Chapter 2 - Insertion 1

Chapter 2 – Insertion 1
There are five types of properties we refer to throughout this book: simple, bound, constrained, change and client. We will discuss each of these in turn.

Many classes are designed to fire events when the value of a property changes. A property for which there is no event firing associated with a change in its value is called a simple property.

A bound property is one for which PropertyChangeEvents are fired after the property changes value. We can register PropertyChangeListeners to listen for PropertyChangeEvents through JComponent’s addPropertyChangeListener() method.

A constrained property is one for which PropertyChangeEvents are fired before the property changes value. We can register VetoableChangeListeners to listen for PropertyChangeEvents through JComponent’s addVetoableChangeListener() method. A change can be vetoed in the event handling code of a VetoableChangeListener by throwing a PropertyVetoException. (As of JDK1.4 JInternalFrame is the only Swing class with constrained properties.)

Chapter 2 – Insertion 2
WARNING
Client properties may seen like a great way to extend a component by essentially adding global variables. However, we are explicityly advised against this in the API documentation: “The clientProperty dictionary is not intended to support large scale extensions to JComponent nor should it be considered an alternative to subclassing when designing a new component.” In other words, it is better to create a subclass with new properties rather than use client properties to add meaningful state. Client properties are best used for experimentation.

Chapter 2 – Insertion 3
Below we’ve listed these property key names along with a brief description of their values.

NOTE
These property key names are actually the values of protected fields defined in the corresponding MetalXXUI delegates in the javax.swing.plaf.metal package. Unfortunately the only way to make use of them is to either hardcode them into your application or subclass the corresponding Metal UI delegates to make these fields available.

Chapter 2 – Insertion 4
(but as with the setBounds() method described above, this method may or may not have any effect depending on the layout manager in use).

Chapter 2 – Instertion 5

Usually classes that support XXEvents provide protected fireXX() methods used for constructing event objects and sending them to event handlers for processing (see section 2.7.7 for an example of this).

JAVA 1.3
In Java 1.2 there was no way to access the listeners of a component without subclassing. For this reason the getListeners() method was added to Component in Java 1.3. This method takes a listener Class instance as its argument and returns an array of EventListeners (EventListener is the interface all XXListeners extend). For example, to obtain all ActionListeners attached to a given component we can do the following:

ActionListener[] actionListeners = (ActionListener[])

myComponent.getListeners(ActionListener.class);

Chapter 2 – Instertion 6

For thread safety the methods for adding and removing listeners from an EventListenerList synchronize access to the array when it is manipulated.

When events are received the array is traversed and events are sent to each listener with a matching type. Because the array is ordered in an XXEvent, XXListener, YYEvent, YYListener fashion, a listener corresponding to a given event type is always next in the array. This approach allows very efficient event-dispatching routines (see section 2.7.7 for an example).

Chapter 2 – Insertion 7
By default all AWT and Swing-based applications start off with two threads. One is the main application thread which handles execution of the main() method. The other, referred to as the event-dispatching thread, is responsible for handling events, painting and layout. All events are processed by the listeners that receive them within the event-dispatching thread. For example, the code you write inside the body of an actionPerformed() method is executed within the event-dispatching thread automatically (you don’t have to do anything special to make this happen). This is also the case with all other event handling methods. All painting and component layout also occurs within this thread. For these reasons the event-dispatching thread is of primary importance to Swing and AWT, and plays a fundamental role in keeping updates to component state and display under control.

Associated with the event-dispatching thread is a FIFO (first in first out) queue of events called the system event queue (an instance of java.awt.EventQueue). This gets filled up, as does any FIFO queue, in a serial fashion. Each request takes its turn executing event-handling code, whether it is updating component properties, layout or painting. All events are processed serially to avoid such situations as a component’s state being modified in the middle of a repaint. Knowing this, you must be careful not to dispatch events outside of the event-dispatching thread. For instance, calling a fireXX() method directly from within a separate (either the main application thread or one that you created yourself) is unsafe.

