
SAMPLE CHAPTER

 POJOs in Action
by Chris Richardson

Copyright 2006 Chris Richardson

Chapter 2

vii

contents
PART 1 OVERVIEW OF POJOS AND LIGHTWEIGHT

FFFFFFFFFFFFFFFFRAMEWORKS ...1
Chapter 1 ■ Developing with POJOs: faster and easier 3
Chapter 2 ■ J2EE design decisions 31

PART 2 A SIMPLER, FASTER APPROACH................... 59
Chapter 3 ■ Using the Domain Model pattern 61
Chapter 4 ■ Overview of persisting a domain model 95
Chapter 5 ■ Persisting a domain model with JDO 2.0 149
Chapter 6 ■ Persisting a domain model with Hibernate 3 195
Chapter 7 ■ Encapsulating the business logic with a POJO façade 243

PART 3 VARIATIONS ... 287
Chapter 8 ■ Using an exposed domain model 289
Chapter 9 ■ Using the Transaction Script pattern 317

Chapter 10 ■ Implementing POJOs with EJB 3 360

viii BRIEF CONTENTS

PART 4 DEALING WITH DATABASES AND
CCCCCCCCCCCCCONCURRENCY405

Chapter 11 ■ Implementing dynamic paged queries 407
Chapter 12 ■ Database transactions and concurrency 451
Chapter 13 ■ Using offline locking patterns 488

31

J2EE design decisions

This chapter covers
■ Encapsulating the business logic
■ Organizing the business logic
■ Accessing the database
■ Handling database concurrency

32 CHAPTER 2

J2EE design decisions

Now that you have had a glimpse of how POJOs and lightweight frameworks such
as Spring and JDO make development easier and faster, let’s take a step back and
look at how you would decide whether and how to use them. If we blindly used
POJOs and lightweight frameworks, we would be repeating the mistake the enter-
prise Java community made with EJBs. Every technology has both strengths and
weaknesses, and it’s important to know how to choose the most appropriate one
for a given situation.

 This book is about implementing enterprise applications using design patterns
and lightweight frameworks. To enable you to use them effectively in your applica-
tion, it provides a decision-making framework that consists of five key questions
that must be answered when designing an application or implementing the busi-
ness logic for an individual use case. By consciously addressing each of these
design issues and understanding the consequences of your decisions, you will
vastly improve the quality of your application.

 In this chapter you will get an overview of those five design decisions, which
are described in detail in the rest of this book. I briefly describe each design deci-
sion’s options as well as their respective benefits and drawbacks. I also introduce
the example application that is used throughout this book and provide an over-
view of how to make decisions about its architecture and design.

2.1 Business logic and database access decisions

As you saw in chapter 1, there are two quite different ways to design an enterprise
Java application. One option is to use the classic EJB 2 approach, which I will refer
to as the heavyweight approach. When using the heavyweight approach, you use
session beans and message-driven beans to implement the business logic. You use
either DAOs or entity beans to access the business logic.

 The other option is to use POJOs and lightweight frameworks, which I’ll refer to
as the POJO approach. When using the POJO approach, your business logic consists
entirely of POJOs. You use a persistence framework (a.k.a., object/relational map-
ping framework) such as Hibernate or JDO to access the database, and you use Spring
AOP to provide enterprise services such as transaction management and security.

 EJB 3 somewhat blurs the distinction between the two approaches because it
has embraced POJOs and some lightweight concepts. For example, entity beans
are POJOs that can be run both inside and outside the EJB container. However,
while session beans and message-driven beans are POJOs they also have heavy-
weight behavior since they can only run inside the EJB container. So, as you can
see, EJB 3 has both heavyweight and POJO characteristics. EJB 3 entity beans are

Business logic and database access decisions 33

part of the lightweight approach whereas session beans and message-driven beans
are part of the heavyweight approach.

 Choosing between the heavyweight approach and the POJO approach is one of
the first of myriad design decisions that you must make during development. It’s a
decision that affects several aspects of the application, including business logic
organization and the database access mechanism. To help decide between the two
approaches, let’s look at the architecture of a typical enterprise application, which
is shown in figure 2.1, and examine the kinds of decisions that must be made
when developing it.

Design Decisions

Business Tier

Persistence Tier

Presentation Tier

Database

How to access
the database

How to
encapsulate the
business logic

How to organize
the business

logic

How to handle
concurrency in
long-running
transactions

How to handle
concurrency in

short transactions

Business Tier Interface

Figure 2.1 A typical application architecture and the key business logic and database access
design decisions

34 CHAPTER 2

J2EE design decisions

The application consists of the web-based presentation tier, the business tier, and
the persistence tier. The web-based presentation tier handles HTTP requests and
generates HTML for regular browser clients and XML and other content for rich
Internet clients, such as Ajax-based clients. The business tier, which is invoked by
the presentation tier, implements the application’s business logic. The persistence
tier is used by the business tier to access external data sources such as databases
and other applications.

 The design of the presentation tier is outside the scope of this book, but let’s
look at the rest of the diagram. We need to decide the structure of the business
tier and the interface that it exposes to the presentation tier and its other clients.
We also need to decide how the persistence tier accesses databases, which is the
main source of data for many applications. We must also decide how to handle
concurrency in short transactions and long-running transactions. That adds up to
five decisions that any designer/architect must make and that any developer must
know in order to understand the big picture.

 These decisions determine key characteristics of the design of the application’s
business and the persistence tiers. There are, of course, many other important
decisions that you must make—such as how to handle transactions, security, and
caching and how to assemble the application—but as you will see later in this
book, answering those five questions often addresses these other issues as well.

 Each of the five decisions shown in figure 2.1 has multiple options. For exam-
ple, in chapter 1 you saw two different options for three of these decisions. The
EJB-based design, which was described in section 1.1, consisted of procedural
code implemented by a session bean and used JDBC to access the database. In
comparison, the POJO-based design, which was described in section 1.2, consisted
of an object model, which was mapped to the database using JDO and was encap-
sulated with a POJO façade that used Spring for transaction management.

