EXECUTION ORDER

When thinking about filter ordering, it’s important to remember that resource,
action, and result filters implement two methods: an *Executing before method and
an *Executed after method. The order in which each method executes depends on
the scope of the filter, as shown in figure 13.3 for the resource filter stage.

 By default, filters execute from the broadest scope (global) to the narrowest
(action) when running the *Executing method for each stage. The *Executed meth-
ods run in reverse order, from the narrowest scope (action) to the broadest (global).

 You’ll often find you need a bit more control over this order, especially if you have,
for example, multiple action filters applied at the same scope. The MVC framework
caters to this requirement by way of the IOrderedFilter interface.

Global filters run first
in each filter stage.

Base controller filter

Global scope filter

Controller scope filter

Action scope filter

The scope of the filters
determines the order in
which they run within a
single stage.

Filters scoped to the
controller level run
after global filters and
before action filters. Filters can also be applied

to base Controller classes.
Base class scoped filters
run later than filters on the
derived controllers.

Filters scoped to the
action level run last
in a filter stage.

Figure 13.3 The default filter ordering within a given stage, based on the scope of the filters.
For the *Executing method, globally scoped filters run first, followed by controller-scoped,
and finally, action-scoped filters. For the *Executed method, the filters run in reverse order.

380 CHAPTER 13 The MVC filter pipeline

OVERRIDING THE DEFAULT ORDER OF FILTER EXECUTION WITH IORDEREDFILTER

Filters are great for extracting crosscutting concerns from your controller actions, but
if you have multiple filters applied to an action, then you’ll often need to control the
precise order in which they execute.

 Scope can get you some of the way, but for those other cases, you can implement
IOrderFilter. This interface consists of a single property, Order:

public interface IOrderedFilter
{
 int Order { get; }
}

You can implement this property in your filters to set the order in which they execute.
MvcMiddleware will order the filters for a stage based on this value first, from lowest to
highest, and use the default scope order to handle ties, as shown in figure 13.4.

 The filters for Order = -1 execute first, as they have the lowest Order value. The
controller filter executes first because it has a broader scope than the action filter. The
filters with Order=0 execute next, in the default scope order, as shown in figure 13.4.
Finally, the filter with Order=1 executes.

 By default, if a filter doesn’t implement IOrderedFilter, it’s assumed to have
Order = 0. All of the filters that ship as part of ASP.NET Core have Order = 0, so you
can implement your own filters relative to these.

 This section has covered most of the technical details you need to use filters and
create custom implementations for your own application. In the next section, you’ll

Controller scope filter
Order = -1

Controller scope filter
Order = 0

The Order and scope of the
filters determines the order
in which they run within
a single stage.

Filters with the lowest
Order number run first.
Scope is used to decide
tie breaks.

Filters with the highest
value of Order run last
for the stage.

Global scope filter
Order = 0

Action scope filter
Order = 0

Global scope filter
Order = 1

By default, filters have
an Order of 0.

Action scope filter
Order = -1

Figure 13.4 Controlling the filter order for a stage using the IOrderedFilter interface.
Filters are ordered by the Order property first, and then by scope.

381Creating custom filters for your application

see some of the built-in filters provided by ASP.NET Core, as well as some practical
examples of filters you might want to use in your own applications.

13.2 Creating custom filters for your application
ASP.NET Core includes a number of filters that you can use, but often, the most use-
ful filters are the custom ones that are specific to your own apps. In this section, you’ll
work through each of the five types of filters. I’ll explain in more detail what they’re
for and when you should use them. I’ll point out examples of these filters that are part
of ASP.NET Core itself and you’ll see how to create custom filters for an example
application.

 To give you something realistic to work with, you’ll start with a Web API controller
for accessing the recipe application from chapter 12. This controller contains two
actions: one for fetching a RecipeDetailViewModel and another for updating a
Recipe with new values. This listing shows your starting point for this chapter, includ-
ing both of the action methods.

[Route("api/recipe")]
public class RecipeApiController : Controller
{
 private const bool IsEnabled = true;
 public RecipeService _service;
 public RecipeApiController(RecipeService service)
 {
 _service = service;
 }

 [HttpGet("{id}")]
 public IActionResult Get(int id)
 {
 if (!IsEnabled) { return BadRequest(); }

 try
 {
 if (!_service.DoesRecipeExist(id))
 {
 return NotFound();
 }

 var detail = _service.GetRecipeDetail(id);

 Response.GetTypedHeaders().LastModified =
 detail.LastModified;

 return Ok(detail);
 }
 catch (Exception ex)
 {
 return GetErrorResponse(ex);
 }
 }

Listing 13.6 Recipe Web API controller before refactoring to use filters

These fields would be passed in as
configuration values and are used
to control access to actions.

If the API isn’t enabled,
block further execution.

If the requested Recipe
doesn’t exist, return a
404 response.Fetch

RecipeDetailViewModel.

Sets the Last-Modified
response header to the
value in the model

Returns the
view model
with a 200

response
If an exception occurs, catch it,
and return the error in an
expected format, as a 500 error.

382 CHAPTER 13 The MVC filter pipeline

 [HttpPost("{id}")]
 public IActionResult Edit(
 int id, [FromBody] UpdateRecipeCommand command)
 {
 if (!IsEnabled) { return BadRequest(); }

 try
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 if (!_service.DoesRecipeExist(id))
 {
 return NotFound();
 }

 _service.UpdateRecipe(command);
 return Ok();
 }
 catch (Exception ex)
 {
 return GetErrorResponse(ex);
 }
 }

 private static IActionResult GetErrorResponse(Exception ex)
 {
 var error = new
 {
 Success = false,
 Errors = new[]
 {
 ex.Message
 }
 };

 return new ObjectResult(error)
 {
 StatusCode = 500
 };
 }
}

These action methods currently have a lot of code to them, which hides the intent of
each action. There’s also quite a lot of duplication between the methods, such as
checking that the Recipe entity exists, and formatting exceptions.