NOTE
If you are ever in doubt whether or not event handling code you have written is being handled in the right thread, the following static method comes in handy: SwingUtilities.isEventDispatchThread(). This will return true or false indicating whether or not the method was called from within the event-dispatching thread.

Since the event-dispatching thread executes all listener methods, painting and layout, it is important that event-handling methods, painting methods, and layout methods be executed quickly. Otherwise the whole system event queue will be blocked waiting for one event process, repaint or layout to finish, and your application will appear to be frozen or locked up.

To illustrate this point, lets say you have a Swing application running in front of you with a button and a table of data. The button has an attached ActionListener and inside this listener’s actionPerformed() method a database access occurs. After the data is retrieved it is then added to the table’s model and the table updates its display accordingly. The problem with this is that if the connection to the database is slow or not working when we press the button, or if the amount of data retrieved is large and takes a while to send, the GUI will become unresponsive until the send finishes or an exception is thrown. To solve this problem and ensure that the actionPerformed() method gets executed quickly, you need to create and use your own separate thread for doing this time-consuming work.

Chapter 2 – Instertion 8
Multithreading is necessary when any time-consuming work occurs in a GUI application. The following code shows how to create and start a separate thread:

 Thread workHard = new Thread() {

 public void run() {

 doToughWork(); // do some time-intensive work

 }

 };

 workHard.start();

However, designing multithreaded GUI applications is not just simple creating separate threads for time-consuming work (although this is a big part of it). There are several other things that need to be kept in mind when designing such applications. The first is that all updates to any component’s state should be executed from within the event-dispatching thread only (see 2.2.2). For example, lets say you have created your own separate thread that starts when the user presses a button. This thread accesses a database to gather data for display in a table. When the data is retreived the table model and display must be updated, but this update must occur in the event-dispatching thread – not within our separate thread. To accomplish this we need a way of wrapping up code and sending it to the system event queue for execution in the event-dispatching thread.

Chapter 2 – Insertion 9

So putting this all together the following code shows a typical way to build your own separate thread to do some time-intensive work while using invokeLater() or invokeAndWait() in order to safely update the state of any components in the event-dispatching thread:

 Thread workHard = new Thread() {

 public void run() {

 doToughWork(); // do some time-intensive work

 SwingUtilties.invokeLater(new Runnable() {

 public void run() {

 updateComponents(); // do some work in event thread

 }

 });

 }

 };

 workHard.start();

Chapter 2 – Insertion 10
NOTE
It is often necessary to explicitly lower the priority of a separate thread so that the event-dispatching thread will be given more processor time and thus allow the GUI to remain responsive. If you’ve created a separate thread for time-consuming work and you notice that the GUI is still slow or freezes often, try lowering the priority of your separate thread before starting it:

workHard.setPriority(Thread.MIN_PRIORITY);

This use of a separate thread solves the problem of responsiveness and it correctly dispatches component-related code to the event-dispatching thread. However, in an ideal solution the user should be able to interrupt the time-intensive procedure. If you are waiting to establish a network connection you certainly don’t want to continue waiting indefinitely if the destination is not responding. So in most circumstances the user should have the ability to interrup the thread. The following pseudocode shows a typical way to accomplish this, where the ActionListener attached to stopButton causes the thread to be interrupted, updating component state accordingly:

 JButton stopButton = new JButton(“Stop”);

 // Before starting the thread make sure

 // the stop button is enabled.

 stopButton.setEnabled(true);

 Thread workHard = new Thread() {

 public void run() {

 doToughWork();

 SwingUtilties.invokeLater(new Runnable() {

 public void run() {

 updateComponents();

 }

 });

 }

 };

 workHard.start();

 public void doToughWork() {

 try {

 while(job is not finished) {

 // We must do at least one of the following:

 // 1. Periodically check Thread.interrupted()

 // 2. Periodically sleep or wait

 if (Thread.interrupted()) {

 throw new InterruptedException();

 }

 Thread.wait(1000);

 }

 }

 catch (InterruptedException e) {

 // Notify the application that the thread has

 // has been interrupted.