 Each option has benefits and drawbacks that determine its applicability to a
given situation. As you will see in this chapter, each one makes different trade-offs
in terms of one or more areas, including functionality, ease of development, main-
tainability, and usability. Even though I’m a big fan of the POJO approach, it is
important to know these benefits and drawbacks so that you can make the best
choices for your application.

 Let’s now take a brief look at each decision and its options.

Decision 1: organizing the business logic 35

2.2 Decision 1: organizing the business logic

These days a lot of attention is focused on the benefits and drawbacks of particu-
lar technologies. Although this is certainly very important, it is also essential to
think about how your business logic is structured. It is quite easy to write code
without giving much thought to how it is organized. For example, as I described
in the previous chapter it is too easy to add yet more code to a session bean
instead of carefully deciding which domain model class should be responsible for
the new functionality. Ideally, however, you should consciously organize your busi-
ness logic in the way that’s the most appropriate for your application. After all,
I’m sure you’ve experienced the frustration of having to maintain someone else’s
badly structured code.

 The key decision you must make is whether to use an object-oriented approach
or a procedural approach. This isn’t a decision about technologies, but your
choice of technologies can potentially constrain the organization of the business
logic. Using EJB 2 firmly pushes you toward a procedural design whereas POJOs
and lightweight frameworks enable you to choose the best approach for your par-
ticular application. Let’s examine the options.

2.2.1 Using a procedural design

While I am a strong advocate of the object-oriented approach, there are some sit-
uations where it is overkill, such as when you are developing simple business logic.
Moreover, an object-oriented design is sometimes infeasible—for example, if you
do not have a persistence framework to map your object model to the database. In
such a situation, a better approach is to write procedural code and use what
Fowler calls the Transaction Script pattern [Fowler 2002]. Rather than doing any
object-oriented design, you simply write a method, which is called a transaction
script, to handle each request from the presentation tier.

 An important characteristic of this approach is that the classes that implement
behavior are separate from those that store state. In an EJB 2 application, this typi-
cally means that your business logic will look similar to the design shown in
figure 2.2. This kind of design centralizes behavior in session beans or POJOs,
which implement the transaction scripts and manipulate “dumb” data objects that
have very little behavior. Because the behavior is concentrated in a few large
classes, the code can be difficult to understand and maintain.

 The design is highly procedural, and relies on few of the capabilities of object-
oriented programming (OOP) languages. This is the type of design you would
create if you were writing the application in C or another non-OOP language.

36 CHAPTER 2

J2EE design decisions

Nevertheless, you should not be ashamed to use a procedural design when it is
appropriate. In chapter 9 you will learn when it does make sense and see some
ways to improve a procedural design.

2.2.2 Using an object-oriented design

The simplicity of the procedural approach can be quite seductive. You can just
write code without having to carefully consider how to organize the classes. The
problem is that if your business logic becomes complex, then you can end up with
code that’s a nightmare to maintain. Consequently, unless you are writing an
extremely simple application you should resist the temptation to write procedural
code and instead develop an object-oriented design.

 In an object-oriented design, the business logic consists of an object model,
which is a network of relatively small classes. These classes typically correspond
directly to concepts from the problem domain. For example, in the money transfer
example in section 1.2 the POJO version consists of classes such as TransferService,
Account, OverdraftPolicy, and BankingTransaction, which correspond to con-
cepts from the banking domain. As figure 2.3 shows, in such a design some classes
have only either state or behavior but many contain both, which is the hallmark of
a well-designed class.

 As we saw in chapter 1, an object-oriented design has many benefits, including
improved maintainability and extensibility. You can implement a simple object
model using EJB 2 entity beans, but to enjoy most of the benefits you must use
POJOs and a lightweight persistence framework such as Hibernate and JDO. POJOs
enable you to develop a rich domain model, which makes use of such features as
inheritance and loopback calls. A lightweight persistence framework enables you
to easily map the domain model to the database.

Legend:

Behavior

State

Transaction
Scripts

(Session
Beans)

Data
Objects

Figure 2.2 The structure of a procedural design: large transaction script classes
and many small data objects

Decision 2: encapsulating the business logic 37

Another name for an object model is a domain model, and Fowler calls the
object-oriented approach to developing business logic the Domain Model pattern
[Fowler 2002]. In chapter 3 I describe one way to develop a domain model and in
chapters 4-6 you will learn about how to persist a domain model with Hibernate
and JDO.

2.2.3 Table Module pattern

I have always developed applications using the Domain Model and Transaction
Script patterns. But I once heard rumors of an enterprise Java application that
used a third approach, which is what Martin Fowler calls the Table Module pattern.
This pattern is more structured than the Transaction Script pattern, because for
each database table it defines a table module class that implements the code that
operates on that table. But like the Transaction Script pattern it separates state
and behavior into separate classes because an instance of a table module class rep-
resents the entire database rather individual rows. As a result, maintainability is a
problem. Consequently, there is very little benefit to using the Table Module pat-
tern, and so I’m not going to look at it in anymore detail in this book.

2.3 Decision 2: encapsulating the business logic

In the previous section, I covered how to organize the business logic. You must also
decide what kind of interface the business logic should have. The business logic’s
interface consists of those types and methods that are callable by the presentation
tier. An important consideration when designing the interface is how much of the
business logic’s implementation should be encapsulated and therefore not visible
to the presentation tier. Encapsulation improves maintainability because by hiding

Legend:

Behavior

State

Figure 2.3
The structure of a domain model:
small classes that have state and
behavior

38 CHAPTER 2

J2EE design decisions

the business logic’s implementation details it can prevent changes to it affecting the
presentation tier. The downside is that you must typically write more code to encap-
sulate the business logic.