 In this section, you’re going to refactor this controller to use filters for all the code
in the methods that’s unrelated to the intent of each action. By the end of the chapter,
you’ll have a much simpler controller that’s far easier to understand, as shown here.

If the API isn’t enabled,
block further execution.

Validates the binding model
and returns a 400 response
if there are errors

If the requested Recipe
doesn’t exist, return a
404 response.

Updates the Recipe from the command
and returns a 200 response

If an exception occurs, catch it,
and return the error in an
expected format, as a 500 error.

383Creating custom filters for your application

[Route("api/recipe")]
[ValidateModel, HandleException, FeatureEnabled(IsEnabled = true)]
public class RecipeApiController : Controller
{
 public RecipeService _service;
 public RecipeApiController(RecipeService service)
 {
 _service = service;
 }

 [HttpGet("{id}"), EnsureRecipeExists, AddLastModifedHeader]
 public IActionResult Get(int id)
 {

 var detail = _service.GetRecipeDetail(id);
 return Ok(detail);

 }

 [HttpPost("{id}"), EnsureRecipeExists]
 public IActionResult Edit(
 int id, [FromBody] UpdateRecipeCommand command)
 {
 _service.UpdateRecipe(command);
 return Ok();
 }
}

I think you'll have to agree, the controller in listing 13.7 is much easier to read! In this
section, you’ll refactor the controller bit by bit, removing crosscutting code to get to
something more manageable. All the filters I’ll create in this section will use the sync
filter interfaces—I’ll leave it as an exercise for the reader to create their async coun-
terparts. You’ll start by looking at authorization filters and how they relate to security
in ASP.NET Core.

13.2.1 Authorization filters: protecting your APIs

Authentication and authorization are related, fundamental concepts in security that we’ll
be looking at in detail in chapters 14 and 15.

DEFINITION Authentication is concerned with determining who made a
request. Authorization is concerned with what a user is allowed to access.

Authorization filters run first in the MVC filter pipeline, before any other filters. They
control access to the action method by immediately short-circuiting the pipeline when
a request doesn’t meet the necessary requirements.

 ASP.NET Core has a built-in authorization framework that you should use when
you need to protect your MVC application or your Web APIs. You can configure this
framework with custom policies that let you finely control access to your actions.

Listing 13.7 Recipe Web API controller after refactoring to use filters

The filters encapsulate
the majority of logic
common to multiple

action methods.

Placing filters at the action level
limits them to a single action.

The intent of the action,
return a Recipe view model,
is much clearer.

Placing filters at the action level
can be used to control the order
in which they execute.

The intent of the action, update
a Recipe, is much clearer.

384 CHAPTER 13 The MVC filter pipeline

TIP It’s possible to write your own authorization filters by implementing
IAuthorizationFilter or IAsyncAuthorizationFilter, but I strongly advise
against it. The ASP.NET Core authorization framework is highly configurable
and should meet all your needs.

At the heart of the ASP.NET Core authorization framework is an Authorization filter,
AuthorizeFilter, which you can add to the filter pipeline by decorating your actions
or controllers with the [Authorize] attribute. In its simplest form, adding the
[Authorize] attribute to an action, as in the following listing, means the request must
be made by an authenticated user to be allowed to continue. If you’re not logged in, it
will short-circuit the pipeline, returning a 401 Unauthorized response to the browser.

public class RecipeApiController : Controller
{
 public IActionResult Get(int id)
 {
 // method body
 }

 [Authorize]
 public IActionResult Edit(
 int id, [FromBody] UpdateRecipeCommand command)
 {
 // method body
 }
}

As with all filters, you can apply the [Authorize] attribute at the controller level to
protect all the actions on a controller, or even globally, to protect every method in
your app.

NOTE We’ll explore authorization in detail in chapter 15, including how to
add more detailed requirements, so that only specific sets of users can exe-
cute an action.

The next filters in the pipeline are resource filters. In the next section, you’ll extract
some of the common code from RecipeApiController and see how easy it is to create
a short-circuiting filter.

13.2.2 Resource filters: short-circuiting your action methods

Resource filters are the first general-purpose filters in the MVC filter pipeline. In sec-
tion 13.1.3, you saw minimal examples of both sync and async resource filters, which
logged to the console. In your own apps, you can use resource filters for a wide range
of purposes, thanks to the fact they execute so early (and late) in the filter pipeline.

Listing 13.8 Adding [Authorize] to an action method

The Get method has no
[Authorize] attribute, so can
be executed by anyone.

The Edit method can
only be executed if
you’re logged in.

Adds the AuthorizeFilter to the MVC
filter pipeline using [Authorize]

385Creating custom filters for your application

 The ASP.NET Core framework includes a few different implementations of
resource filters you can use in your apps, for example:

 ConsumesAttribute—Can be used to restrict the allowed formats an action
method can accept. If your action is decorated with [Consumes("application/
json")] but the client sends the request as XML, then the resource filter will
short-circuit the pipeline and return a 415 Unsupported Media Type response.

