SaAMPLE CHAPTER

/ll MANNING

Nicolas Leroux
Sietse de Kaper

Foreworn By James Ward

Dottie
Text Box
S A M P L E C H A P T E R

Play for Java

by Nicolas Leroux
Sietse de Kaper

Chapter 3

Copyright 2014 Manning Publications

brief contents

PART 1 INTRODUCTION AND FIRST STEPS...ccccccecteseecacrecaccecsessones 1

1 = Anintroduction to Play 3

2 = The parts of an application 21
3 = Abasic CRUD application 37

PART 2 CORE FUNCTIONALITY ceetececeerecececscrececscssecssscsesscssscsscas D

4 = An enterprise app, Play-style 59
5 = Controllers—handling HTTP requests 72
6 = Handling user input 102
7 = Models and persistence 138
8 = Producing output with view templates 177
PART 3 ADVANCED TOPICS ..ccevvureeeeeerrreennnnnsseeaseeeeennssnsssssaaees 205

9 = Asynchronousdata 207

10 = Security 232

11 = Modules and deployment 249

12 = Testing your application 271

A basic CRUD
application

This chapter covers

= An introduction to all major Play concepts
= Creating a small application

In the previous chapter, we introduced our example application: the paper clip
warehouse management system. Now that we know what we’re going to build, and
have our IDE all set up, it’s time to start coding.

In this chapter, we’ll start implementing our proof-of-concept (POC) applica-
tion. It will be a simple CRUD' application, with data stored in-memory rather than
in a database. We’ll evolve our POC application in later chapters, but this simple
application will be our starting point.

We’ll start by setting up a controller with some methods and linking some URLs
to them.

' Create, Retrieve, Update, Delete

37

38

3.1

CHAPTER 3 A basic CRUD application

Adding a controller and actions

In chapter 1 we edited the Application class, changing the default output and adding
custom operations. The Application class is an example of a controller class. Control-
ler classes are used as a home for action methods, which are the entry points of your
web application. Whenever an HTTP request reaches the Play server, it is evaluated
against a collection of rules in order to determine what action method will handle this
request. This is called routing the request, which is handled by something aptly named
the router; which, in turn, is configured using the conf/routes file, as described in sec-
tion 2.3. After the correct action method is selected, that method executes the logic
necessary to come up with a result to return to the client in response to the request.
This process is illustrated in figure 3.1.

Let’s create a controller for the new warehouse application that we created in the
previous chapter. The only requirement of a controller class is that it extends
play.mvc.Controller. It does not have to be part of a specific package, although it is
convention to put controllers in the controllers package. Let’s create one for our
product catalog. Because we’re dealing with products, we’ll call it Products. Create
the Products class under the controllers package (that means the file is named
/app/controllers/Products.java). Have this class extend Controller, like so:

package controllers;

import play.mvc.Controller;

public class Products extends Controller {
}

An empty controller doesn’t do anything. The whole purpose of controllers is to pro-
vide action methods. An action method has to conform to the following requirements:
= It has to be public.
= It has to be static.
= It has to have a return type (a subclass) of Result.

HTTP requests Controller actions HTTP responses

Products controller

GET /products/————| list action

product list page ——

GET /product/5010255079763 — | show action —— product details page —

—GET /product/5010255079763/edit +»| edit action +— product details edit page —

——POST /product/5010255079763 —| update action +——redirect to details page ——

Figure 3.1 Requests routed to actions

3.2

Mapping URLs to action methods using routes 39

Let’s add some action methods to our controller. For our proof-of-concept applica-
tion, we’ll want to list products in our catalog, show defails for an individual product,
and save new and updated products. We’ll add actions for these operations later, but
for now we’ll make them return a special type of result: TODO. A TODO result signifies
that the method is yet to be implemented. Add the corresponding actions, as shown in
the following listing.

Listing 3.1 Adding action methods

package controllers;

import play.mvc.Controller;
import play.mvc.Result;

public class Products extends Controller {

public static Result list() { <—— List all products
return TODO;

}

public static Result newProduct() { <+——— Show a blank product form
return TODO;
}

public static Result details(String ean) { <+—— Show a product edit form
return TODO;
}

public static Result save() { <—— Save a product
return TODO;

}
}

Now that we have some action methods, let’s give them URLs so that we can reach
them.

