
Daniele Bochicchio
Stefano Mostarda
Marco De Sanctis

Includes 106 practical techniques

M A N N I N G

IN PRACTICE

SAMPLE CHAPTER



by Daniele Bochicchio,

and Marco De Sanctis

 retpahC   15

ASP.NET 4.0 in Practice

Stefano Mostarda,

Copyright 2011 Manning Publications



v

brief contents
PART 1 ASP.NET FUNDAMENTALS ................................................1

1 ■ Getting acquainted with ASP.NET 4.0 3

2 ■ Data access reloaded: Entity Framework 30

3 ■ Integrating Entity Framework and ASP.NET 52

PART 2 ASP.NET WEB FORMS...................................................75

4 ■ Building the user interface with ASP.NET Web Forms 77

5 ■ Data binding in ASP.NET Web Forms 104

6 ■ Custom controls 135

7 ■ Taking control of markup 162

PART 3 ASP.NET MVC .........................................................185

8 ■ Introducing ASP.NET MVC 187

9 ■ Customizing and extending ASP.NET MVC 219

PART 4 SECURITY ....................................................................257

10 ■ ASP.NET security 259

11 ■ ASP.NET authentication and authorization 282



BRIEF CONTENTSvi

PART 5 ADVANCED TOPICS.........................................................317

12 ■ Ajax and RIAs with ASP.NET 4.0 319

13 ■ State 348

14 ■ Caching in ASP.NET 366

15 ■ Extreme ASP.NET 4.0 396

16 ■ Performance and optimizations 416



396

Extreme ASP.NET 4.0

Extensibility is a driving force of ASP.NET, and this chapter is composed of different
techniques used to implement advanced—and probably extreme—ASP.NET-based
features.

 We described HttpModules and HttpHandlers in chapter 1 from an architectural
point of view. In this chapter, we’ll use them to implement common strategies in
websites; for example, we’ll look at error handling, which is fundamental for both
security and troubleshooting. We’ll use multithreading techniques to increase per-
formance in specific scenarios. Finally, we’ll talk about how HttpRuntime extensibil-
ity can address your remaining needs, letting you store your own source in any non-
conventional storage, such as a database or even remote servers.

 This chapter and the next are the last in the book, and we’ve already covered
everything you’ll see from now on, to some degree, in the previous chapters.
This chapter, in particular, is organized to show you advanced topics related to

This chapter covers
■ HttpModules
■ Logging and error handling
■ Extending HttpRuntime
■ How to build a virtual path provider



397Using HttpModules

HttpRuntime and multithreading. If you need out-of-the-ordinary techniques in your
application, this chapter is for you.

15.1 Using HttpModules
As we mentioned in chapter 1, HttpModules are a special kind of class used to intercept
mainly HttpApplication events (but you can handle events from any object if you need
to). An HttpModule implements the IHttpModule interface from the System.Web
namespace and is loaded at runtime. Generally, HttpModules are stateless with regard
to the current request, so they don’t contain state related to the current request, but they
do use HttpContext (a singleton class) as their state context.

 HttpContext offers access to both HttpRequest and HttpResponse, enabling state
to be used across request and response. You also have the ability to use session state,
caching, and application state.

 Each HttpApplication has only one instance of a given HttpModule. Remember
that you can have different instances of HttpApplication in a given web application,
depending on the ASP.NET HttpApplication pool configuration (not to be confused
with IIS ones), or in case ASP.NET demands more. (For a complete rundown of the
details of this topic, see chapter 1.) This single-instance behavior is reflected by
IHttpModule interface members, which are composed of a simple Init() member,
used to initialize elements, and a Dispose() member, optionally used to clean up
resources if you need to do that.

To build an HttpModule, you need to register it in the web.config file. Depending on
your IIS version, you can make an HttpModule globally available and use it across all
kinds of requests. For information about this specific feature, available on IIS 7.0 and 7.5,
see chapter 1.

Migrating HttpHandlers and HttpModules to the IIS 7.0 integrated pipeline
To enable HttpHandlers and HttpModules in the IIS 7.0 integrated pipeline, you
need to move the data under the system.WebServer node, instead of under sys-
tem.web. You can automatically do this with the following command-line tool:

%windir%\system32\inetsrv\APPCMD.EXE migrate config <Application Path>

To avoid a runtime error when the legacy httpModules section is present (for exam-
ple, if you need to deploy this application to both IIS 6.0/7.0 in classic pipeline and
IIS 7.0 in integrated pipeline), you can set validateIntegratedModeConfigura-
tion under system.webServer\validation.