 DisableFormValueModelBindingAttribute—This filter prevents model bind-
ing from binding to form data in the request body. This can be useful if you
know an action method will be handling large file uploads that you need to
manage manually yourself. The resource filters run before model binding, so
you can disable the model binding for a single action in this way.2

resource filters are useful when you want to ensure the filter runs early in the pipeline,
before model binding. They provide an early hook into the pipeline for your logic, so
you can quickly short-circuit the request if you need to.

 Look back at listing 13.6 and see if you can refactor any of the code into a
Resource filter. One candidate line appears at the start of both the Get and Edit
methods:

if (!IsEnabled) { return BadRequest(); }

This line of code is a feature toggle that you can use to disable the availability of the
whole API, based on the IsEnabled field. In practice, you’d probably load the
IsEnabled field from a database or configuration file so you could control the avail-
ability dynamically at runtime but, for this example, I’m using a hardcoded value.

 This piece of code is self-contained, crosscutting logic, which is somewhat tangen-
tial to the main action method intent—a perfect candidate for a filter. You want to
execute the feature toggle early in the pipeline, before any other logic, so a resource
filter makes sense.

TIP Technically, you could also use an Authorization filter for this example,
but I’m following my own advice of “Don’t write your own Authorization
filters!”

The next listing shows an implementation of FeatureEnabledAttribute, which
extracts the logic from the action methods and moves it into the filter. I’ve also
exposed the IsEnabled field as a property on the filter.

public class FeatureEnabledAttribute : Attribute, IResourceFilter
{
 public bool IsEnabled { get; set; }

2 For details on handling file uploads, see http://mng.bz/2rrk.

Listing 13.9 The FeatureEnabledAttribute resource filter

Defines whether the feature is enabled

http://mng.bz/2rrk

386 CHAPTER 13 The MVC filter pipeline

 public void OnResourceExecuting(
 ResourceExecutingContext context)

 {
 if (!IsEnabled)
 {
 context.Result = new BadRequestResult();
 }
 }

 public void OnResourceExecuted(
 ResourceExecutedContext context) { }
}

This simple resource filter demonstrates a number of important concepts, which are
applicable to most filter types:

 The filter is an attribute as well as a filter. This lets you decorate your controller
and action methods with it using [FeatureEnabled(IsEnabled = true)].

 The filter interface consists of two methods—*Executing that runs before
model binding and *Executed that runs after the result has been executed. You
must implement both, even if you only need one for your use case.

 The filter execution methods provide a context object. This provides access to,
among other things, the HttpContext for the request and metadata about the
action method the middleware will execute.

 To short-circuit the pipeline, set the context.Result property to IAction-
Result. The MVC pipeline will execute this result to generate the response,
bypassing any remaining filters in the pipeline and the action method itself. In
this example, if the feature isn’t enabled, you bypass the pipeline by returning
BadRequestResult, which will return a 400 error to the client.

By moving this logic into the resource filter, you can remove it from your action meth-
ods, and instead decorate the whole API controller with a simple attribute:

[Route("api/recipe"), FeatureEnabled(IsEnabled = true)]
public class RecipeApiController : Controller

You’ve only extracted two lines of code from your action methods so far, but you’re on
the right track. In the next section, we’ll move on to Action filters and extract two
more filters from the action method code.

13.2.3 Action filters: customizing model binding and action results

Action filters run just after model binding, before the action method executes.
Thanks to this positioning, action filters can access all the arguments that will be used
to execute the action method, which makes them a powerful way of extracting com-
mon logic out of your actions.

 On top of this, they also run just after the action method has executed and can
completely change or replace the IActionResult returned by the action if you want.
They can even handle exceptions thrown in the action.

Executes before model binding,
early in the filter pipeline

If the feature isn’t enabled,
short-circuits the pipeline
by setting the
context.Result property

Must be implemented to satisfy
IResourceFilter, but not needed
in this case.

387Creating custom filters for your application

 The ASP.NET Core framework includes a number of action filters out of the box.
One of these commonly used filters is ResponseCacheFilter, which sets HTTP cach-
ing headers on your action-method responses.

TIP Caching is a broad topic that aims to improve the performance of an
application over the naive approach. But caching can also make debugging
issues difficult and may even be undesirable in some situations. Consequently,
I often apply ResponseCacheFilter to my action methods to set HTTP cach-
ing headers that disable caching! You can read about this and other
approaches to caching in the docs at http://mng.bz/AMSQ.

The real power of action filters comes when you build filters tailored to your own apps
by extracting common code from your action methods. To demonstrate, I’m going to
create two custom filters for RecipeApiController:

 ValidateModelAttribute—This will return BadRequestResult if the model
state indicates that the binding model is invalid and will short-circuit the action
execution.

 EnsureRecipeExistsAttribute—This will use each action method’s id argu-
ment to validate that the requested Recipe entity exists before the action
method runs. If the Recipe doesn’t exist, the filter will return NotFoundResult
and will short-circuit the pipeline.

As you saw in chapter 6, MvcMiddleware automatically validates your binding models
for you before your actions execute, but it’s up to you to decide what to do about it.
For Razor pages, this can be somewhat complicated by the need to build a view model,
so you’ll often need some custom code in each action method to handle this. But for
Web API controllers, it’s common to return a 400 Bad Request response containing a
list of the errors, as shown in figure 13.5.

The request is POSTed to
the RecipeApiController.

The request body is bound to the
action method’s binding model.

A 400 Bad Request response is
sent, indicating that validation
failed for the request.

The response body is sent as a
JSON object, providing the name
of each field and the error.