 You must also address other important issues, such as how to handle transac-
tions, security, and remoting, since they are generally the responsibility of the
business logic’s interface code. The business tier’s interface typically ensures that
each call to the business tier executes in a transaction in order to preserve the
consistency of the database. Similarly, it also verifies that the caller is authorized to
invoke a business method. The business tier’s interface is also responsible for han-
dling some kinds of remote clients.

 Let’s consider the options.

2.3.1 EJB session facade

The classic-J2EE approach is to encapsulate business logic with an EJB-based ses-
sion façade. The EJB container provides transaction management, security, distrib-
uted transactions, and remote access. The façade also improves maintainability by
encapsulating the business logic. The coarse-grained API can also improve perfor-
mance by minimizing the number of calls that the presentation tier must make to
the business tier. Fewer calls to the business tier reduce the number of database
transactions and increase the opportunity to cache objects in memory. It also
reduces the number of network round-trips if the presentation tier is accessing the
business tier remotely. Figure 2.4 shows an example of an EJB-based session façade.

EJB Container
Encapsulation
Container-Managed Transactions
Declarative Security

Session
Façade

Business
Object

Business
Object

Business
Object

Presentation Tier

Business Tier

Component
Web

Component
Web

Figure 2.4
Encapsulating the business
logic with an EJB session
façade

Decision 2: encapsulating the business logic 39

In this design, the presentation tier, which may be remote, calls the façade. The
EJB container intercepts the calls to the façade, verifies that the caller is autho-
rized, and begins a transaction. The façade then calls the underlying objects that
implement the business logic. After the façade returns, the EJB container commits
or rolls back the transaction.

 Unfortunately, using an EJB session façade has some significant drawbacks. For
example, EJB session beans can only run in the EJB container, which slows devel-
opment and testing. In addition, if you are using EJB 2, then developing and main-
taining DTOs, which are used to return data to the presentation tier, is tedious
and time consuming.

2.3.2 POJO façade

For many applications, a better approach uses a POJO façade in conjunction with
an AOP-based mechanism such as the Spring framework that manages transac-
tions, persistence framework connections, and security. A POJO facade encapsu-
lates the business tier in a similar fashion to an EJB session façade and usually has
the same public methods. The key difference is that it’s a POJO instead of an EJB
and that services such as transaction management and security are provided by
AOP instead of the EJB container. Figure 2.5 shows an example of a design that
uses a POJO façade.

 The presentation tier invokes the POJO façade, which then calls the business
objects. In the same way that the EJB container intercepts the calls to the EJB

Spring AOP Encapsulation
AOP-Managed Transactions
AOP-Based Security

Web
Component

POJO
Façade

Business
Object

Business
Object

Business
Object

Web
Component

Presentation Tier

Business Tier

Figure 2.5
Encapsulating the business
logic with a POJO façade

40 CHAPTER 2

J2EE design decisions

façade, the AOP interceptors intercept the calls to the POJO façade and authenti-
cate the caller and begin, commit, and roll back transactions.

 The POJO façade approach simplifies development by enabling all of the busi-
ness logic to be developed and tested outside the application server, while provid-
ing many of the important benefits of EJB session beans such as declarative
transactions and security. As an added bonus, you have to write less code. You can
avoid writing many DTO classes because the POJO façade can return domain
objects to the presentation tier; you can also use dependency injection to wire the
application’s components together instead of writing JNDI lookup code.

 However, as you will see in chapter 7 there are some reasons not to use the
POJO façade. For example, a POJO façade cannot participate in a distributed
transaction initiated by a remote client.

2.3.3 Exposed Domain Model pattern

Another drawback of using a façade is that you must write extra code. Moreover,
as you will see in chapter 7, the code that enables persistent domain objects to be
returned to the presentation tier is especially prone to errors. There is the
increased risk of runtime errors caused by the presentation tier trying to access an
object that was not loaded by the business tier. If you are using JDO, Hibernate, or
EJB 3, you can avoid this problem by exposing the domain model to the presenta-
tion tier and letting the business tier return the persistent domain objects back to
the presentation tier. As the presentation tier navigates relationships between
domain objects, the persistence framework will load the objects that it accesses, a
technique known as lazy loading. Figure 2.6 shows a design in which the presenta-
tion tier freely accesses the domain objects.

Spring AOP AOP-Managed Transactions
AOP-Based Security

Web
Component

Business
Object

Business
Object

Business
Object

Web
Component

Presentation Tier

Business Tier

Figure 2.6
Using an exposed
domain model

Decision 3: accessing the database 41

In the design in figure 2.6, the presentation tier calls the domain objects directly
without going through a façade. Spring AOP continues to provide services such as
transaction management and security.

 An important benefit of this approach is that it eliminates the need for the
business tier to know what objects it must load and return to the presentation tier.
However, although this sounds simple you will see there are some drawbacks. It
increases the complexity of the presentation tier, which must manage database
connections. Transaction management can also be tricky in a web application
because transactions must be committed before the presentation tier sends any
part of the response back to the browser. Chapter 8 describes how to address these
issues and implement an exposed domain model.

2.4 Decision 3: accessing the database

No matter how you organize and encapsulate the business logic, eventually you
have to move data to and from the database. In a classic J2EE application you had
two main choices: JDBC, which required a lot of low-level coding, or entity beans,
which were difficult to use and lacked important features. In comparison, one of
the most exciting things about using lightweight frameworks is that you have some
new and much more powerful ways to access the database that significantly reduce
the amount of database access code that you must write. Let’s take a closer look.