You can also use a shortcut to enable all managed modules to run for all requests in
your application, regardless of the preCondition attribute (to be set to managed-
Handler), by setting the runAllManagedModulesForAllRequests property in the sys-
tem.webServer\modules section.



398 CHAPTER 15 Extreme ASP.NET 4.0

NOTE HttpApplication has different events, giving you full control over
which ASP.NET state you need to capture, either request or response. You can
find all the events in the documentation, which is also available on MSDN at
http://www.mng.bz/SeWM.

HttpModules are considered the heart of ASP.NET because common features are
implemented with it: OutputCache, SessionState, authorization, and authentication,
to name a few. Extensibility in ASP.NET often depends on HttpModules because they
enable you to modify virtually anything related to the response and request flows. This
section is dedicated to leveraging HttpApplication.

TECHNIQUE 90Modifying the response flow with HttpModules

HttpModules can modify every single aspect of ASP.NET, so you can use them to manip-
ulate the response flow before you send the output straight to the browser. This tech-
nique can be useful in a lot of scenarios: you can add specific headers to specific kinds
of content or simply modify the flow and redirect the user to a specific page. When
you use HttpModules creatively, you can deeply influence the way ASP.NET handles the
response flow, as we’ll show you in this example.

PROBLEM

We want to write a module to handle a custom authorization mechanism for our appli-
cation. We want to provide a new authorization feature, with our custom logic inside.
ASP.NET includes UrlAuthorizationModule by default, which is useful for mapping
access, via web.config, to a given set of URLs. This custom module will let you dynami-
cally specify authorization rules, so you don’t have to rely on static specification with
the web.config rules.

SOLUTION

Generally, BeginRequest or EndRequest events of HttpApplication are used the most
because you usually need to modify the output either before the corresponding
HttpHandler begins its work or right after the output is ready to be sent.

 The AuthorizeRequest and AuthenticateRequest events are also useful. They’re
respectively related to authorization and authentication requests from ASP.NET. They
both enable you to customize those mechanisms, as outlined in figure 15.1.

TECHNIQUE 90

Figure 15.1 The ASP.NET request flow in action. HttpApplication events are intercepted by custom 
modules, so the flow can be changed. In this figure, MyModule is a custom module that will intercept 
BeginRequest and AuthorizeRequest events.

http://www.mng.bz/SeWM


399TECHNIQUE 90 Modifying the response flow with HttpModules

These events are strictly synchronous, but you can also use their asynchronous equiva-
lents in a fire-and-forget way. Using them asynchronously is handy when you have to
deal with data loading or intensive processing routines, where you don’t need to mod-
ify the request or response status.

 For our specific problem, we need to intercept and handle the AuthorizeRequest
event of the HttpApplication class. This event occurs after BeginRequest and
AuthenticateRequest to ensure that the request will be authorized before any han-
dler or module is processed any further.

 For our simple example, we’re going to intercept the event, and, if the current
time is after 5 PM, we’ll set the StatusCode property of HttpResponse to 401, which
means that the request isn’t authorized. The result is that ASP.NET will stop the
request, and, depending on the authentication configuration, the user will be redi-
rected to the login page; in the case of Windows Authentication, the user will be asked
for a valid account.

 Obviously, you can use a better-fitting dynamic routine, but this solution is a good
way for you to get the point regarding authorization customization. The code in the
following listing shows how to achieve the result.