Figure 13.5 Posting data to a Web API using Postman. The data is bound to the action
method’s binding model and validated. If validation fails, it’s common to return a 400
BadRequest response with a list of the validation errors.

http://mng.bz/AMSQ

388 CHAPTER 13 The MVC filter pipeline

It’s likely that all of your Web API controllers will use this approach, so an action filter
that automatically validates your binding models is a perfect fit. It’s normally the first
filter I create for any new project. Listing 13.10 shows a simple implementation that
you can use in your own apps.3

public class ValidateModelAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(
 ActionExecutingContext context)
 {
 if (!context.ModelState.IsValid)
 {
 context.Result =
 new BadRequestObjectResult(context.ModelState);
 }
 }
}

This attribute is self-explanatory and follows a similar pattern to the resource filter in
section 13.2.2, but with a few interesting points:

 I have derived from the abstract ActionFilterAttribute. This class imple-
ments IActionFilter and IResultFilter, as well as their async counterparts,
so you can override the methods you need as appropriate. This avoids needing
to add an unused OnActionExecuted() method, but is entirely optional and a
matter of preference.

 Action filters run after model binding has taken place, so context.ModelState
contains the validation errors if validation failed.

 Setting the Result property on context short-circuits the pipeline. But, due to
the position of the action filter stage, only the action method execution and
later action filters are bypassed; all the other stages of the pipeline run as
though the action had executed as normal.

If you apply this action filter to your RecipeApiController, you can remove

if (!ModelState.IsValid)
{
 return BadRequest(ModelState);
}

Listing 13.10 The action filter for validating ModelState

3 ASP.NET Core 2.1 added this behavior by default for controllers decorated with the [ApiController] attri-
bute. For details, see https://blogs.msdn.microsoft.com/webdev/2018/02/27/asp-net-core-2-1-web-apis/.

For convenience, you derive from
the ActionFilterAttribute base class.

Overrides the Executing
method to run the filter
before the Action executes

Model binding and validation have already
run at this point, so you can check the state.

If the model isn’t valid, set the
Result property; this short-

circuits the action execution.

https://blogs.msdn.microsoft.com/webdev/2018/02/27/asp-net-core-2-1-web-apis/

389Creating custom filters for your application

from the start of both the action methods, as it will run automatically in the filter pipe-
line. You’ll use a similar approach to remove the duplicate code checking whether the id
provided as an argument to the action methods corresponds to an existing Recipe entity.

 This listing shows the EnsureRecipeExistsAttribute action filter. This uses an
instance of RecipeService to check whether the Recipe exists and returns a 404 Not
Found if it doesn’t.

public class EnsureRecipeExistsAtribute : ActionFilterAttribute
{
 public override void OnActionExecuting(
 ActionExecutingContext context)
 {
 var service = (RecipeService) context.HttpContext
 .RequestServices.GetService(typeof(RecipeService));

 var recipeId = (int) context.ActionArguments["id"];
 if (!service.DoesRecipeExist(recipeId))
 {
 context.Result = new NotFoundResult();
 }
 }
}

As before, you’ve derived from ActionFilterAttribute for simplicity and overridden
the OnActionExecuting method. The main functionality of the filter relies on the
DoesRecipeExist() method of RecipeService, so the first step is to obtain an
instance of RecipeService. The context parameter provides access to the Http-
Context for the request, which in turn lets you access the DI container and use
RequestServices.GetService() to return an instance of RecipeService.

WARNING This technique for obtaining dependencies is known as service loca-
tion and is generally considered an antipattern.4 In section 13.4, I’ll show a
much better way to use the DI container to inject dependencies into your filters.

As well as RecipeService, the other piece of information you need is the id argument
of the Get and Edit action methods. In action filters, model binding has already
occurred, so the arguments that the MVC middleware will use to execute the action
method are already known and are exposed on context.ActionArguments.

 The action arguments are exposed as Dictionary<string, object>, so you can
obtain the id parameter using the "id" string key. Remember to cast the object to
the correct type.

Listing 13.11 An action filter to check whether a Recipe exists

4 For a detailed discussion on DI patterns and antipatterns, see Dependency Injection in .NET by Mark Seemann
(Manning, 2012) https://livebook.manning.com/#!/book/dependency-injection-in-dot-net/chapter-5/.

Fetches an
instance of
RecipeService
from the DI
container

Retrieves the id
parameter that
will be passed to
action method
when it executes

Checks whether a Recipe entity
with the given RecipeId exists

If it doesn’t exist, returns a
404 Not Found result and
short-circuits the pipeline.

https://livebook.manning.com/#!/book/dependency-injection-in-dot-net/chapter-5/

390 CHAPTER 13 The MVC filter pipeline

TIP Whenever I see magic strings like this, I always like to try to replace them
by using the nameof operator. Unfortunately, nameof won’t work for method
arguments like this, so be careful when refactoring your code. I suggest
explicitly applying the action filter to the action method (instead of globally,
or to a controller) to remind you about that implicit coupling.

With RecipeService and id in place, it’s a case of checking whether the identifier cor-
responds to a Recipe entity and, if not, setting context.Result to NotFoundResult.
This will short-circuit the pipeline and bypass the action method altogether.

NOTE Remember, you can have multiple action filters running in a single
stage. Short-circuiting the pipeline by setting context.Result will prevent
later filters in the stage from running, as well as bypassing the action method
execution.