2.4.1 What’s wrong with using JDBC directly?

The recent emergence of object/relational mapping frameworks (such as JDO
and Hibernate) and SQL mapping frameworks (such as iBATIS) did not occur in a
vacuum. Instead, they emerged from the Java community’s repeated frustrations
with JDBC. Let’s review the problems with using JDBC directly in order to under-
stand the motivations behind the newer frameworks. There are three main rea-
sons why using JDBC directly is not a good choice for many applications:

■ Developing and maintaining SQL is difficult and time consuming—Some devel-
opers find writing large, complex SQL statements quite difficult. It can also
be time consuming to update the SQL statements to reflect changes in the
database schema. You need to carefully consider whether the loss of main-
tainability is worth the benefits.

■ There is a lack of portability with SQL—Because you often need to use database-
specific SQL, an application that works with multiple databases must have
multiple versions of some SQL statements, which can be a maintenance

42 CHAPTER 2

J2EE design decisions

nightmare. Even if your application only works with one database in produc-
tion, SQL’s lack of portability can be an obstacle to using a simpler and faster
in-memory database such as Hypersonic Structured Query Language Data-
base Engine (HSQLDB) for testing.

■ Writing JDBC code is time consuming and error-prone—You must write lots of
boilerplate code to obtain connections, create and initialize Prepared-
Statements, and clean up by closing connections and prepared statements.
You also have to write the code to map between Java objects and SQL state-
ments. As well as being tedious to write, JDBC code is also error-prone.

The first two problems are unavoidable if your application must execute SQL
directly. Sometimes, you must use the full power of SQL, including vendor-specific
features, in order to get good performance. Or, for a variety of business-related
reasons, your DBA might demand complete control over the SQL statements exe-
cuted by your application, which can prevent you from using persistence frame-
works that generate the SQL on the fly. Often, the corporate investment in its
relational databases is so massive that the applications working with the databases
can appear relatively unimportant. Quoting the authors of iBATIS in Action, there
are cases where “the database and even the SQL itself have outlived the applica-
tion source code, or even multiple versions of the source code. In some cases, the
application has been rewritten in a different language, but the SQL and database
remained largely unchanged.” If you are stuck with using SQL directly, then fortu-
nately there is a framework for executing it directly, one that is much easier to use
than JDBC. It is, of course, iBATIS.

2.4.2 Using iBATIS

All of the enterprise Java applications I’ve developed executed SQL directly. Early
applications used SQL exclusively whereas the later ones, which used a persistence
framework, used SQL in a few components. Initially, I used plain JDBC to execute
the SQL statements, but later on I often ended up writing mini-frameworks to han-
dle the more tedious aspects of using JDBC. I even briefly used Spring’s JDBC
classes, which eliminate much of the boilerplate code. But neither the home-
grown frameworks nor the Spring classes addressed the problem of mapping
between Java classes and SQL statements, which is why I was excited to come
across iBATIS.

 In addition to completely insulating the application from connections and pre-
pared statements, iBATIS maps JavaBeans to SQL statements using XML descriptor
files. It uses Java bean introspection to map bean properties to prepared statement

Decision 3: accessing the database 43

placeholders and to construct beans from a ResultSet. It also includes support for
database-generated primary keys, automatic loading of related objects, caching,
and lazy loading. In this way, iBATIS eliminates much of the drudgery of executing
SQL statements. As you will see in several chapters, including chapter 9, iBATIS can
considerably simplify code that executes SQL statements. Instead of writing a lot of
low-level JDBC code, you write an XML descriptor file and make a few calls to iBA-
TIS APIs.

2.4.3 Using a persistence framework

Of course, iBATIS cannot address the overhead of developing and maintaining
SQL or its lack of portability. To avoid those problems you need to use a persis-
tence framework. A persistence framework maps domain objects to the database.
It provides an API for creating, retrieving, and deleting objects. It automatically
loads objects from the database as the application navigates relationships between
objects and updates the database at the end of a transaction. A persistence frame-
work automatically generates SQL using the object/relational mapping, which is
typically specified by an XML document that defines how classes are mapped to
tables, how fields are mapped to columns, and how relationships are mapped to
foreign keys and join tables.

 EJB 2 had its own limited form of persistence framework: entity beans. How-
ever, EJB 2 entity beans have so many deficiencies, and developing and testing
them is extremely tedious. As a result, EJB 2 entity beans should rarely be used.
What’s more, as I describe in chapter 10 it is unclear how some of their deficien-
cies will be addressed by EJB 3.

 The two most popular lightweight persistence frameworks are
JDO[JSR12][JSR243], which is a Sun standard, and Hibernate, which is an open
source project. They both provide transparent persistence for POJO classes. You
can develop and test your business logic using POJO classes without worrying
about persistence, then map the classes to the database schema. In addition, they
both work inside and outside the application server, which simplifies development
further. Developing with Hibernate and JDO is so much more pleasurable than
with old-style EJB 2 entity beans.

 Several chapters in this book describe how to use JDO and Hibernate effectively.
In chapter 5 you will learn how to use JDO to persist a domain model. Chapter 6
looks at how to use Hibernate to persist a domain model. In chapter 11 you will
learn how to use JDO and Hibernate to efficiently query large databases and pro-
cess large result sets.

44 CHAPTER 2

J2EE design decisions

 In addition to deciding how to access the database, you must decide how to
handle database concurrency. Let’s look at why this is important as well as the
available options.

2.5 Decision 4: handling concurrency
in database transactions

Almost all enterprise applications have multiple users and background threads that
concurrently update the database. It’s quite common for two database transactions
to access the same data simultaneously, which can potentially make the database
inconsistent or cause the application to misbehave. In the TransferService exam-
ple in chapter 1, two transactions could update the same bank account simulta-
neously, and one transaction could overwrite the other’s changes; money could
simply disappear. Given that the modern banking system is not backed by gold, nor
even paper, but just supported by electronic systems, I’m sure you can appreciate
the importance of transaction integrity.

 Most applications must handle multiple transactions concurrently accessing
the same data, which can affect the design of the business and persistence tiers.