 }

 // No matter what happens, disable the

 // stop button when finished

 finally {

 stopButton.setEnabled(false);

 }

 }

 ActionListener stopListener = new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 workHard.interrupt();

 }

 };

 stopButton.addActionListener(stopListener);

stopButton interrupts the workHard thread when it is pressed. There are two ways that doToughWork() will know whether workHard (the thread that doToughWork() is executed in) has been interrupted by stopButton. If the thread is currently sleeping or waiting, an InterruptedException will be thrown which you can catch and process accordingly. The only other way to detect interruption is to periodically check the interrupted state by calling Thread.interrupted(). Both cases are handled in the doToughWork() method.

Chapter 2 – Insertion 11

Additionally, progress bars are often used to further enhance the user experience by visually displaying how much of a time-consuming process is complete. Chapter 13 covers this in detail.

Chapter 2 - Instertion 12
JAVA 1.3
A new Timer class, and an associated TimerTask class, have been added to the java.util package in Java 1.3. The java.util.Timer class differs from the javax.swing.Timer class in that it has an associated separate thread of execution. This thread can be specified as either a deamon or non-deamon thread. TimerTasks, which implement the Runnable interface, can be added to a Timer for execution once or at given intervals at a given future time. This combination adds yet another means for building multithreaded applications.

Chapter 2 - Instertion 13
For example, below are PopupFactory’s getSharedInstance() and setSharedInstance() methods:

 private static final Object SharedInstanceKey =

 new StringBuffer("PopupFactory.SharedInstanceKey");
 public static void setSharedInstance(PopupFactory factory) {

 if (factory == null) {

 throw new IllegalArgumentException(

 "PopupFactory can not be null");

 }

 SwingUtilities.appContextPut(SharedInstanceKey, factory);

 }

 public static PopupFactory getSharedInstance() {

 PopupFactory factory =

 (PopupFactory) SwingUtilities.appContextGet(

 SharedInstanceKey);

 if (factory == null) {

 factory = new PopupFactory();

 setSharedInstance(factory);

 }

 return factory;

 }

Chapter 2 - Insertion 14
JAVA 1.4
Standard serialization of Swing-based classes has not been recommended since the earliest versions of Swing, and according to the API documention, is still not ready. However, as of Java 1.4 all JavaBeans (and thus all Swing components) are serializable into an XML form using the java.beans.XMLEncoder class:

“Warning: Serialized objects of this class will not be compatible with future Swing releases. The current serialization support is appropriate for short term storage or RMI between applications running the same version of Swing. As of 1.4, support for long term storage of all JavaBeansTM has been added to the java.beans package. Please see XMLEncoder.”

To serialize a component to an XML file you can write code similar to the following:

 XMLEncoder encoder = new XMLEncoder(

 new BufferedOutputStream(

 new FileOutputStream("myTextField.xml")));

 encoder.writeObject(myTextField);

 encoder.close();

Similarly, to recreate an object serialized using XMLEncoder, the java.beans.XMLDecoder class can be used:

 XMLDecoder decoder = new XMLDecoder(

 new BufferedInputStream(

 new FileInputStream("myTextField.xml")));

 myTextField = (JTextField) decoder.readObject();

 decoder.close();

Chapter 2 - Instertion 15
JAVA 1.4
The Java2D team has implemented a new class called VolatileImage which allows Java to take advantage of available graphics acceleration hardware. RepaintManager has a new getVolatileOffscreenBuffer() method used to obtain a VolatileImage for use in double-buffering.