Before we move on, it’s worth mentioning a special case for action filters. The
Controller base class implements IActionFilter and IAsyncActionFilter itself.
If you find yourself creating an action filter for a single controller and you want
to apply it to every action in that controller, then you can override the appropriate
methods on your controller.

public class HomeController : Controller
{
 public override void OnActionExecuting(
 ActionExecutingContext context)
 { }

 public override void OnActionExecuted(
 ActionExecutedContext context)
 { }
}

If you override these methods on your controller, they’ll run in the action filter stage
of the filter pipeline for every action on the controller. The OnActionExecuting
Controller method runs before any other action filters, regardless of ordering or
scope, and the OnActionExecuted method runs after all other filters.

TIP The controller implementation can be useful in some cases, but you
can’t control the ordering related to other filters. Personally, I generally pre-
fer to break logic into explicit, declarative filter attributes but, as always, the
choice is yours.

With the resource and action filters complete, your controller is looking much tidier,
but there’s one aspect in particular that would be nice to remove: the exception han-
dling. In the next section, we’ll look at how to create a custom exception filter for
your controller, and why you might want to do this instead of using exception-
handling middleware.

Listing 13.12 Overriding action filter methods directly on a Controller

Derives from the Controller base class

Runs before any other action filters
for every action in the controller

Runs after all other action filters
for every action in the controller

391Creating custom filters for your application

13.2.4 Exception filters: custom exception handling
for your action methods

In chapter 3, I went into some depth about types of error-handling middleware you
can add to your apps. These let you catch exceptions thrown from any later middle-
ware and handle them appropriately. If you’re using exception-handling middleware,
you may be wondering why we need exception filters at all!

 The answer to this is pretty much the same as I outlined in section 13.1.2: filters are
great for crosscutting concerns, when you need behavior that’s either specific to MVC
or should only apply to certain routes.

 Both of these can apply in exception handling. Exception filters run within Mvc-
Middleware, so they have access to the context in which the error occurred, such as
the action that was executing. This can be useful for logging additional details when
errors occur, such as the action parameters that caused the error.

WARNING If you use exception filters to record action method arguments,
make sure you’re not storing sensitive data, such as passwords or credit card
details, in your logs.

You can also use exception filters to handle errors from different routes in different
ways. Imagine you have both MVC and Web API controllers in your app, as we do in
the recipe app. What happens when an exception is thrown by an MVC controller?

 As you saw in chapter 3, the exception travels back up the middleware pipeline,
and is caught by exception-handler middleware. The exception-handler middleware
will re-execute the pipeline and generate an MVC error page.

 That’s great for your MVC controllers, but what about exceptions in your Web API
controllers? If your API throws an exception, and consequently returns HTML gener-
ated by the exception-handler middleware, that’s going to break a client who has
called the API expecting a JSON response!

 Instead, exception filters let you handle the exception inside MvcMiddleware and
generate an appropriate response body. The exception handler middleware only
intercepts errors without a body, so it will let the modified Web API response pass
untouched.

 Exception filters can catch exceptions from more than your action methods.
They’ll run if an exception occurs in MvcMiddleware

 During model binding or validation
 When the action method is executing
 When an action filter is executing

You should note that exception filters won’t catch exceptions thrown in any filters
other than action filters, so it’s important your resource and result filters don’t throw
exceptions. Similarly, they won’t catch exceptions thrown when executing IAction-
Result itself.

392 CHAPTER 13 The MVC filter pipeline

 Now that you know why you might want an exception filter, go ahead and imple-
ment one for RecipeApiController, as shown next. This lets you safely remove the
try-catch block from your action methods, knowing that your filter will catch any
errors.

public class HandleExceptionAttribute : ExceptionFilterAttribute
{
 public override void OnException(ExceptionContext context)
 {
 var error = new
 {
 Success = false,
 Errors = new [] { context.Exception.Message }
 };

 context.Result = new ObjectResult(error)
 {
 StatusCode = 500
 };
 context.ExceptionHandled = true;
 }
}

It’s quite common to have one or two different exception filters in your application,
one for your MVC controllers and one for your Web API controllers, but they’re not
always necessary. If you can handle all the exceptions in your application with a single
piece of middleware, then ditch the exception filters and go with that instead.

 You’re coming to the last type of filter now, result filters, and with it, you’re almost
done refactoring your RecipeApiController. Custom result filters tend to be rela-
tively rare in the apps I’ve written, but they have their uses, as you’ll see.

13.2.5 Result filters: customizing action results before they execute

If everything runs successfully in the pipeline, and there’s no short-circuiting, then
the next stage of the pipeline after action filters are result filters. These run just
before and after the IActionResult returned by the Action method (or action filters)
is executed.

WARNING If the pipeline is short-circuited by setting context.Result, the
result filter stage won’t be run, but IActionResult will still be executed to
generate the response. The one exception to this rule is action filters—these
only short-circuit the action execution, as you saw in figure 13.2, and so result
filters run as normal, as though the action itself generated the response.

Listing 13.13 The HandleExceptionAttribute exception filter

ExceptionFilterAttibute is an abstract base
class that implements IExceptionFilter.

There’s only a single method to
override for IExceptionFilter.

Building a custom
object to return in
the response

Creates an ObjectResult
to serialize the error
object and to set the
response status code

Marks the exception as handled to
prevent it propagating out of
MvcMiddleware

393Creating custom filters for your application

Result filters run immediately after action filters, so many of their use cases are similar,
but you typically use result filters to customize the way the IActionResult executes.
For example, ASP.NET Core has several result filters built into its framework:

 ProducesAttribute—This forces the Web API result to be serialized to a
specific output format. For example, decorating your action method with
[Produces("application/xml")] forces the formatters to try to format the
response as XML, even if the client doesn’t list XML in its Accept header.