C#:
public class AuthorizationModule : IHttpModule
{
  ...
  public void Init(HttpApplication context)
  {
    context.AuthorizeRequest += new EventHandler(OnAuthorizeRequest);
  }

  void OnAuthorizeRequest (object sender, EventArgs e)
  {
    HttpApplication app = (HttpApplication)sender;

    if (DateTime.Now.Hour >= 17
      app.Context.Response.StatusCode = 401;
  }
}

VB:
Public Class AuthorizationModule
    Implements IHttpModule
  ...
  Public Sub Init(ByVal context As HttpApplication)

➥      Implements IHttpModule.Init
    AddHandler context.AuthorizeRequest, AddressOf OnAuthorizeRequest
  End Sub

  Private Sub OnAuthorizeRequest(ByVal sender As Object, 
                                 ByVal e As EventArgs)
    Dim app As HttpApplication = DirectCast(sender, HttpApplication)

    If DateTime.Now.Hour >= 17 Then
      app.Context.Response.StatusCode = 401

Listing 15.1 A custom authorization module to modify the response flow



400 CHAPTER 15 Extreme ASP.NET 4.0

    End If
  End Sub

End Class

The code is self-explanatory: we’re intercepting the authorization request and chang-
ing the request flow by setting a specific HTTP response code.

 As we already mentioned, the HttpModule needs to be registered in web.config. It
will work on every request coming to ASP.NET (not only those coming to .aspx pages),
so if you have special content, like images or style sheet, you should exclude them
from its range.

DISCUSSION

Customizing the ASP.NET response flow isn’t so difficult: you have to intercept and
handle HttpApplication events and provide your own custom code in response. This
approach could lead to some interesting personalization, using a clean and central-
ized solution.

 Even though the code presented in this example is simple, you can add your own
rules to validate the current request authentication, and consequently authorize the
response based on your needs. You can get even more creative in your use of HttpMod-
ules, as you’ll see in the next example in which we’ll intercept and handle a mobile-
device-specific skin.

TECHNIQUE 91Intercepting and handling mobile device requests

Mobile devices are extremely popular today, but
they require a special kind of UI. They have smaller
screens, less power, and different screen resolutions
than other devices. They can also have different
screen orientations: square screen, portrait, or land-
scape. They need special treatment to use a website
to its maximum potential. This example addresses
this problem with a solution applied in the heart of
the application.

PROBLEM

We want to write a custom action to intercept and
manage requests coming from mobile devices.
We’re going to apply a specific master page
because we don’t want to let non-mobile users navi-
gate in our specific low-band version; we want to
reserve it for the exclusive use of mobile users.

SOLUTION

The solution is simple and is based partially on
browser capabilities (see section 7.2). The magic
behind this script is in how ASP.NET intercepts and
handles our request. The result will be similar to
the screenshot shown in figure 15.2.

TECHNIQUE 91

Figure 15.2 The website, as it will be 
displayed in its mobile-specific layout. 
By using a specific version for specific 
devices, you’ll achieve better usability.

http://mng.bz/cuH6
http://mng.bz/cuH6
http://mng.bz/cuH6


401TECHNIQUE 91 Intercepting and handling mobile device requests

 Let’s suppose that we have the browser definitions updated (or a custom provider
in place); all we need to do is check the IsMobileDevice property of the Http-
BrowserCapabilities instance, which we can access through HttpRequest.

 To indicate that a mobile version is running, we’re injecting a special value into
HttpContext.Items so that we can access it later in our controls. Listing 15.2 contains
the code that will help us identify mobile requests and produce the corresponding
output in the inner components (for example, it will change the page size for lists or
simply provide less content for some specific views).

C#:
public void Init(HttpApplication context)
{
  context.PreRequestHandlerExecute += new EventHandler(CheckMobileRequest);
}

void CheckMobileRequest(object sender, EventArgs e)
{
  HttpApplication app = sender as HttpApplication;

  if (app.Request.Browser.IsMobileDevice)              
  {
    app.Context.Items["isMobile"] = true;
    ModifyMasterPage(app);
  }
}

private void ModifyMasterPage(HttpApplication app)
{
  if (app.Context.Handler is Page)                       
  {
    ((Page)app.Context.Handler).PreInit += 
                      new EventHandler(ApplyMasterPage);
  }
}

private void ApplyMasterPage(object sender, EventArgs e)
{
  ((Page)sender).MasterPageFile = "~/Masters/Mobile.master";    
}

VB:
Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
  AddHandler context.PreRequestHandlerExecute, AddressOf CheckMobileRequest
End Sub

Private Sub CheckMobileRequest(ByVal sender As Object,
                               ByVal e As EventArgs)
  Dim app As HttpApplication = TryCast(sender, HttpApplication)

  If app.Request.Browser.IsMobileDevice Then             
    app.Context.Items("isMobile") = True
    ModifyMasterPage(app)
  End If
End Sub