Mapping URLs to action methods using routes

In order to determine which action method will handle a given HTTP request, Play
takes the properties of that request, such as its method, URL, and parameters, and
does a lookup on a set of mappings called routes. Like we saw before, in section 2.3,
routes are configured in the routes file in your application’s conf directory. Add
routes for our new operation, as shown in the following listing.

Listing 3.2 Adding routes for our product catalog

GET /products/ controllers.Products.list ()

GET /products/new controllers.Products.newProduct ()

GET /products/:ean controllers.Products.details (ean: String)
POST /products/ controllers.Products.save ()

Now that we have some routes, let’s try them out. Start your application if it’s not
already running, and point your browser at http://localhost:9000/products/. You
should see the page shown in figure 3.2.

http://localhost:9000/products/

40

3.3

331

CHAPTER 3 A basic CRUD application

| 800 P ToDO
€& 29 C ff © localhost:9000/products/] X,

Action not implemented yet.

Figure 3.2 Play’s TODO placeholder at /products

If you see the TODO placeholder page, that means the controller, action method, and
route are all correctly set up. Time to add some functionality. The first step is adding a
class that will model our products.

Adding a model and implementing functionality

In order to create a product catalog, we need a class to represent “a product” in our appli-
cation. Such classes are called model classes, because they model real-world concepts.

Creating a model class

We’ll keep our product model simple for now: an article number, name, and descrip-
tion will do. For the article number, we’ll use an EAN code, which is a 13-digit interna-
tionally standardized code. Although the code consists of digits, we’re not going to
perform math on it, so we’ll use String to represent the EAN code.

Create a class called Product under a new package called models. Again, there’s
nothing about Play that requires you to put model classes in the models package, but
it’s convention to do it that way. Add the properties we mentioned previously to your
new class, and add a constructor that sets them on instantiation for convenience. In
addition, add a default no-argument constructor, because we’ll need that when we
add database persistence later. The last thing we’ll add is a toString() method,
because that will make it easier for us to see what product object we have.

We end up with a class as shown in the following listing.

Listing 3.3 /app/models/Product.java

package models;
public class Product {

public String ean;
public String name;

Mocking some data 41

public String description;
public Product() {}

public Product (String ean, String name, String description) {
this.ean = ean;
this.name = name;
this.description = description;

}

public String toString() {
return String.format("%s - %s", ean, name);

DON'T BE ALARMED BY PUBLIC PROPERTIES If you’ve been a Java developer for
some time, you’re probably surprised that we chose to use public properties.
You’re probably more used to making properties private and exposing them
using getter and setter methods instead, creating a “Java Bean.” Don’t worry,
we know what we’re doing. For now, bear with us. Everything will be
explained in detail in chapter 7.

We’ve created our first model class. In most cases, instances of these model classes are
also stored in a database. To keep things simple, we’ll fake this functionality for now
by maintaining a static list of products. Now let’s create some data.

Mocking some data

We’ll mock data storage by using a static Set of Products on the Product model class,
and we’ll put some data in the class’s static initializer, as shown in the following listing.

Listing 3.4 Adding some test data to /app/models/Product.java

import java.util.ArraylList;
import java.util.List;

public class Product {

private static List<Product> products;

static {

products = new ArrayList<Product> () ;

products.add(new Product("1111111111111", "Paperclips 1",
"Paperclips description 1"));

products.add (new Product("2222222222222", "Paperclips 2",
"Paperclips description ")) ;

products.add(new Product("3333333333333", "Paperclips 3",
"Paperclips description 3"));

products.add(new Product ("4444444444444", "Paperclips 4",
"Paperclips description 4"));

products.add(new Product("5555555555555", "Paperclips 5",

"Paperclips description 5"));

42

CHAPTER 3 A basic CRUD application

NEVER DO THIS IN A REAL APPLICATION Although having a static property serve
as a cache for data is convenient for this example, never do it in a real-world
app. Because we’ll only be using this List in dev-mode, which has only one
thread running by default, we won’t run into any serious trouble. But when you
try this in any environment with multiple threads, or even multiple application
instances, you’ll run into all sorts of synchronization issues. Depending on the
situation, either use Play’s caching features, or use a database (see chapter 7).