Chapter 2 - Instertion 16
2.12
Focus Management

With Java 1.4 comes a completely revised focus subsystem. The primary concepts underlying this subsystem consist of the following:

Focus Owner: A focus owner is the component which currently has the focus and is the ultimate target of all keyboard input (except key combinations that indicate a focus change; detailed below).

Permanent Focus Owner: A permanent focus owner is the same as the current focus owner unless there is a temporary focus change in effect (for example, using a drop-down menu while editing a text component document).

Focus Cycle: A focus cycle is the sequence in which components within a container receive focus. It is referred to as a cycle because it acts as a loop -- each component in the cycle will receive the focus once if the cycle is completely traversed from the first component in the cycle to the last.

Focus Traversal: Focus traversal is the ability to move the focus from one component to the next within a focus cycle. This can be accomplished through use of key combinations to move the focus forward or backward.

Focus Cycle Root: A focus cycle root is the upper-most parent container of the components in a focus cycle. Every Window are JInternalFrame is a focus cycle root by default (this includes JInternalFrame even though it is technically not a Window). Normal focus traversal within a focus cycle cannot extend above or below the focus cycle root with respect to its containment heirarchy. Distinct traversal options called up cycle and down cycle are used to change the focus cycle root.

In example 2.6, shown in figure 2.6, we construct a container with four focus cycle roots. Below we walk you through using this example to illustrate the above focus management concepts.

[image: image1.png]=[]
Facus Cycle A

YT T E—

[Focus cycle B i E

T I E—

[Focus Cycle ¢ o EH

| Button1 || Button2 |

EI Focus Cycle D o EH

| Button1 || Button2 |

Figure 2.6 Focus Cycle Demo

FocusTest.java

see \Chapter1\5
import java.awt.*;

import javax.swing.*;

import javax.swing.border.*;

public class FocusDemo extends JFrame {

 public FocusDemo() {

 super("Focus Demo");

 JPanel contentPane = (JPanel) getContentPane();

 contentPane.setBorder(new TitledBorder("Focus Cycle A"));

 contentPane.add(createComponentPanel(), BorderLayout.NORTH);

 JDesktopPane desktop1 = new JDesktopPane();

 contentPane.add(desktop1, BorderLayout.CENTER);

 JInternalFrame internalFrame1 =

 new JInternalFrame("Focus Cycle B", true, true, true, true);

 contentPane = (JPanel) internalFrame1.getContentPane();

 contentPane.add(createComponentPanel(), BorderLayout.NORTH);

 JDesktopPane desktop2 = new JDesktopPane();

 contentPane.add(desktop2, BorderLayout.CENTER);

 desktop1.add(internalFrame1);

 internalFrame1.setBounds(20,20,500,300);

 internalFrame1.show();

 JInternalFrame internalFrame2 =

 new JInternalFrame("Focus Cycle C", true, true, true, true);

 contentPane = (JPanel) internalFrame2.getContentPane();

 contentPane.add(createComponentPanel(), BorderLayout.NORTH);

 JDesktopPane desktop3 = new JDesktopPane();

 contentPane.add(desktop3, BorderLayout.CENTER);

 desktop2.add(internalFrame2);

 internalFrame2.setBounds(20,20,400,200);

 internalFrame2.show();

 JInternalFrame internalFrame3 =

 new JInternalFrame("Focus Cycle D", false, true, true, true);

 contentPane = (JPanel) internalFrame3.getContentPane();

 contentPane.add(createComponentPanel(), BorderLayout.NORTH);

 desktop3.add(internalFrame3);

 internalFrame3.setBounds(20,20,300,100);

 internalFrame3.show();

 }

 public static void main(String[] args) {

 FocusDemo frame = new FocusDemo();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 frame.setBounds(0,0,600,450);

 }

 protected JPanel createComponentPanel() {

 JPanel panel = new JPanel();

 panel.add(new JButton("Button 1"));

 panel.add(new JButton("Button 2"));

 panel.add(new JTextField(10));

 return panel;

 }

}
When you first run this example don’t use your mouse. Notice that the first component with the focus, the focus owner, is “Button 1” in Focus Cycle A. This is evident by the blue selection box drawn around that button’s text. Press TAB (on Windows) or CTRL+TAB (on UNIX) to move the focus forward to the next component in the cycle. When you move the focus forward from the last component in the cycle (the text field), notice that the focus moves down a cycle rather than continuing from the beginning of the current cycle.