Private Sub ModifyMasterPage(ByVal app As HttpApplication)
  If TypeOf app.Context.Handler Is Page Then                  

Listing 15.2 A custom HttpModule to handle mobile devices

For mobiles 
only

Check for page 
request

Change 
to mobile

For mobiles 
only

Check for 
page request



402 CHAPTER 15 Extreme ASP.NET 4.0

    AddHandler DirectCast(app.Context.Handler, Page).PreInit,
               AddressOf ApplyMasterPage
  End If
End Sub

Private Sub ApplyMasterPage(ByVal sender As Object, ByVal e As EventArgs)
  DirectCast(sender, Page).MasterPageFile = 
                          "~/Masters/Mobile.master"        
End Sub

The code is simple and consists of a series of checks that ensure that we’re modifying
only requests directed to pages and only those made by mobile devices. The result will
look similar to figure 15.2.

DISCUSSION

Instead of a classic example based on HttpApplication events, this one is the best way
to demonstrate the potential offered by HttpModules: you can change every single
aspect of the pipeline and plug your code where it’s functional for your needs.

 The important technique shown in this example is the ability to, from a central
point, add an event handler for every page requested. You can do this by using the
Handler property of HttpContext, which contains the current handler assigned to the
response. The remaining code is self-explanatory: we changed the master page to
Mobile.master, which is how the magic of changing the layout occurs.

 We created three master pages: one to act as a master for the others (Main.master),
one for the normal version (Full.master), and one for the mobile one (Mobile.
master). Pages will reference only Full.master, which is based on Main.master (nested
master pages are fully supported); this module will change—on the fly—the value of the
Page.MasterPageFile property to the corresponding path for our mobile-enabled mas-
ter page.

 The result is truly amazing because it clearly shows you the potential of HttpMod-
ules. You might arrive at a similar result using a base common class for pages, but the
approach we’ve described here is more versatile because you can apply your own rules
to existing applications, or you can apply them granularly to a specific set of pages. All
this is possible because you can easily plug HttpModules into the pipeline.

 The next part is dedicated to another important topic: how to deal with errors, log
them, and handle them properly.

15.2 Logging and handling errors
Logging exceptions is important for controlling your applications when they’re
deployed. You can opt for your own way of storing this information, using a variation of
the code shown in listing 15.1 and intercepting the Error event of HttpApplication,
or by using one of the libraries available on the market. Both solutions have their own
pros and cons: writing your own code is probably a win/win situation if you don’t want
to include references to gigantic libraries in order to use only a small portion of their
features; using third-part code lets you implement the task in less time.

 No matter which method you choose, handling errors the right way is crucial from
a security point of view: the less your attacker can see, the more secure your application

Change 
to mobile



403TECHNIQUE 92 Intercepting, and handling errors with a custom module

is. In this section, you’ll learn how to protect your errors from others’ eyes, and, at the
same time, log them for tracing purposes.

15.2.1 Error logging with Enterprise Library and log4net

If you decide to use custom libraries to handle logs, you’ll probably choose between
Microsoft Enterprise Library and Apache Software Foundation’s (ASF) log4net.

 Microsoft Enterprise Library (at the time we were writing this book) is available in
version 5.0 at http://www.mng.bz/T85o. This library is free and contains a lot of func-
tionalities, of which logging is only a small part. It’s widely used among enterprise
applications; even though it’s not part of the .NET Framework BCL, developers tend to
trust external class libraries that come from Microsoft. log4net is a project from
Apache Software Foundation and is available under the Apache License at http://
www.mng.bz/0OX6. Both libraries provide great flexibility: you can log information
(and errors) to a file, a database, a message queue, the event log, or just generate an
email. If you’re trying to choose between the two, consider these points:

■ Enterprise Library has a GUI tool for configuring its Logging Application Block
■ log4net supports hierarchical log maintenance

The choice is based mainly on features you need to address because, from a perfor-
mance point of view, they’re similar. Enterprise Library is often used because of its
capabilities. If you’re using it already in your project (for example, because you’re
using the Cache Application Block), it might seem familiar to you; in this case, using
the Enterprise Library is the right choice because you already have a dependency on
the main library. On the other hand, log4net is preferred by developers who are
searching for a simple and complete library to perform this task, and nothing more.