 Applications must, of course, handle concurrent access to shared data regard-
less of whether they are using lightweight frameworks or EJBs. However, unlike
EJB 2 entity beans, which required you to use vendor-specific extensions, JDO and
Hibernate directly support most of the concurrency mechanisms. What’s more,
using them is either a simple configuration issue or requires only a small amount
of code.

 The details of concurrency management are described in chapters 12 and 13.
In this section, you will get a brief overview of the different options for handling
concurrent updates in database transactions, which are transactions that do not
involve any user input. In the next section, I briefly describe how to handle con-
current updates in longer application-level transactions, which are transactions
that involve user input and consist of a sequence of database transactions.

2.5.1 Isolated database transactions

Sometimes you can simply rely on the database to handle concurrent access to
shared data. Databases can be configured to execute database transactions that
are, in database-speak, isolated from one another. Don’t worry if you are not
familiar with this concept; it’s explained in more detail in chapter 12. For now the
key thing to remember is that if the application uses fully isolated transactions,

Decision 4: handling concurrency in database transactions 45

then the net effect of executing two transactions simultaneously will be as if they
were executed one after the other.

 On the surface this sounds extremely simple, but the problem with these kinds
of transactions is that they have what is sometimes an unacceptable reduction in
performance because of how isolated transactions are implemented by the data-
base. For this reason, many applications avoid them and instead use what is
termed optimistic or pessimistic locking, which is described a bit later.

 Chapter 12 looks at when to use database transactions that are isolated from
one another and how to use them with iBATIS, JDO, and Hibernate.

2.5.2 Optimistic locking

One way to handle concurrent updates is to use optimistic locking. Optimistic
locking works by having the application check whether the data it is about to
update has been changed by another transaction since it was read. One common
way to implement optimistic locking is to add a version column to each table,
which is incremented by the application each time it changes a row. Each UPDATE
statement’s WHERE clause checks that the version number has not changed since it
was read. An application can determine whether the UPDATE statement succeeded
by checking the row count returned by PreparedStatement.executeUpdate(). If
the row has been updated or deleted by another transaction, the application can
roll back the transaction and start over.

 It is quite easy to implement an optimistic locking mechanism in an applica-
tion that executes SQL statements directly. But it is even easier when using persis-
tence frameworks such as JDO and Hibernate because they provide optimistic
locking as a configuration option. Once it is enabled, the persistence framework
automatically generates SQL UPDATE statements that perform the version check.
Chapter 12 looks at when to use optimistic locking, explores its drawbacks, and
shows you how to use it with iBATIS, JDO, and Hibernate.

 Optimistic locking derives its name from the fact it assumes that concurrent
updates are rare and that instead of preventing them the application detects and
recovers from them. An alternative approach is to use pessimistic locking, which
assumes that concurrent updates will occur and must be prevented.

2.5.3 Pessimistic locking

An alternative to optimistic locking is pessimistic locking. A transaction acquires
locks on the rows when it reads them, which prevent other transactions from
accessing the rows. The details depend on the database, and unfortunately not all
databases support pessimistic locking. If it is supported by the database, it is quite

46 CHAPTER 2

J2EE design decisions

easy to implement a pessimistic locking mechanism in an application that executes
SQL statements directly. However, as you would expect, using pessimistic locking in
a JDO or Hibernate application is even easier. JDO provides pessimistic locking as a
configuration option, and Hibernate provides a simple programmatic API for lock-
ing objects. Again, in chapter 12 you will learn when to use pessimistic locking,
examine its drawbacks, and see how to use it with iBATIS, JDO, and Hibernate.

 In addition to handling concurrency within a single database transaction, you
must often handle concurrency across a sequence of database transactions.

2.6 Decision 5: handling concurrency
in long transactions

Isolated transactions, optimistic locking, and pessimistic locking only work within
a single database transaction. However, many applications have use cases that are
long running and that consist of multiple database transactions which read and
update shared data. For example, one of the use cases that you will encounter
later in this chapter is the Modify Order use case, which describes how a user edits
an order (the shared data). This is a relatively lengthy process, which might take
as long as several minutes and consists of multiple database transactions. Because
data is read in one database transaction and modified in another, the application
must handle concurrent access to shared data differently. It must use the Optimis-
tic Offline Lock pattern or the Pessimistic Offline Lock pattern, two patterns described
by Fowler [Fowler 2002].

2.6.1 Optimistic Offline Lock pattern

One option is to extend the optimistic locking mechanism described earlier and
check in the final database transaction of the editing process that the data has not
changed since it was first read. You can, for example, do this by using a version
number column in the shared data’s table. At the start of the editing process, the
application stores the version number in the session state. Then, when the user
saves their changes, the application makes sure that the saved version number
matches the version number in the database.

 In chapter 13 you will learn more about when to use Optimistic Offline Lock
pattern and how to use it with iBATIS, JDO, and Hibernate. Because the Optimistic
Offline Lock pattern only detects changes when the user tries to save their
changes, it only works well when starting over is not a burden on the user. When
implementing use cases such as the Modify Order use case where the user would

Decision 5: handling concurrency in long transactions 47

be extremely annoyed by having to discard several minutes’ work, a much better
option is to use the Pessimistic Offline Lock.

2.6.2 Pessimistic Offline Lock pattern

The Pessimistic Offline Lock pattern handles concurrent updates across a
sequence of database transactions by locking the shared data at the start of the
editing process, which prevents other users from editing it. It is similar to the pes-
simistic locking mechanism described earlier except that the locks are imple-
mented by the application rather than the database. Because only one user at a
time is able to edit the shared data, they are guaranteed to be able to save their
changes. In chapter 13 you will learn more about when to use Pessimistic Offline
Lock pattern, examine some of the implementation challenges, and see how to
use it with iBATIS, JDO, and Hibernate.

 Let’s review the five design decisions. These decisions and their options are sum-
marized in table 2.1. In the rest of the book you will learn more about each option,
examining in particular its benefits and drawbacks and how to implement it.