 FormatFilterAttribute—Decorating an action method with this filter tells the
formatter to look for a route value or query string parameter called format, and
to use that to determine the output format. For example, you could call
/api/recipe/11?format=json and FormatFilter will format the response as
JSON, or call api/recipe/11?format=xml and get the response as XML.5

As well as controlling the output formatters, you can use result filters to make any last-
minute adjustments before IActionResult is executed and the response is generated.

 As an example of the kind of flexibility available to you, in the following listing I
demonstrate setting the Last-Modified header, based on the object returned from
the action. This is a somewhat contrived example—it’s specific enough to a single
action that it doesn’t warrant being moved to a result filter—but, hopefully, you get
the idea!

public class AddLastModifedHeaderAttribute : ResultFilterAttribute
{
 public override void OnResultExecuting(
 ResultExecutingContext context)
 {
 if (context.Result is OkObjectResult result
 && result.Value is RecipeDetailViewModel detail)
 {
 var viewModelDate = detail.LastModified;
 context.HttpContext.Response
 .GetTypedHeaders().LastModified = viewModelDate;
 }
 }

}

I’ve used another helper base class here, ResultFilterAttribute, so you only need
to override a single method to implement the filter. Fetch the current IActionResult,

5 Remember, you need to explicitly configure the XML formatters if you want to serialize to XML. For details,
see http://mng.bz/0J2z.

Listing 13.14 Setting a response header in a result filter

ResultFilterAttribute provides a
useful base class you can override

You could also override the Executed
method, but the response would

already be sent by then.

Checks
whether the
action result
returned a 200
Ok result with
a view model

Checks whether
the view model
type is
RecipeDetailView
Model . . .

. . . if it is, fetches the LastModified field and
sets the Last-Modified header in the response

http://mng.bz/0J2z

394 CHAPTER 13 The MVC filter pipeline

exposed on context.Result, and check that it’s OkObjectResult with RecipeDetail-
ViewModel. If it is, then fetch the LastModified field from the view model and add a
Last-Modified header to the response.

TIP GetTypedHeaders() is an extension method that provides strongly typed
access to request and response headers. It takes care of parsing and format-
ting the values for you. You can find it in the Microsoft.AspNetCore.Http
namespace.

As with resource and action filters, result filters can implement a method that runs
after the result has been executed, OnResultExecuted. You can use this method, for
example, to inspect exceptions that happened during the execution of IAction-
Result.

WARNING Generally, you can’t modify the response in the OnResult-
Executed method, as MvcMiddleware may have already started streaming the
response to the client.

That brings us to the end of this detailed look at each of the filters in the MVC pipe-
line. Looking back and comparing listings 13.6 and 13.7, you can see filters allowed us
to refactor the controllers and make the intent of each action method much clearer.
Writing your code in this way makes it easier to reason about, as each filter and action
has a single responsibility.

 In the next section, I’ll take a slight detour into exactly what happens when you
short-circuit a filter. I’ve described how to do this, by setting the context.Result prop-
erty on a filter, but I haven’t yet described exactly what happens. For example, what if
there are multiple filters in the stage when it’s short-circuited? Do those still run?

13.3 Understanding pipeline short-circuiting
A brief warning: the topic of filter short-circuiting can be a little confusing. Unlike
middleware short-circuiting, which is cut-and-dried, the MVC filter pipeline is a bit
more nuanced. Luckily, you won’t often find you need to dig into it, but when you do,
you’ll be glad of the detail.

 You short-circuit the authorization, resource, action, and result filters by setting
context.Result to IActionResult. Setting an action result in this way causes some,
or all, of the remaining pipeline to by bypassed. But the filter pipeline isn’t entirely
linear, as you saw in figure 13.2, so short-circuiting doesn’t always do an about-face
back down the pipeline. For example, short-circuited action filters only bypass action
method execution—the result filters and result execution stages still run.

 The other difficultly is what happens if you have more than one type of filter. Let’s
say you have three resource filters executing in a pipeline. What happens if the second
filter causes a short circuit? Any remaining filters are bypassed, but the first resource fil-
ter has already run its *Executing command, as shown in figure 13.6. This earlier filter
gets to run its *Executed command too, with context.Cancelled = true, indicating
that a filter in that stage (the resource filter stage) short-circuited the pipeline.

395Understanding pipeline short-circuiting

Understanding which other filters will run when you short-circuit a filter can be some-
what of a chore, but I’ve summarized each filter in table 13.1. You’ll also find it useful
to refer to figure 13.2 to visualize the shape of the pipeline when thinking about short-
circuits.

The most interesting point here is that short-circuiting an action filter doesn’t short-
circuit much of the pipeline at all. In fact, it only bypasses later action filters and the
action method execution itself. By primarily building action filters, you can ensure
that other filters, such as result filters that define the output format, run as usual, even
when your action filters short-circuit.

Table 13.1 The effect of short-circuiting filters on filter-pipeline execution

Filter type How to short-circuit? What else runs?

Authorization filters Set context.Result Nothing, the pipeline is immediately halted.

Resource filters Set context.Result Resource-filter *Executed functions from earlier
filters run with context.Cancelled = true.

Action filters Set context.Result Only bypasses action method execution. Action fil-
ters earlier in the pipeline run their *Executed
methods with context.Cancelled = true,
then result filters, result execution, and resource
filters’ *Executed methods all run as normal.

Exception filters Set context.Result and
Exception.Handled =
true

All resource-filter *Executed functions run.