 If you prefer to write code, and your logging needs are relative only to exceptions,
you’ll probably find it easier to handle errors and store this information with your own
custom code.

TECHNIQUE 92Intercepting, and handling errors with a custom module

Exposing errors to end users isn’t a good idea, from both a usability and a security point
of view. Error handling implemented the right way will help administrators to inspect
the complete error, and will provide the casual user with a more useful courtesy page.

PROBLEM

You want to avoid full error disclosure to normal users but display the full error to
administrators. Your application will be secure, and administrators will be able to
inspect errors, without accessing the error logging tool, while they’re running the
page that caused the error. You also want to provide an entry point to add more pow-
erful exception logging capabilities in the future.

SOLUTION

As we discussed in chapter 4 when we talked about security, it’s important not to show
sensitive information to users: you should always consider errors to be dangerous.
ASP.NET gives you control over errors, letting you choose from three options:

TECHNIQUE 92

http://www.mng.bz/T85o
http://www.mng.bz/0OX6
http://www.mng.bz/0OX6


404 CHAPTER 15 Extreme ASP.NET 4.0

■ Always show errors
■ Never show errors
■ Show errors only when the request is coming from the same machine that’s run-

ning the application

Following code comes from a typical web.config and demonstrates each of these options:

<configuration>
  <system.web>
    <customErrors mode="On|Off|RemoteOnly" 
                  defaultRedirect="CustomPage.htm" />
  </system.web>
</configuration>

These settings are flexible enough to cover your needs while you’re developing the
application. The reality is that when you put your application in production, you prob-
ably won’t make requests from the same machine running the page, and so you need
to be the only one accessing error details.

 HttpApplication has a useful Error event, used to intercept exceptions that aren’t
blocked at a higher level, such as in a try/catch block. This event can be handled to
combine authorization and authentication from ASP.NET—you can show the error to
only a specific group of people, thanks to the Roles API that’s available on ASP.NET
(see chapter 5 for more information about the Roles API). The code is simple: you just
have to handle the event, verify user permissions given the current roles, and then
show a personalized error page—or just let ASP.NET do the magic, using the values
specified in web.config.

 We need to configure web.config to register our module, just like we did in list-
ing 15.1. When an error occurs, the exception will be handled by our event handler,
and we’ll display an error message similar to the one shown in figure 15.3.

Figure 15.3
Using our custom error 
system, we can add ad-
ditional information to 
the error page or decide 
to show the error to spe-
cific clients.



405TECHNIQUE 92 Intercepting, and handling errors with a custom module

To implement such a personalized view, we need to write a custom HttpModule like
the one shown in the following listing.

C#:
namespace ASPNET4InPractice.
{
  public class ErrorModule: IHttpModule
  {
    ...
    public void Init(HttpApplication context)
    {
      context.Error+=new EventHandler(OnError);       
    }

    void OnError(object sender, EventArgs e)
    {
      HttpApplication app = (HttpApplication)sender;
      HttpException ex = app.Server.GetLastError() as HttpException;

      if (app.User.IsInRole(AdministrativeRole))        
      {
        app.Response.Clear();
        app.Response.TrySkipIisCustomErrors = true; 
        app.Response.Write(
             string.Format("<h1>This error is only visible" +
                           " to '{0}' members.</h1>", AdministrativeRole));
        app.Response.Write(ex.GetHtmlErrorMessage());
        app.Context.ApplicationInstance.CompleteRequest();      }
    }
  }
}

VB:
Namespace ASPNET4InPractice
  Public Class ErrorModule
    Implements IHttpModule
    ...
    Public Sub Init(ByVal context As HttpApplication)

➥        Implements IHttpModule.Init
      AddHandler context.Error, AddressOf OnError     
    End Sub

    Private Sub OnError(ByVal sender As Object, ByVal e As EventArgs)
      Dim app As HttpApplication = DirectCast(sender, HttpApplication)
      Dim ex As HttpException = TryCast(app.Server.GetLastError(),
                                        HttpException)

      If app.User.IsInRole(AdministrativeRole) Then         
        app.Response.Clear()
        app.Response.TrySkipIisCustomErrors = True

        app.Response.Write(String.Format("<h1>This error is only visible" &
                            " to '{0}' members.</h1>", AdministrativeRole))
        app.Response.Write(ex.GetHtmlErrorMessage())
        app.Context.ApplicationInstance.CompleteRequest()      End If