Now that you have gotten an overview of the business logic and database access
design decisions, let’s see how a development team applies them.

Table 2.1 The key business logic design decisions and their options

Decision Options

Business logic organization Domain Model pattern
Transaction Script pattern
Table Module pattern

Business logic encapsulation EJB Session Façade pattern
POJO Façade pattern
Exposed Domain Model pattern

Database access Direct JDBC
iBATIS
Hibernate
JDO

Concurrency in database trans-
actions

Ignore the problem
Pessimistic locking
Optimistic locking
Serializable isolation level

Concurrency in long-running
transactions

Ignore the problem
Pessimistic Offline Lock pattern
Optimistic Offline Lock pattern

48 CHAPTER 2

J2EE design decisions

2.7 Making design decisions on a project

In this section you will see an example of how a development team goes about
making the five design decisions I introduced in this chapter. It illustrates the kind
of decision-making process that you must use when choosing between the POJO
approach and the heavyweight approach. The team in this example is developing
an application for a fictitious company called Food to Go Inc. I describe how the
developers make decisions about the overall design of the Food to Go application
and decisions about the design of the business logic for individual use cases.

2.7.1 Overview of the example application

Before seeing how the team makes decisions, let’s first review some background
information about the problem the team is trying to solve, and the application’s
high-level architecture. This will set the stage for a discussion of how a develop-
ment team can go about making design decisions. Food To Go Inc. is a company
that delivers food orders from restaurants to customers' homes and offices. The
founders of Food to Go have decided to build a J2EE-based application to run
their business. This application supports the following kinds of users:

■ Customers—Place orders and check order status

■ Customer service reps—Handle phone enquiries from customers about their
orders

■ Restaurants—Maintain menus and prepare the orders

■ Dispatchers—Assign drivers to orders

■ Drivers—Pick up orders from restaurants and deliver them

The company has put together a team consisting of five developers: Mary, Tom,
Dick, Harry, and Wanda. They are all experienced developers who will jointly
make architectural decisions in addition to implementing the application. The
businesspeople and the development team kick off the project by meeting for a
few days to refine the requirements and develop a high-level architecture.

The requirements
After a lot of discussion, they jointly decide on the following scenario to describe
how an order flows through the system. The sequence of events is as follows:

1 The customer places the order via the website.

2 The system sends the order (by fax or email) to the restaurant.

Making design decisions on a project 49

3 The restaurant acknowledges receipt of the order.

4 A dispatcher assigns a driver to the order.

5 The system sends a notification to the assigned driver.

6 The driver views the assigned order on a cell phone.

7 The driver picks up the order from the restaurant and notifies the system
that the order has been picked up.

8 The driver delivers the order to the customer and notifies the system that
the order has been delivered.

In addition to coming up with a scenario that captures the vision of how the appli-
cation will ultimately work, the developers and businesspeople also break down
the application’s requirements into a set of use cases. Given that Food to Go has
limited resources, the team has decided to use an iterative and incremental
approach to developing the application. They have decided to defer the imple-
mentation of use cases for dispatches and drivers to later iterations and to tackle
the following use cases in the first iteration:

■ Place Order—Describes how a customer places an order

■ View Orders—Describes how a customer service representative can view orders

■ Send Orders to Restaurant—Describes how the system sends orders to restau-
rants

■ Acknowledge Order—Describes how a restaurant can acknowledge receipt of
an order

■ Modify Order—Describes how a customer service representative can modify
an order

These use cases are used throughout this book to illustrate how to develop enter-
prise Java applications with POJOs and lightweight frameworks. I describe each of
these use cases in a bit more detail later in this chapter, but let’s first look at the
application’s high-level architecture.

The application’s architecture
In the kickoff meeting, the team also sketches out the application’s high-level
architecture, which is shown in figure 2.7. This diagram shows the application’s
main components and its actors. It has the standard three-layer architecture con-
sisting of the web-based presentation, business, and database access tiers. As you
would expect, the application stores its data in a relational database.

50 CHAPTER 2

J2EE design decisions

The application has a web-based presentation tier that implements the user inter-
face (UI) for the users. The application’s business tier consists of various compo-
nents that are responsible for order management and restaurant management.
The application’s persistence tier is responsible for accessing the database. The
design of the presentation tier is outside the scope of this book, and so we are
going to focus on the design of the business and persistence tiers. Let’s see how
the team makes some critical design decisions.

Business Tier

Presentation Tier

Customer
UI

Customer
Service

UI
Restaurant UI Dispatcher UI Driver UI

Customer Restaurant DriverDispatcher Customer
Service

Order
Processing

Restaurant
Management

...

Persistence Tier

Database

Figure 2.7 High-level architecture of the Food to Go application

Making design decisions on a project 51

2.7.2 Making high-level design decisions

After identifying some requirements and sketching out a high-level architecture,
the team needs to make the high-level design decisions that determine the overall
design of the application. In this section, we consider each of the five design deci-
sions that we described earlier and show how a development team might make
those decisions. You will learn about the kind of process that you must use when
designing your application.

Organizing the business logic
The business logic for this application is responsible for such tasks as determining
which restaurants can deliver to a particular address at the specified time, apply-
ing discounts, charging credit cards, and scheduling drivers. The team needs to
choose between an object-oriented approach or a procedural approach. When
making this decision, the team first considers the potential complexity of the busi-
ness logic. After reviewing the use cases, the team concludes that it could become
quite complex, which means that using an object-oriented approach and develop-
ing a domain model is the best approach. Even though it is simpler, using a proce-
dural approach to organize the business logic would lead to maintenance
problems in the future.

 The team also briefly looks at the issue of whether they could use a persistence
framework to access the database. Unlike when developing some past applica-
tions, they are not constrained by a legacy schema or the requirement to use SQL
statements maintained by a database administrator (DBA). Consequently, they are
free to use a persistence framework and to implement the business logic using a
domain model. However, they also decide that some business logic components
can use a procedural approach if they must access the database in ways that are
not supported by the persistence framework.