Now that we have some data, let’s also add some methods to manipulate the collection
of Products. We’ll need methods to retrieve the whole list, to find all products by EAN
and (part of the) name, and to add and remove products. Add the methods shown in
listing 3.5. We’ll let their implementations speak for themselves.

Listing 3.5 Data access methods on the Products class

public class Product {

public static List<Product> findAll() {
return new ArrayList<Product> (products) ;

}

public static Product findByEan (String ean) ({
for (Product candidate : products) {
if (candidate.ean.equals(ean)) {
return candidate;

}

return null;

}

public static List<Product> findByName (String term) {
final List<Product> results = new ArrayList<Product>();
for (Product candidate : products) {
if (candidate.name.toLowerCase () .contains (term.toLowerCase())) {
results.add(candidate) ;

}

return results;

}

public static boolean remove (Product product) {
return products.remove (product) ;

}

public void save() {
products.remove (findByEan (this.ean)) ;
products.add(this) ;

}

Now that we have the plumbing for our products catalog, we can start implementing
our action methods.

3.5

3.5.1

Implementing the list method 43

Implementing the list method

We’ll start with the implementation for the 1ist method. As we said before, an action
method always returns a result. What that means is that it should return an object with
a type that is a subclass of play.mvc.Result. Objects of that type can tell Play all that it
needs to construct an HTTP response.

An HTTP response consists of a status code, a set of headers, and a body. The status
codes indicate whether a result was successful and what the problem is if it wasn’t.
Play’s Controller class has a lot of methods to generate these result objects. Let’s go
ahead and replace our TODO result with a code 200 result, which means “OK.” To do
this, use the ok () method to obtain a new OK result, like this:

public static Result list() {

return ok();
}
If you were to try this out in a browser, you’d get an empty page. If you were to check the
HTTP response,2 you’d see that the response status code has changed from 501 - Not
Implemented to 200 - OK. The reason why our browser shows an empty page is because
our response has no body yet. That makes sense, because we didn’t put one in yet. To
generate our response body, we want to generate an HTML page. For this, we’ll want to
write a template file.

The list template

As we saw in the previous chapters, a Play template is a file containing some HTML
and Scala code that Play will compile into a class that we can use to render an HTML
page. Templates go in your application’s views directory and, to keep things clean
and separated by functionality, we’ll create a products directory there. Next, create a
file called list.scala.html, and add to it the contents shown in the following listing.

Listing 3.6 /app/views/products/list.scala.html

@ (products: List[Product])
@main ("Products catalogue") {
<h2>Al11 products</h2>

<table class="table table-striped">
<thead>
<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
@for (product <- products) {

2 Your browser probably has tools to do that.

44

CHAPTER 3 A basic CRUD application

<tr>
<td>
@product.ean
</td>
<td>
@product.name</td>
<td>
@product .name</td>
</tr>

}

</tbody>
</table>
}

When rendered (we’ll get to how to do thatin a
moment), this template will produce a page as

seen in figure 3.3. EAN Name Description

Don’t worry, we’ll make it look better in a bit. 3333333333333 Paperclips 3 Paperclips 3
But first, without going into too much detail (see 4444444444444 Paperclips 4 Paperclips 4
1111111111111 Paperclips 1 Paperclips 1
5555555555555 Paperclips S Paperclips 5
2222222222222 Paperclips 2 Paperclips 2

All products

chapter 8 for more detail on templates), let’s see
what happens in the template.

How THE TEMPLATE WORKS
Thle‘ first line of the list template is the parame- Figure 3.3 Our products listing
ter ist:

@ (products: List[Product])

With the parameter list, we define which parameters this template accepts. Every entry
in the parameter list consists of a name, followed by a colon and the type of the
parameter. In our example, we have one parameter called name, of type List
<Product>,” to represent the list of products we want to render. This parameter list will
be part of the method definition for this template’s render method, which is how Play
achieves type safety for its templates.