Press SHIFT+TAB (on Windows) or CTRL+SHIFT+TAB (on UNIX) to move the focus backward through the cycle. When you move the focus backward the focus stays within the current focus cycle endlessly.

Now try moving the focus forward until you reach Focus Cycle D. At this point there are no more focus cycle roots to traverse through and cycle D loops endlessly, whether you move the focus forward or backward. If you minimize the “Focus Cycle D” internal frame, the “Focus Cycle C” internal frame then becomes the lowest focus cycle root and focus traversal will loop endlessly there. If you restore the “Focus Cycle D” internal frame then it becomes the lowest focus cycle root once again.

By default there is no direct way to use the keyboard to move to a higher focus cycle. The only way to move down a focus cycle with the keyboard is to traverse the focus cycle heirarchy manually. There is no default way to move up the heirarchy using only the keyboard without removing cycle roots (in the example above minimizing an internal frame accomplishes this temporarily). However, you can easily use the mouse to jump to any focus cycle. Simply click on a focusable component and the focus will be transfered to the cycle containing that component.

Now try typing some text into one of the text fields. Then use your mouse to click on the Java cup frame icon in the upper left-hand corner of the JFrame. A popup menu appears but notice that the cursor still remains blinking in the text area. This is an example of a temporary focus change – focus is temporarily transferred to the popup menu. Once the popup menu is dismissed you can continue typing in the text field as if a focus change never happened. In this scenario the text field is a permanent focus owner with respect to the popup menu.

2.12.1
KeyboardFocusManager

abstract class java.awt.KeyboardFocusManager

Central to the focus management system is a new class called KeyboardFocusManager (an AppContext-registered service class – see section 2.5), the default implementation of which is DefaultKeyboardFocusManager.
To obtain a reference to the current KeyboardFocusManager in use, the static getCurrentKeyboardFocusManager() method is used. Once you’ve obtained this you can programmatically inquire about the current focus state, change the focus state, and add to or replace focus change event handling functionality.

NOTE
We recommend programmatically changing focus through the KeyboardFocusManager rather than calling methods such as requestFocus() on components directly.

VetoableChangeListeners (see section 2.1.1) can be added to KeyboardFocusManager for the opportunity to veto a component focus or window activation change by throwing a PropertyVetoException. In the event that a veto occurs, all VetoableChangeListeners that may have previously approved the change will be notified and will revert any changes back to their original state.

2.12.2
Key events and focus management

abstract class java.awt.KeyEventDispatcher

Implementations of this class can be registered with the current KeyboardFocusManager to receive key events before they are sent to the currently focused component. In this way key events can be redirected to a different target component, consumed, or changed in some other way.

KeyboardFocusManager is actually a subclass of KeyEventDispatcher and by default acts as the last KeyEventDispatcher to receive key events. This abstract class defines one method, dispatchKeyEvent(), which returns a boolean value. If any KeyEventDispatcher registered with the KeyboardFocusManager returns true for this method, indicating that it dispatched the key event, then no further dispatching of that event will take place. In this way we can define our own KeyEventDispatcher to alter the behavior of KeyboardFocusManager.

2.12.3
Focus and Window events

java.awt.event.FocusEvent and java.awt.event.WindowEvent
FocusEvent and WindowEvent define several event types that are central to the operation of the focus management subsystem. They generally occur in the following order during focus traversal and can be intercepted by attaching WindowListeners and FocusListeners respectively:

WindowEvent.WINDOW_ACTIVATED: event sent to a Frame or Dialog when it becomes active.