Listing 15.3 A custom error logging module

Register for Error event 
on HttpApplication

Display error 
details

Register for Error event 
on HttpApplication

Display error 
details



406 CHAPTER 15 Extreme ASP.NET 4.0

    End Sub
  End Class
End Namespace

You can easily adapt this code to integrate more logging instrumentations, like form
variables or application status. To register the module, you have to place this configu-
ration in your web.config:

<configuration>
  <appSettings>
    <add key="admnistrativeRole" value="admin"/>
  </appSettings>
  <system.web>
    <httpModules>
      <add name="CustomErrorModule"
           type="ASPNET4InPractice.Chapter15.ErrorModule, App_Code"/>
    </httpModules>

    <customErrors mode="On" defaultRedirect="ErrorPage.htm" />
  </system.web>
</configuration>

Use the TrySkipIisCustomErrors property from the HttpResponse class to modify the
default behavior of IIS 7.x when you’re dealing with custom errors. By default, IIS 7
bypasses local error handling and, instead, uses the configuration applied in the
system.webServer section. By setting this property, you can control IIS 7.x behavior,
too; the behavior of IIS 6.0 isn’t affected by this change.

DISCUSSION

HttpModules enable global event handling and are useful whenever you have that kind
of situation. This approach is simple, centralized, open to additional improvements,
and shows you how easy it is to tweak ASP.NET behavior and avoid security concerns at
the same time. You can handle error logging with many different approaches, as well as
with the libraries we mentioned earlier. The methods we’ve described here are a start-
ing point. The main thing to keep in mind no matter how you decide to deal with the
problem is that the less an attacker sees, the better your application security is.

 Our journey through ASP.NET advanced techniques will continue now with a topic
that’s bound to be of interest to you: how to extend ASP.NET HttpRuntime and gain
more control over ASP.NET page compilation.

Sending error message details via email
If you want to send every error via email, the Error event handler is the right place
to add your code. You can use the MailMessage class from System.Net.Mail to
compose a notification email and send it to your address. If you want to use some-
thing already available, take a look at Health Monitoring in the MSDN documentation
at http://www.mng.bz/8p51. If you want to store the error log in a database table or
in a file, see the corresponding topics in chapters 2 and 3.

http://www.mng.bz/8p51


407TECHNIQUE 93 Running your site from the database

15.3 Extending ASP.NET HttpRuntime
ASP.NET HttpRuntime provides great flexibility. If you need to tweak something
related to ASP.NET, you’ll probably end up with HttpRuntime. Both HttpHandlers and
HttpModules are considered part of HttpRuntime, but you can leverage other things to
modify ASP.NET.

 VirtualPathProvider is a feature that was introduced with ASP.NET 2.0. You can
use it to dynamically load resources from a source that’s different from that of the file-
system and to build them as if they were normal resources. VirtualPathProvider is
intended for browsable resources (.aspx, .ascx, master pages, and themes). If you want
to virtualize other kinds of resources, you need to implement a BuildProvider.

 VirtualPathProvider must be registered at application startup, usually in the
AppInitialize static method with global.asax or in the constructor of an HttpModule.
Unfortunately, VirtualPathProvider won’t work with a precompiled web site, unless
you try some of the hacks that use reflection to invoke a private method. That scenario
isn’t tested, so try it at your own risk.

TECHNIQUE 93Running your site from the database

Running your code from the database is easy using VirtualPathProvider. You can
define special kinds of requests to be served from a database, so maintenance will be
simpler and won’t require FTP access. Microsoft Office SharePoint Server (MOSS) is
built on that assumption, so you’ll probably find this technique useful in your proj-
ects, too.

PROBLEM

Saving the page source on disk is feasible for many of the situations you’ll face. But in
some cases, you might need to store it at other locations, such as a database, without
any loss of features. This solution might be useful when you have multiple servers and
you need to keep the source in sync among different servers, without using network
shares or something similar.