Let’s take a look at the next line of code, which starts a block of code:

@main ("Products catalogue") {

}

With this code we call another template, the one called main. This is the template at
/app/views/main.scala.html, which Play created for us when we created the appli-
cation. It contains some boilerplate HTML that we’ll wrap around all of our pages, so
we don’t have to worry about that any more. The code we write in the block will end
up in the <body> tag of our rendered HTML page. This is how you can compose tem-
plates in Play, and we’ll see more of this in later chapters.

% 1In Scala syntax, generic type arguments are indicated using square brackets instead of angle brackets as in

Java.

Implementing the list method 45

The body of our code block is mainly HTML, which will be included in the ren-
dered page verbatim. There’s one bit of template code left—the bit that iterates over
our products list:

@for (product <- products) {

}

This bit of code is comparable to a regular Java for-each loop: it iterates over a collec-
tion and repeats the code it wraps for every element in it, assigning the current ele-
ment to a variable. In our example, it generates a pair of <td> elements for every
Product in our products list. Listing 3.7 shows the full loop as a reminder.

Listing 3.7 for loop generating the product descriptions

@ (products: List[Product])
<table class="table table-striped">
<thead>
<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
@for (product <- products) {

<tr>
<td>
@product.ean
</td>
<td>
@product.name</td>
<td>
@product.name</td>
</tr>

}

</tbody>
</table>
The pieces of code in the loop’s body that start with an @ are Scala expressions; the code
that follows the @ is evaluated, and the result is included in the output. In this case, we
use it to print out properties of product and generate links to our action methods
based on our routing configuration. For everything about routing, see chapter 5.
We’ll render our template soon, but first let’s add some style.

ADDING BOOTSTRAP

During our examples, we focus more on functionality than styling; this is a book about
Play, after all, and not about web design. But there is a way to make things look nicer
with little effort: Bootstrap, by Twitter.

46

CHAPTER 3 A basic CRUD application

Bootstrap provides some CSS and image files that make HTML look good and
maybe adding an HTML class here and there. It’s easy to use Bootstrap in your Play
applications. Here’s how.

First, download the latest version of Bootstrap from the website at http://getbootstrap
.com. Extract the contents of the zip file to a bootstrap directory under your applica-
tion’s public directory. This will make the files available from your application.

Next, we need to include the Bootstrap CSS in our templates. Because we’re going
to need it on all of our pages, the main template is the best place to do that. Open the
file /app/views/main.scala.html, and add the following line below the existing
<title> element, inside the <head> element:
<link href="@routes.Assets.at("bootstrap/css/bootstrap.min.css")"

rel="stylesheet" media="screen">
This will allow your pages to be styled by Bootstrap, and, from now on, we’ll use Boot-
strap to make all of our examples look nicer. If you want to learn more about Boot-
strap, check out the website at http://getbootstrap.com.

Now that we have our templates ready, let’s see how to render them.

RENDERING THE TEMPLATE
Now that we have a template, all that’s left for us to do is to gather a list of products
and render the template in our list action method. The following listing shows how.

Listing 3.8 Rendering the 1ist template

import views.html.products.list;
public class Products extends Controller {

public static Result list() {
List<Product> products = Product.findall();
return ok(list.render (products)) ;

}

}

As you can tell from the import in this example, the template /views/products/
list.scala.html results in a class called views.html.products.list. This 1ist class
has a static method called render, which, as your IDE can tell you, takes one parameter
of type List<Product> and returns an object of type Html. The parameter is the one
we defined at the top of our template, whereas the return type is determined by the
.html extension of the template filename.