Result filters Set context.Cancelled
= true

Result filters earlier in the pipeline run their
*Executed functions with
context.Cancelled = true. All resource-
filter *Executed functions run as normal.

Filter1

Filter 3

Filter2

OnResourceExecuting

OnResourceExecuting

OnResourceExecuted

1 1. Resource filter runs
its Executing function.∗

2. Resource filter 2 runs
its Executing function and∗

short-circuits the pipeline
by setting context.Result.

context.Result

3. Resource filter 3
(or the rest of the
pipeline) never runs.

5. Resource filter runs its1
Executed function. Cancelled∗

is set to true, indicating the
pipeline was cancelled.

4. Resource filter 2 doesn’t
run its Executed function as∗

it short-circuited the pipeline.

context.cancelled=true

Figure 13.6 The effect of short-circuiting a resource filter on other resource filters in that stage. Later
filters in the stage won’t run at all, but earlier filters run their OnResourceExecuted function.

396 CHAPTER 13 The MVC filter pipeline

 The last thing I’d like to talk about in this chapter is how to use DI with your filters.
You saw in chapter 10 that DI is integral to ASP.NET Core, and in the next section,
you’ll see how to design your filters so that the framework can inject service depen-
dencies into them for you.

13.4 Using dependency injection with filter attributes
The previous version of ASP.NET used filters, but they suffered from one problem in
particular: it was hard to use services from them. This was a fundamental issue with
implementing them as attributes that you decorate your actions with. C# attributes
don’t let you pass dependencies into their constructors (other than constant values),
and they’re created as singletons, so there’s only a single instance for the lifetime of
your app.

 In ASP.NET Core, this limitation is still there in general, in that filters are typically
created as attributes that you add to your controller classes and action methods. What
happens if you need to access a transient or scoped service from inside the singleton
attribute?

 Listing 13.11 showed one way of doing this, using a pseudo service locator pattern
to reach into the DI container and pluck out RecipeService at runtime. This works
but is generally frowned upon as a pattern, in favor of proper DI. How can you add DI
to your filters?

 The key is to split the filter into two. Instead of creating a class that’s both an attri-
bute and a filter, create a filter class that contains the functionality and an attribute
that tells MvcMiddleware when and where to use the filter.

 Let’s apply this to the action filter from listing 13.11. Previously, I derived from
ActionFilterAttribute and obtained an instance of RecipeService from the context
passed to the method. In the following listing, I show two classes, EnsureRecipeExists-
Filter and EnsureRecipeExistsAttribute. The filter class is responsible for the func-
tionality and takes in RecipeService as a constructor dependency.

public class EnsureRecipeExistsFilter : IActionFilter
{
 private readonly RecipeService _service;
 public EnsureRecipeExistsFilter(RecipeService service)
 {
 _service = service;
 }

 public void OnActionExecuting(ActionExecutingContext context)
 {
 var recipeId = (int) context.ActionArguments["id"];
 if (!_service.DoesRecipeExist(recipeId))
 {
 context.Result = new NotFoundResult();
 }
 }

Listing 13.15 Using DI in a filter by not deriving from Attribute

Doesn’t derive from
an Attribute class

RecipeService
is injected

into the
constructor.

The rest of
the method
remains the
same.

397Using dependency injection with filter attributes

 public void OnActionExecuted(ActionExecutedContext context) { }
}

public class EnsureRecipeExistsAttribute : TypeFilterAttribute
{
 public EnsureRecipeExistsAttribute()
 : base(typeof(EnsureRecipeExistsFilter)) {}
}

EnsureRecipeExistsFilter is a valid filter; you could use it on its own by adding it as
a global filter (as global filters don’t need to be attributes). But you can’t use it directly
by decorating controller classes and action methods, as it’s not an attribute. That’s
where EnsureRecipeExistsAttribute comes in.

 You can decorate your methods with EnsureRecipeExistsAttribute instead. This
attribute inherits from TypeFilterAttribute and passes the Type of filter to create as
an argument to the base constructor. This attribute acts as a factory for EnsureRecipe-
ExistsFilter by implementing IFilterFactory.

 When MvcMiddleware initially loads your app, it scans your actions and controllers,
looking for filters and filter factories. It uses these to form a filter pipeline for every
action in your app, as shown in figure 13.7.

 When an action decorated with EnsureRecipeExistsAttribute is called, Mvc-
Middleware calls CreateInstance() on the attribute. This creates a new instance of
EnsureRecipeExistsFilter and uses the DI container to populate its dependencies
(RecipeService).

You must implement
the Executed action to
satisfy the interface.

Passes the type EnsureRecipeExistsFilter
as an argument to the base TypeFilter

constructor

Derives from
TypeFilter, which

is used to fill
dependencies

using the DI
container.

public class HomeController
{
[ValidateModel]
[EnsureRecipeExistsFilter]
public IActionResult Index()
{
return View();

}
}

ValidateModelAttribute

EnsureRecipeExistsFilter

IFilterFactory

Attributes that implement
filter interfaces are added
directly to the pipeline.

The MvcMiddleware calls CreateInstance () on each
IFilterFactory when a request is received to create
a filter instance, which is added to the pipeline.

CreateInstance()

The MvcMiddleware scans your
app looking for filters or attributes
that implement IFilterFactory.

Figure 13.7 The MvcMiddleware scans your app on startup to find both filters and attributes that
implement IFilterFactory. At runtime, the middleware calls CreateInstance() to get an
instance of the filter.