SOLUTION

VirtualPathProvider is built on top of three fundamental classes that come from the
System.Web.Hosting namespace:

■ VirtualPathProvider—Used as a base class for the implementation
■ VirtualDirectory—Represents a directory
■ VirtualFile—Represents a file

NOTE Custom implementations for the VirtualPathProvider, Virtual-
Directory, and VirtualFile classes need to run under full trust permissions.
If you’re using another trust level, you can’t run this example. For more infor-
mation on trust levels, see http://mng.bz/cuH6.

First of all, we need to implement a new class that derives from VirtualPathProvider
and overrides the FileExists and DirectoryExists methods. These methods are

TECHNIQUE 93

http://mng.bz/cuH6


408 CHAPTER 15 Extreme ASP.NET 4.0

used to determine whether the requested file or directory exists. The GetFile and
GetDirectory methods are implemented to serve an instance of VirtualFile and
VirtualDirectory, respectively. These classes represent the files and directories, and
you use them even with normal files and directories coming from the filesystem. You’ll
get the same experience, but your code will be loaded from the database. The differ-
ence in this scenario is that we need to implement these classes to represent our con-
cepts of both directories and files.

 Our custom VirtualDirectory implementation isn’t difficult: we simply need to
implement a class similar to the one shown in the following listing.

C#:
namespace ASPNET4InPractice
{
  public class DatabaseDirectory : VirtualDirectory
  {
    private List<string> _directories = new List<string>();
    private List<string> _files = new List<string>();
    private List<string> _children = new List<string>();

    public DatabaseDirectory(string virtualPath): base(virtualPath) {}

    public override IEnumerable Children
    {
      get
      {
        return _children;
      }
    }

    public override IEnumerable Directories             
    {
      get
      {
        return _directories;
      }
    }

    public override IEnumerable Files             
    {
      get
      {
        return _files;
      }
    }
  }
}

VB:
Namespace ASPNET4InPractice
  Public Class DatabaseDirectory
    Inherits VirtualDirectory
    Private _directories As New List(Of String)()

Listing 15.4 Our VirtualDirectory implementation

Directories 
in path

Files in 
path



409TECHNIQUE 93 Running your site from the database

    Private _files As New List(Of String)()
    Private _children As New List(Of String)()

    Public Sub New(ByVal virtualPath As String)
      MyBase.New(virtualPath)
    End Sub

    Public Overloads Overrides ReadOnly Property Children() As IEnumerable
      Get
        Return _children
      End Get
    End Property

    Public Overloads Overrides ReadOnly Property Directories()

➥        As IEnumerable                                  
      Get
        Return _directories
      End Get
    End Property

    Public Overloads Overrides ReadOnly Property Files()

➥        As IEnumerable                                  
      Get
        Return _files
      End Get
    End Property
  End Class
End Namespace

A VirtualFile implementation is more difficult to pull off because we need to get the
file content from the database. We’ll use a table like the one in figure 15.4 to repre-
sent our virtual filesystem. We’ll use Entity Framework to map our table to an object
model and query it using LINQ extensions methods.

Directories 
in path

Files in 
path

Figure 15.4 The database model used to represent our virtual filesystem is simple and consists of three 
columns to identify the page path, its content, and the last modified date.



410 CHAPTER 15 Extreme ASP.NET 4.0

The core of this system is shown in the following listing, which contains a snippet from
the VirtualFile implementation details.

C#:
namespace ASPNET4InPractice
{
  public class DatabaseFile : VirtualFile
  {
    public DatabaseFile(string virtualPath) : base(virtualPath) { }

    public override Stream Open()
    {
      // get file contents and write to the stream
      string fileContents = Utility.GetFileContents(
             VirtualPathUtility.ToAppRelative(VirtualPath));   

      Stream stream = new MemoryStream();
      if (!string.IsNullOrEmpty(fileContents))
      {
        StreamWriter writer = new StreamWriter(stream);     
        writer.Write(fileContents);
        writer.Flush();
        stream.Seek(0, SeekOrigin.Begin);
      }
      return stream;
    }
  }
}

VB:
Namespace ASPNET4InPractice
    Public Class DatabaseFile
        Inherits VirtualFile
        Public Sub New(ByVal virtualPath As String)
            MyBase.New(virtualPath)
        End Sub

        Public Overloads Overrides Function Open() As Stream
            ' get file contents and write to the stream
            Dim fileContents As String = Utility.GetFileContents(
                VirtualPathUtility.ToAppRelative(VirtualPath))  