The render method on the template results in an HTML page, which we want to
return to the client in the body HTTP response. To do this, we wrap it in a Result
object by passing it to the ok method.

http://getbootstrap.com
http://getbootstrap.com
http://getbootstrap.com

3.6

Adding the product form 47

All products
EAN Name Description
3333333333333 Paperclips 3 Paperclips 3
5555555555555 Paperclips 5 Paperclips 5
2222222222222 Paperclips 2 Paperclips 2
IRRARRRARRARE] Paperclips 1 Paperclips 1
4444444444444 Paperclips 4 Paperclips 4
+ New product

Figure 3.4 Our products listing

Time to try out our code. Navigate to http://localhost:9000/products/, and you
should see a list as in figure 3.4.
Now that we can see our list of products, let’s continue implementing features.

Adding the product form

A static product catalog isn’t useful. We want to be able to add products to the list.
We’ll need a form for that, so create a new template called details.scala.html at
/app/views/products. We’ll create a form that will work both for creating new prod-
ucts and editing existing ones. The template is shown in the following listing.

Listing 3.9 Product form /app/views/products/details.scala.html

@ (productForm: Form[Product])
@import helper._
@import helper.twitterBootstrap._

@main ("Product form") {
<hl>Product form</hl>
@helper.form(action = routes.Products.save()) {

<fieldset>
<legend>Product (@productForm("name") .valueOr ("New"))</legend>
@helper.inputText (productForm("ean"), '_label -> "EAN")
@helper.inputText (productForm("name"), '_label -> "Name")
@helper.textarea (productForm("description"), '_label -> "Description")
</fieldset>

<input type="submit" class="btn btn-primary" value="Save">
Cancel

}

As you can see in the first line of the template, this template takes a Form<Product>
parameter, like our list template took a List<Product> parameter. But what’s this
Form class? Form is what Play uses to represent HTML forms. It represents name/value

http://localhost:9000/products/

48

3.6.1

3.6.2

CHAPTER 3 A basic CRUD application

pairs that can be used to build an HTML form, but it also has features for input valida-
tion, error reporting, and data binding. Data binding is what makes it possible to con-
vert between HTTP (form) parameters and Java objects and vice versa.

Constructing the form object

Let’s see how these forms work. First, we need to create one to pass to the template.
That’s as easy as calling the play.data.Form.form() method in our action method.
The form method takes a class as a parameter, to tell it what kind of object the form is
for. Because a product form is always the same, and we’re going to use it in a few
places in the Products controller, we might as well create a constant for it in the class,
like so:
private static final Form<Product> productForm = Form
.form(Product.class) ;
Now that we have an empty form, it’s easy to pass it to the template. Implement the
newProduct action method as shown here:
public static Result newProduct () {
return ok (details.render (productForm)) ;
}
With this action method implemented, you can see the form at http://localhost:
9000/products/new. It should look like figure 3.5.
Let’s see how to create the form.

Rendering the HTML form

Let’s see how we make an HTML form from our Form object. At the top of the tem-
plate, you can see how we import two helpers:

@import helper._
@import helper.twitterBootstrap._

Product form
Product (New)

ean
name

description

Figure 3.5 The product form

http://localhost: 9000/products/new

3.6.3

Adding the product form 49

These helpers are there to help us generate HTML. The first one imports generic
HTML helpers, and the second one makes the generated HTML fit the Twitter Boot-
strap layout. We first use one of these helpers when we start the form:

@helper.form(action = routes.Products.save()) {

}

The form helper generates an HTML <form> element. The action parameter tells it
where the form should be submitted to. In our case, that’s the save method on our
Products controller. Play will turn this into an action attribute with the correct URL
value for us.

A form is not much use without any fields. Let’s see how those are constructed.

Rendering input fields

Our form contains a single fieldset, which is created using regular HTML. The value
for the fieldset’s legend element is interesting enough to take a closer look at. It starts
off with regular text, “Product,” but then we use the form object to construct the rest
of the value:

@productForm("name") .valueOr ("New")

Here, we request the form field name by calling productForm("name") 4 This object is
of type Form.Field, and it represents the form field for the name property of the
form. To get the value, we could call the value method on the field. But because we
don’t know if there is a value for this field, we use the valueOr method, which allows
us to specify a default value to use in case the field has no value. This means we don’t
need to check for a value manually, saving us from a lot of messy, verbose code in our
template.