WindowEvent.WINDOW_GAINED_FOCUS: event sent to a Window when it becomes focused.

FocusEvent.FOCUS_GAINED: event sent to a Component when it becomes the focus owner.

FocusEvent.FOCUS_LOST: event sent to a Component when it loses focus ownership, whether temporary or permanent.

WindowEvent.WINDOW_LOST_FOCUS: event sent to a Window when it loses focus.

WindowEvent.WINDOW_DEACTIVATED: event sent to a Frame or Dialog when it is no longer the active window.

2.12.4
Focusability and traversal policies

abstract class java.awt.FocusTraversalPolicy

You can easily change whether or not specific components act as part of a focus cycle. Each Component can toggle its traversability with the setFocusable() method. Similarly each Window can do the same with the setFocusableWindow() method.

However, if we need to customize focus traversal in a more creative way, the FocusTraversalPolicy class provides a way to accomplish this. This abstract class defines several methods used during focus traversal to determine which component is next, previous, first, last, etc. within a given Container’s focus cycle. Once defined a traversal policy can be applied to any Container with the setTraversalPolicy() method.

ContainerOrderFocusTraversalPolicy (and its DefaultFocusTraversalPolicy subclass) is the default policy of most containers. Components are traversed based on their order of appearance, from left to right and top to bottom, within the container -- corresponding to the ordering of the array returned by the Container.getComponents() method. By default this policy traverses down to lower focus cycles whenever a new focus cycle root is reached. This behavior can be toggled with the setImplicitDownCycleTraversal() method.

InternalFrameFocusTraversalPolicy is a policy meant for use by JInternalFrame to provide a way for determining the initial focus owner when the internal frame is selected for the first time. SortingFocusTraversalPolicy is a subclass of InternalFrameFocusTraversalPolicy that determines traversal order by comparing child components using a given Comparator implementation. A subclass of this, LayoutFocusTraversalPolicy, is used to determine traversal order based on size, position and orientation. Used in conjunction with a component’s ComponentOrientation (the language-sensitive orientation that determines whether text or components should appear from left to right, top to bottom, etc.), LayoutFocusTraversalPolicy can adjust focus traversal based on the orientation required by, for instance, the current language in use.

REFERENCE
For a more detailed description of focus management in Java 1.4 see “The AWT Focus Subsystem for Merlin” at http://java.sun.com/products/jfc/tsc/articles/merlin/focus

Chapter 2 – Insertion 17

2.13.3 Scopes

There are three scopes defined by JComponent used to determine the conditions under which a KeyStroke falls:

JComponent.WHEN_FOCUSED: the corresponding Action will only be invoked if the component this KeyStroke is associated with has the current focus.

JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT: the corresponding Action will only be invoked if the component this KeyStroke is associated with is the ancestor of (i.e. it contains) the component with the current focus. Typically this is used to define Actions associated with mnemonics.

JComponent.WHEN_IN_FOCUSED_WINDOW: the corresponding Action will be invoked if the component this KeyStroke is associated with is anywhere within the peer-level window (i.e. JFrame, JDialog, JWindow, JApplet, or any other heavyweight component) that has the current focus.

2.13.4 Actions

interface javax.swing.Action

An Action is an ActionListener implementation that encapsulates a Hashtable of bound properties similar to JComponent’s client properties. In the context of keyboard bindings each KeyStroke is associated with at most one Action (this relationship is not one-to-one, however, as one Action can be associated with an arbitrary number of KeyStrokes). When a key event is detected that matches a KeyStroke under a certain scope, the appropriate Action is invoked. In chapter 12 we’ll work with Actions in detail; but it suffices to say here that Actions are used for, among other things, handling all component key events in Swing.

2.13.5 InputMaps and ActionMaps

javax.swing.InputMap and javax.swing.ActionMap

Before Java 1.3 there were two different mechanisms for mapping KeyStrokes to Actions. For JTextComponents the KeyMap class was used to store a list of Action/KeyStroke pairs. For all other JComponents a Hashtable was maintained by the component itself containing KeyStroke/ActionListener pairs.