Encapsulating the business logic
In the past the team used EJB-based session façades to encapsulate the business
logic and provide transaction management and security. EJB session façades
worked reasonably well except for the impact they have on the edit-compile-
debug cycle. Eager to avoid the tedium of deploying EJBs, the team is ready to
adopt a more lightweight approach. Mary, who has just returned from the TSS
Java Symposium 2005, where she spent three days hearing about POJOs, depen-
dency injection, lightweight containers, AOP, and EJB 3, convinces the rest of the
team to use the Spring framework instead of EJBs.

52 CHAPTER 2

J2EE design decisions

 Having decided to use Spring, the team must now decide between using POJO
façades and the exposed domain model. After spending a lot of time discussing
these two options, they decide that the exposed domain model approach is too
radical and that they are more comfortable using a POJO façade.

Accessing the database
Because the team has decided to use a domain model, it must pick a persistence
framework. It would simply be too much work to persist the domain model with-
out one. On its last project, the team used EJB CMP because, despite its glaring
deficiencies, it was at that time the most mature solution. JDO was still in its
infancy and the team had not yet heard of Hibernate. However, that was quite
some time ago, and since then the team members have all read a few articles
about JDO and Hibernate and decide that they are powerful and mature technol-
ogies. They are excited that they do not have to use entity beans again. After an
animated discussion, the team picks JDO because its company prefers to use stan-
dards that are supported by multiple vendors. It hopes, however, to use Hibernate
on some other project in the future.

Handling concurrent updates
The Food to Go application, like many other enterprise applications, is a multiuser
application, which means that multiple transactions will access the same data con-
currently. For example, two transactions could attempt to update the same order
simultaneously. Therefore, it’s essential to have a concurrency strategy. After
reviewing the three options—isolated database transactions, optimistic locking,
and pessimistic locking—the team picks optimistic locking because they have had
experience with it and know that it performs well. Moreover, it is supported by
JDO, which means that using it involves a simple configuration option.

Handling offline concurrency
Some of the application’s use cases, such as the Modify Order use case, are long-
running application transactions where data read in one database transaction is
updated in another database transaction. In order to prevent two users from edit-
ing the same order simultaneously and overwriting each other’s changes, it’s
important to implement an offline concurrency mechanism. The Optimistic
Offline Lock pattern is easier to implement, especially because the application
can leverage the optimistic locking mechanism provided by the persistence frame-
work. However, the team decides to use the Pessimistic Offline Lock pattern for

Making design decisions on a project 53

the Order class because users would be frustrated if they could not save the
changes that they made to an order.

Summary of the high-level decisions
The team has made a number of key design decisions. They have decided that the
business logic must be primarily organized using a JDO-based domain model, and
encapsulated using POJO façades that use detached domain objects as DTOs.
Finally, they have decided to use optimistic locking as the database-level concur-
rency mechanism, the Optimistic Offline Lock pattern as the default offline lock-
ing mechanism, and the Pessimistic Offline Lock pattern when necessary.
However, these decisions are not completely set in stone, and they agree to revisit
them as more is discovered about the application during development. Table 2.2
summarizes the architectural choices and options available to the developers.

Table 2.2 shows the default design decisions the team made when implementing
each component of the application. However, a developer working on a particular
use case can use a different approach if it is absolutely necessary. For example, she
might discover that the business logic for a use case needs to execute SQL directly
instead of JDO in order to achieve the necessary performance. Let’s look at exam-
ples of the decisions that are made when developing individual use cases.

2.7.3 Making use case–level decisions

Mary, Tom, Dick, Harry, and Wanda are each responsible for analyzing one use
case and determining the most appropriate option for each design decision. Nat-
urally, they have to work within the constraints imposed by the architecture that
they have defined. In addition, even though some business logic components are

Table 2.2 Architectural decisions

Decision Options

Business logic organization strategy Domain model with transaction scripts
where necessary

Business logic encapsulation strategy POJO façade

Persistence strategy JDO for the domain model

Online concurrency strategy Optimistic locking

Offline concurrency strategy Optimistic Offline Lock pattern
Pessimistic Offline Lock pattern (if required)

54 CHAPTER 2

J2EE design decisions

specifically for a single use case, others are shared by multiple use cases and so it is
essential that the developers collaborate closely.

 In this section we show how a developer might go about designing the business
logic for a use case and direct you to the chapters that will teach you how to imple-
ment the chosen options. It’s important to remember, however, that the decisions
made by each developer in this section are only one of several different ways to
implement the use case. Consequently, we also point you to the chapters that
describe how to implement alternative approaches. Let’s look at each of the use
cases and see which options the developer’s pick.

The Place Order use case
Mary is responsible for implementing the Place Order use case:

As you can see, the business logic for this use case is fairly complex, and so it
makes sense to implement it using a domain model that is persisted with JDO.
Database concurrency isn’t an issue because this use case does not update any
shared data. The pending order is data that is private to a single user’s session and
the order, which is shared data, is not updated in this use case once it has been
created. After analyzing the use case, Mary makes the decisions shown in table 2.3.
In chapter 4, you will learn how to develop a domain model for the Place Order
use case; chapter 5 shows you how to persist it with JDO. In chapter 6, we describe

The customer enters the delivery address and time. The system first verifies that
the delivery time is in the future and that at least one restaurant serves the deliv-
ery information. It then updates the pending order with the delivery informa-
tion, and displays a list of available restaurants.

The customer selects a restaurant. The system updates the pending order with
the restaurant and displays the menu for the selected restaurant.

The customer enters quantities for each menu item. The system updates the
pending order with the quantities and displays the updated pending order.

The customer enters payment information (credit card information and billing
address). The system updates the pending order with the payment information
and displays the pending order with totals, tax, and charges.