The next few lines in our template render input elements—one for each property
of our Product class:

@helper.inputText (productForm("ean"))
@helper.inputText (productForm("name"))
@helper.textarea (productForm("description"))

When our template is rendered, these lines are rendered as shown in the following
listing.

Listing 3.10 Rendered input elements

<div class="clearfix " id="ean_field">
<label for="ean">ean</label>
<div class="input">

<input type="text" id="ean" name="ean" value="" >

</div>
</div>

4

productForm("name") is short for productForm.field ("name").

50

3.7

CHAPTER 3 A basic CRUD application

<div class="clearfix " id="name_field">
<label for="name">name</label>
<div class="input">

<input type="text" id="name" name="name" value="" >

</div>
</div>

<div class="clearfix " id="description_field">
<label for="description">description</label>
<div class="input">

<textarea id="description" name="description" ></textarea>

</div>
</div>
With three simple lines of code, we’ve generated all that HTML! And because of the
Bootstrap helper, it doesn’t look bad, either.
The final line of our template’s form adds a regular HTML Submit button, and
with that, our form is ready. When you try it out, the form will submit to our unimple-
mented save method, so it doesn’t do much yet. Let’s take care of that now.

Handling the form submission

When you submit the product form in the browser, the form gets submitted to the
URL specified in the action attribute of the HTML <form> element, which, in our
case, ends up at our application’s Products. save action method. It’s now up to us to
transform those HTML form parameters into a Product instance, and add it to the
product catalog. Luckily, Play has some tools to make this job easy.

When we created the Form object in the previous section, we used it to create an
HTML form based on the Product class. But Play’s Forms work the other way around,
too. This reverse process is called binding.

Play can bind a set of name/value combinations, such as a Map, to a class that has
properties with the same names. In this case, we don’t want to bind a map, but we do
want to bind values from the request. Although we could obtain a Map of the
name/value pairs from the HTTP request, this situation is so common that the Form
class has a method to do this: bindFromRequest. This will return a new Form object,
with the values populated from the request parameters. To obtain a Product from our
form submission and add it to the catalog, we can write the following code:

Listing 3.11 Product binding

public class Products extends Controller {

public static Result save() {
Form<Product> boundForm = productForm.bindFromRequest () ;
Product product = boundForm.get () ;

Handling the form submission 51

product.save() ;
return ok (String.format ("Saved product %$s", product));

}

When you try out the form now, you’ll get a simple text message informing you of the
successful addition of the product. If you then check the catalog listing we made in
section 3.5, you can verify that it worked.

But our current implementation isn’t particularly nice. The user is free to omit the
EAN code and product name, for example; at the moment this will work, but it’s not
something that we want. Also, the text message reporting the result isn’t great. It
would be a lot nicer to rerender the form with an error message on failure, and show
the product listing with a success message if everything was correct.

First, let’s tell Play that the ean and name fields are required. We’ll leave the
description optional.

We can make those fields required by using an annotation, play.data.validation
.Constraints.Required. Play will check for those annotations and report errors
accordingly. The following listing shows the constraint added.

Listing 3.12 Adding a pattern constraint

import play.data.validation.Constraints;
public class Product {
@QConstraints.Required
public String ean;
@Constraints.Required

public String name;
public String description;

}

What we need to do now is perform the validation in our controller and show an error
or success message accordingly. The following listing shows a different version of
save () that has that functionality.

Listing 3.13 A better save implementation

public static Result save() {
Form<Product> boundForm = productForm.bindFromRequest () ;
if (boundForm.hasErrors()) {
flash("error", "Please correct the form below.");

return badRequest (details.render (boundForm)) ;

}

Product product = boundForm.get() ;
product.save() ;
flash("success",
String.format ("Successfully added product %s", product)) ;

return redirect (routes.Products.list());

-

52

CHAPTER 3 A basic CRUD application

In this version of our implementation, we use the validation functionality of Play’s
forms. On the second line of our method, we ask the Form if there are any errors, and,
if there are, we add an error message and rerender the page. If there are no errors, we
add a success message and redirect to the products list.