398 CHAPTER 13 The MVC filter pipeline

By using this IFilterFactory approach, you get the best of both worlds; you can dec-
orate your controllers and actions with attributes, and you can use DI in your filters.
Out of the box, two similar classes provide this functionality, which have slightly differ-
ent behaviors:

 TypeFilterAttribute—Loads all of the filter’s dependencies from the DI con-
tainer and uses them to create a new instance of the filter.

 ServiceFilterAttribute—Loads the filter itself from the DI container. The DI
container takes care of the service lifetime and building the dependency graph.
Unfortunately, you also have to explicitly register your filter with the DI con-
tainer in ConfigureServices in Startup:
services.AddTransient<EnsureRecipeExistsFilter>();

Whether you choose to use TypeFilterAttribute or ServiceFilterAttribute is
somewhat a matter of preference, and you can always implement a custom IFilter-
Factory if you need to. The key takeaway is that you can now use DI in your filters. If you
don’t need to use DI for a filter, then implement it as an attribute directly for simplicity.

TIP I like to create my filters as a nested class of the attribute class when
using this pattern. This keeps all the code nicely contained in a single file and
indicates the relationship between the classes.

That brings us to the end of this chapter on the filter pipeline. Filters are a somewhat
advanced topic, in that they aren’t strictly necessary for building basic apps, but I find
them extremely useful for ensuring my controller and action methods are simple and
easy to understand.

 In the next chapter, we’ll take our first look at securing your app. We’ll discuss the
difference between authentication and authorization, the concept of identity in
ASP.NET Core, and how you can use the ASP.NET Core Identity system to let users
register and log in to your app.

Summary
 The filter pipeline executes as part of MvcMiddleware after routing has selected

an action method.
 The filter pipeline consists of authorization filters, resource filters, action fil-

ters, exception filters, and Result filters. Each filter type is grouped into a stage.
 Resource, action, and result filters run twice in the pipeline: an *Executing

method on the way in and an *Executed method on the way out.
 Authorization and exception filters only run once as part of the pipeline; they

don’t run after a response has been generated.
 Each type of filter has both a sync and an async version. For example, resource

filters can implement either the IResourceFilter interface or the IAsync-
ResourceFilter interface. You should use the synchronous interface unless
your filter needs to use asynchronous method calls.

399Summary

 You can add filters globally, at the controller level, or at the action level. This is
called the scope of the filter.

 Within a given stage, global-scoped filters run first, then controller-scoped, and
finally, action-scoped.

 You can override the default order by implementing the IOrderedFilter inter-
face. Filters will run from lowest to highest Order and use scope to break ties.

 Authorization filters run first in the pipeline and control access to APIs.
ASP.NET Core includes an [Authorization] attribute that you can apply to
action methods so that only logged-in users can execute the action.

 Resource filters run after authorization filters, and again after a result has been
executed. They can be used to short-circuit the pipeline, so that an action
method is never executed. They can also be used to customize the model bind-
ing process for an action method.

 Action filters run after model binding has occurred, just before an action
method executes. They also run after the action method has executed. They can
be used to extract common code out of an action method to prevent duplication.

 The Controller base class also implements IActionFilter and IAsyncAction-
Filter. They run at the start and end of the action filter pipeline, regardless of
the ordering or scope of other action filters.

 Exception filters execute after action filters, when an action method has thrown
an exception. They can be used to provide custom error handling specific to
the action executed.

 Generally, you should handle exceptions at the middleware level, but exception
filters let you customize how you handle exceptions for specific actions or
controllers.

 Result filters run just before and after an IActionResult is executed. You can
use them to control how the action result is executed, or to completely change
the action result that will be executed.

 You can use ServiceFilterAttribute and TypeFilterAttribute to allow
dependency injection in your custom filters. ServiceFilterAttribute requires
that you register your filter and all its dependencies with the DI container,
whereas TypeFilterAttribute only requires that the filter’s dependencies have
been registered.

Andrew Lock

T
he dev world has permanently embraced open platforms
with fl exible tooling, and ASP.NET Core has changed with
it. This free, open source web framework delivers choice

without compromise. You can enjoy the benefi ts of a mature,
well-supported stack and the freedom to develop and deploy
from and onto any cloud or on-prem platform.

ASP.NET Core in Action opens up the world of cross-platform
web development with .NET. You’ll start with a crash course
in .NET Core, immediately cutting the cord between ASP.NET
and Windows. Then, you’ll begin to build amazing web appli-
cations step by step, systematically adding essential features
like logins, confi guration, dependency injection, and custom
components. Along the way, you’ll mix in important process
steps like testing, multiplatform deployment, and security.

What’s Inside
● Covers ASP.NET Core 2.0
● Dynamic page generation with the Razor templating
 engine
● Developing ASP.NET Core apps for non-Windows servers
● Clear, annotated examples in C#

Readers need intermediate experience with C# or a similar
language.

Andrew Lock has been developing professionally with ASP.NET
for the last seven years. His focus is currently on the ASP.NET
Core framework.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/asp-net-core-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

ASP.NET Core IN ACTION

.NET DEVELOPMENT

M A N N I N G

“Comprehensive coverage
of the latest and greatest

.NET technology.”
—Jason Pike

Atlas RFID Solutions

“A thorough and easy-to-
read training guide to the
future of Microsoft cross-

platform web development.”—Mark Harris, Microsoft

“An outstanding
presentation of the concepts

and best practices.
Explains not only what to do,

 but why to do it.”
—Mark Elston, Advantest America

“Superb starting point
for .NET Core 2.0 with

valid and relevant
real-world examples.”
—George Onofrei, Devex

See first page