The customer confirms that she wants to place the order. The system authorizes
the credit card, creates the order, and displays an order confirmation, which
includes the order number.

Making design decisions on a project 55

how to persist that domain model with Hibernate, and in chapter 9 you will see
how to implement the same business logic using a procedural approach.

The View Orders use case
Tom is responsible for implementing the View Orders use case:

Tom analyzes this use case and concludes that a key issue is that the order table
will contain a large number of rows and will need to be denormalized for efficient
access. In addition, the queries will need to be heavily tuned and make use of Ora-
cle-specific features. Consequently, Tom decides that he needs to use SQL queries
to retrieve the orders. Table 2.4 summarizes his decisions.

Table 2.3 Mary’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern The business logic is relatively complex.
There does not appear to be any queries that
cannot be handled by the JDO query language.

Database access JDO Using the Domain Model pattern.

Concurrency None This use case does not update shared data.
The order is created at the end of the use
case.
The pending order is session state and is only
updated by this session.

The customer service representative enters the search criteria. The system dis-
plays the orders that match the search criteria. The customer service representa-
tive can cancel or modify an order.

Table 2.4 Tom’s decisions

Strategy Decision Rationale

Business logic organization Transaction Script pattern Simple business logic.
Uses iBATIS.

Database access iBATIS Heavily optimized SQL queries using
Oracle-specific features.
Database schema denormalized for
efficient access.

Concurrency None This use case does not update
shared data.

56 CHAPTER 2

J2EE design decisions

In chapter 11, you will learn about the different ways to implement this use case.

The Send Orders to Restaurant use case
Dick is responsible for implementing the Send Orders to Restaurant use case:

The business logic for this use case is fairly simple. Dick determines that he can
implement this use case using a single database transaction, which finds the
orders that need to be sent, sends them to the restaurant, and updates the orders.
He also decides that even though the business logic is simple, it fits with the exist-
ing domain model. Table 2.5 summarizes his decisions.

Dick forgets that the Order class needs to use an offline locking pattern.
 Chapter 12 looks at the different ways of implementing this use case.

The Acknowledge Order use case
Harry is responsible for implementing the Acknowledge Order use case:

X minutes before the scheduled delivery time, the system either emails or faxes
the order to the restaurant.

Table 2.5 Dick’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern Even though the business logic is simple, it
fits with the existing domain model.

Database access JDO Using the Domain Model pattern.

Concurrency Optimistic locking The use case updates orders, which consist
of shared data in a single transaction.

Offline concurrency None The use case is a single transaction.

The system displays an order that has been sent to the restaurant. The restau-
rant’s order taker accepts or rejects the order. The system displays a confirma-
tion page. The restaurant’s order taker confirms that he or she accepts or rejects
the order. The system changes the state of the order to “ACCEPTED” or
“REJECTED.”

Making design decisions on a project 57

Harry determines that the business logic for this use case is quite simple and that
he can implement it using the Domain Model pattern. He decides that he must
use an offline locking pattern because this use case uses two database transactions:
one to read the order, and another to change the status of the order. Table 2.6
lists the design decisions that Harry makes.

Harry also forgets that the Order class needs to use an offline locking pattern.
 Chapter 13 looks at the different ways of implementing this use case.

The Modify Order use case
Finally, Wanda is responsible for implementing the Modify Order use case:

After analyzing the use case, Wanda makes the following decisions. Because the
business logic is complex, she decides to implement it using the Domain Model
pattern. Furthermore, Wanda thinks that she can reuse a lot of the pending order
code from the Place Order use case.

 Wanda also decides that she must use an offline concurrency pattern since the
business logic consists of multiple database transactions. Because it would be very

Table 2.6 Harry’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern Even though the business logic is sim-
ple, it fits with the existing domain
model.

Database access JDO Using the Domain Model pattern.

Concurrency Optimistic locking The use case updates orders, which
are shared data.

Offline concurrency Optimistic Offline Lock pattern The use case reads the order in one
transaction and updates it in another.
The cost and probability of starting over
is small.

The customer service representative selects the order to edit. The system locks
and displays the order. The customer service representative updates the quanti-
ties and the delivery address and time. The system displays the updated order.
The customer service representative saves his changes. The system updates and
unlocks the order.

58 CHAPTER 2

J2EE design decisions

inconvenient for the user to start over if some other user changed the order
while she was editing it, Wanda decides to use the Pessimistic Offline Lock pat-
tern. Table 2.7 summarizes Wanda’s decisions.

Wanda plans to meet with Dick and Harry to reconcile their respective concur-
rency requirements.

 Chapter 13 looks at the different ways of implementing this use case.

2.8 Summary

This chapter describes how the task of designing the business and persistence
tiers can be broken down into five main design decisions: organizing business
logic; encapsulating business logic; accessing the database; handling database
transaction-level concurrency; and handling concurrency in long-running trans-
actions. Each decision has multiple options, and each option has benefits and
drawbacks that determine whether it makes sense in a particular situation.

 These decisions play a critical role in helping you decide between a POJO
approach and a heavyweight EJB 2 approach. Some decisions have POJO options
and heavyweight options. For example, you can encapsulate the business logic with
a POJO façade or an EJB session façade. Other decisions have options that are made
easier by using the POJO approach. For example, as we described in chapter 1, the
heavyweight approach favors business logic that is organized procedurally, whereas
the POJO approach enables you to use an object-oriented design.

 Now that we have reviewed the design decisions and their options, let’s exam-
ine each one in depth. In the next chapter, we first look at how to implement busi-
ness logic using the Domain Model pattern.

Table 2.7 Wanda’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern Complex business logic.

Database access JDO Using the Domain Model pattern.

Concurrency Optimistic locking The use case updates orders, which
consist of shared data.

Offline concurrency Pessimistic Offline Lock
pattern

The use case reads the order in one
transaction and updates it in another.
The cost of starting over is high.