The error and success messages aren’t visible yet. We’ve added them to something
called the flash scope. Flash scope is a place where we can store variables between
requests. Everything in flash scope is there until the following request, at which point
it’s deleted. It’s ideal for success and error messages like this, but we still need to ren-
der these messages.

Because messages like these are useful throughout the application, let’s add them
to the main template, because that’s what every page extends. That way, every page will
automatically display any messages we put in flash scope. Add the lines shown in list-
ing 3.14 to the start of the <body> element in app/views/main.scala.html.

Listing 3.14 Displaying flash success and error messages

@if (flash.containsKey ("success")) {
<div class="alert alert-success">
@flash.get ("success")
</div>

}

@if (flash.containsKey ("error")) {
<div class="alert alert-error">
@flash.get("error")
</div>
}
Now try out the form. Load the form at http://localhost:9000/products/new,
and try to submit the form while leaving the EAN field blank. You should see a page as
in figure 3.6.
A lot more is possible using form validation, but for now this is enough. You can
learn all about forms and validation in chapter 6.
Now that we have our form working, we can use it to edit existing products. To do
this, we need to implement the details method as in the following listing.

Listing 3.15 Implementing the details method

public class Products extends Controller {

public static Result details(String ean) {
final Product product = Product.findByEan (ean) ;
if (product == null) {
return notFound(String.format ("Product %s does not exist.", ean));

}

Form<Product> filledForm = productForm.fill (product) ;
return ok (details.render (filledForm)) ;

http://localhost:9000/products/new,

3.8

Adding a delete button 53

Please correct the form below.

Product form
Product (Paperclips 6)

ean
This field is required
Required
name
Paperclips 6
Required
description

Example paperclips 6

Submit

Figure 3.6 Validation errors in our form

As you can see, it doesn’t take a whole lot of code to turn a “new product” form into a
“product edit” form. This method takes an EAN code as a parameter from the URL, as
we defined in the routes file in section 3.2. We then look up the product based on the
EAN. If there’s no product with that EAN, we return a 404 - Not Found error.

If we do find a product, we create a new Form object, prefilled with the data from
the product we found. We use the £i11 method on our existing empty form object for
that. It’s important to note that this does not fill in the existing form, but it creates a
new form object based on the existing form.

Once we have the form, all that remains is to render the template and return the
“ok” result, as in newProduct.

This action method is complete, and now the links in the product listing all work
correctly. There’s one more step left to complete our CRUD functionality: we need to
implement delete functionality.

Adding a delete button

Let’s start by adding a delete () method to our Products controller. The functionality
is largely similar to the details() method; we take an EAN parameter, search for a
corresponding Product, and return a 404 error if we can’t find one. Once we have the
Product, we delete it and redirect back to the 1ist () method. Listing 3.16 shows the
method.

54

CHAPTER 3 A basic CRUD application

Listing 3.16 The delete() action method

public static Result delete(String ean) {
final Product product = Product.findByEan (ean) ;
if (product == null) {
return notFound(String.format ("Product %s does not exists.", ean));
}
Product.remove (product) ;
return redirect (routes.Products.list());

}

Now we need to add a route for this method in order to make it callable from the web.
Because this is a method that changes something, we can’t make this a GET operation.
With a RESTful interface, we have to make this a DELETE operation. To do so, we’ll use
a bit of JavaScript to send a DELETE request, because we can’t use a simple link (that
would issue a GET operation). This is simple; the following code instructs your browser
to issue a DELETE request to the server:

<script>
function del (urlToDelete) {
$.ajax({

url: urlToDelete,

type: 'DELETE',

success: function(results) {
// Refresh the page
location.reload() ;

}

)
}

</script>
Now, let’s change our route to add a DELETE route, as shown here:
DELETE /products/:ean controllers.Products.delete(ean: String)

It’s now time to add the user interface for our delete operation: the Delete button.
Because the delete operation requires an HTTP DELETE call, we add a simple link that
calls our JavaScript del method, which in turn calls the server and refreshes the page.
We add a simple link with an onclick action handler that calls our JavaScript, and
we’re done. The following listing shows the updated 1ist template.