In Java 1.3 these mechanisms were unified so that all components can be treated the same with regard to keyboard bindings. To accomplish this two new classes have been added: InputMap and ActionMap. Each component has one ActionMap and three InputMaps associated with it (one InputMap for each scope: WHEN_FOCUSED, WHEN_IN_FOCUSED_WINDOW, WHEN_ANCESTOR_OF_FOCUSED_COMPONENT).

Each InputMap associates a KeyStroke with an Object (usually a String representing the name of the corresponding action that should be invoked), and the ActionMap associates an Object (also usually a String representing the name of an action) with an Action. In this way KeyStrokes are mapped to Actions based on the current scope.

Each component’s main ActionMap and InputMaps are created by its UI Delegate. For most intents and purposes you will not need to directly access these maps because JComponent provides methods to easily add and remove KeyStrokes and Actions. For example, to bind the F1 key to the “HOME” action in a JList you would write the following code:

 myJList.getInputMap().put(

 KeyStroke.getKeyStroke(“F1”), “HOME”);

To disable an existing key combination, for instance the “F1” key defined above, you would write the following:

 myJList.getInputMap().put(

 KeyStroke.getKeyStroke(“F1”), “none”);

Similarly you can create a new Action or override an existing Action as follows:

 Action homeAction = new AbstractAction(“HOME”) {

 public void actionPerformed() {

 // place custom event-handling code here

 }

 };

 myJList.getActionMap().put(

 homeAction.get(Action.NAME), homeAction);
Note that the getInputMap() method used above with no parameters returns the InputMap associated with the WHEN_FOCUSED scope. To get the InputMap corresponding to a different scope you can use the getInputMap() method which takes the scope as parameter: getInputMap(int condition) where condition is one of JComponent.WHEN_FOCUSED, JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, JComponent.WHEN_IN_FOCUSED_WINDOW.

In the case of text components, the above code will work the same. Under the hood there is an InputMap wrapped around the text component’s main KeyMap so that text components still internally use KeyMaps while conforming to the new keyboard bindings infrastructure.

2.13.6 The flow of keyboard input

Each KeyEvent is first dispatched to the KeyboardFocusManager (see 2.12). If the KeyboardFocusManager does not consume the event it is sent to the focused component. The event is received in the component’s processKeyEvent() method. Note that this method will only be invoked if KeyEvents have been enabled (which is true whenever there is an InputMap in use and whenever KeyEvents are enabled on the component using the enableEvents() method – true by default for most Swing components) or if there is a KeyListener registered with the component.

Next any registered KeyListeners get a chance to handle the event. If it is not consumed by a KeyListener then the event is sent to the component’s processComponentKeyEvent() method which allows for any JComponent subclasses to handle key events in specific ways (JComponent itself has an empty implementation of this method).

If the event has not been consumed the WHEN_FOCUSED InputMap is consulted. If there is a match the corresponding action is performed and the event is consumed. If not the container hierarchy is traversed upward from the focused component to the focus cycle root where the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT InputMap is consulted. If the event is not consumed there it is sent to KeyboardManager, a package private service class (note that unlike most service classes in Swing, KeyboardManager does not register its shared instance with AppContext -- see section 2.5).

KeyboardManager looks for components with registered KeyStrokes with the WHEN_IN_FOCUSED_WINDOW condition and sends the event to them. If none of these are found then KeyboardManager passes the event to any JMenuBars in the current window and lets their accelerators have a crack at it. If the event is still not handled a check is performed to determine if the current focus resides in a JInternalFrame (because it is the only focus cycle root that can be contained inside another lightweight Swing component). If this is the case, the event is handed to the JInternalFrame’s parent. This process continues until either the event is consumed or the top-level window is reached.