Listing 3.17 Updated template—app/views/products/list.scala.html

@ (products: List[Product])
@main ("Products catalogue") {

<h2>Al11 products</h2>

<script>
function del (urlToDelete) {
$.ajax({

url: urlToDelete,
type: 'DELETE',
success: function(results) {

3.9

Summary 55

// Refresh the page
location.reload() ;
}
1)
}
</script>

<table class="table table-striped">
<thead>
<tr>
<th>EAN</th>
<th>Name</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
@for (product <- products) {

<tr>
<td>
@product.ean
</td>
<td>
@product.name</td>
<td>
@product.name</td>
<td>

<i class="icon icon-pencil"></i>

<i class="icon icon-trash"></i> .
/ / The link calls our

</td> JavaScript del method,
</tr> which in turn issues a
} request to the server
</tbody>
</table>

<i class="icon-plus"></i> New product
}
Go ahead and test it out. You should be able to delete products from the list page now.
With the delete functionality added, the functionality for our proof-of-concept
application is now complete.

Summary

In this chapter, we implemented a simple proof-of-concept application. We added all
the CRUD functionality, with a datastore in memory. We started with a controller with
some basic action methods and linked them to URLs by setting up Play’s routing system.
We then introduced some view templates and added some forms with validation. Finally,
we added the delete functionality by adding a DELETE action and a corresponding form.

56

CHAPTER 3 A basic CRUD application

This chapter was a quick introduction to all the core concepts of Play. All the topics
in this chapter will be explained in detail in later chapters, but now you have the gen-
eral idea of the most important concepts. You’ve also had a taste of what it means that
Play is type-safe. If you followed along with the exercises, and you made an occasional
mistake, you’ve probably also seen how soon mistakes are spotted because of the type
safety, and how useful Play’s error messages are when a problem is found.

In the next chapter, we’re going to see how Play 2 fits in an enterprise environ-
ment and the enterprise challenges Play 2 is trying to solve.

JAVA/WEB DEVELOPMENT

Play ror Java

Leroux o de Kaper

or a Java developer, the Play web application framework
F is a breath of fresh air. With Play you get the power of

Scala’s strong type system and functional programming
model, and a rock-solid Java API that makes it a snap to create
stateless, event-driven, browser-based applications ready to
deploy against your existing infrastructure.

Play for Java teaches you to build Java-based web applications
using Play 2. This book starts with an overview example and
then explores each facet of a typical application by discussing
simple snippets as they are added to a larger example. Along
the way, you'll contrast Play and JEE patterns and learn how
a stateless web application can fit seamlessly in an enterprise
Java environment. You'll also learn how to develop asynchro-
nous and reactive web applications.

What's Inside

* Build Play 2 applications using Java
e Leverage your JEE skills
* Work in an asynchronous way

e Secure and test your Play application

The book requires a background in Java. No knowledge of

Play or of Scala is assumed.

Nicolas Leroux is a core developer of the Play framework.
Sietse de Kaper develops and deploys Java-based Play
applications.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/PlayforJava

$49.99 / Can $52.99 [INCLUDING eBOOK]

¢CHelps you transition
to more productive ways
to build modern web apps.??

—From the Foreword by
James Ward, Typesafe

¢CThe easiest way to learn
the easiest web framework.??

—Franco Lombardo
Molteni Informatica

¢CThe definitive guide
to Play 2 for Java.??
—Ricky Yim, DiUS Computing

€€ A good cocktail of theory
and practical information.??

—Jeroen Nouws, XTI

€€ An excellent tutorial on
the Play 2 framework. ??

—Lochana C. Menikarachchi
PhD, University of Connecticut

ISBN 13: 978-1-L17290-90-9
ISBN 10: 1-b61729-090-4

“ ‘H 5‘4 | 9“9
IM7816171290909

	Leroux-PlayJava-front
	Copyright
	TOC
	SampleCh03
	Leroux-PlayJava-back