            Dim stream As Stream = New MemoryStream()
            If Not String.IsNullOrEmpty(fileContents) Then
                Dim writer As New StreamWriter(stream)      
                writer.Write(fileContents)
                writer.Flush()
                stream.Seek(0, SeekOrigin.Begin)
            End If
            Return stream
        End Function
    End Class
End Namespace

Listing 15.5 VirtualFile implementation to load content from a database

Retrieve file 
contents

Read content 
in memory

Retrieve file 
contents

Read content 
in memory



411TECHNIQUE 93 Running your site from the database

To check whether a file is modified, we’ll add a new method that contains this code:

C#:
public byte[] LastModifiedTimeStamp
{
  get
  {
    return Utility.GetLastModifiedTimeStamp(
                 VirtualPathUtility.ToAppRelative(VirtualPath));
  }
}

VB:
Public ReadOnly Property LastModifiedTimeStamp() As Byte()
  Get
    Return Utility.GetLastModifiedTimeStamp(
           VirtualPathUtility.ToAppRelative(VirtualPath))
  End Get
End Property

The last thing to implement is the real VirtualPathProvider custom class. We need
to derive from this class and override a couple of methods:

■ GetCacheDependency and GetFileHash—Implemented to provide a custom
mechanism for cache dependency. ASP.NET uses a simple method to determine
whether a given resource needs to be recompiled or the current one can be
used. Our custom implementation has no CacheDependency but does provide a
custom-computed HashCode, using a timestamp column in the database

■ FileExists and DirectoryExists—These methods are used to determine
whether a file or directory exists. For directories, we simply return true if the
path is inside our scope. For files, we check the existence of the virtual path
using our Entity Framework model.

■ GetFile and GetDirectory—Get the corresponding VirtualFile and Virtu-
alDirectory custom implementations, which are included in the download-
able code.

The code in the following listing contains the main methods used to retrieve the file
and directory content.

C#:
namespace ASPNET4InPractice
{
  public class DatabasePathProvider : VirtualPathProvider
  {
    public DatabasePathProvider() : base()
    {

    public override VirtualFile GetFile(string virtualPath)
    {
      if (IsVirtualPath(virtualPath))
        return new DatabaseFile(virtualPath);               

Listing 15.6 The VirtualPathProvider implementation

Load content 
from database



412 CHAPTER 15 Extreme ASP.NET 4.0

      else
        return Previous.GetFile(virtualPath);     
    }

    public override VirtualDirectory GetDirectory(string virtualDir)
    {
      if (IsVirtualPath(virtualDir))
        return new DatabaseDirectory(virtualDir);           
      else
        return Previous.GetDirectory(virtualDir);   
    }

  }
}

VB:
Namespace ASPNET4InPractice
  Public Class DatabasePathProvider
    Inherits VirtualPathProvider
    Public Sub New()
      MyBase.New()
    End Sub

    Public Overloads Overrides Function GetFile(
         ByVal virtualPath As String) As VirtualFile
      If IsVirtualPath(virtualPath) Then
        Return New DatabaseFile(virtualPath)              
      Else
        Return Previous.GetFile(virtualPath)    
      End If
    End Function

    Public Overloads Overrides Function GetDirectory(
         ByVal virtualDir As String) As VirtualDirectory
      If IsVirtualPath(virtualDir) Then
        Return New DatabaseDirectory(virtualDir)         
        Return Previous.GetDirectory(virtualDir)     
      End If
    End Function
  End Class
End Namespace

To verify that a file or directory exists, you have to implement the FileExists and
DirectoryExists methods. The VirtualPathUtility.ToAppRelative method is
used to convert the absolute path to an application-relative one (for example, /
myroot/Virtual/test2.aspx to ~/Virtual/test2.aspx), as in the following listing.

C#:
public override bool FileExists(string virtualPath)
{
  if (IsVirtualPath(virtualPath) &&
        Utility.FileExists(
                        VirtualPathUtility.ToAppRelative(virtualPath)))
    return true;

Listing 15.7 FileExists and DirectoryExists implementation

Use previous 
provider

Load content 
from database

Use previous 
provider

Load content 
from database

Use previous 
provider

Load content 
from database

Use previous 
provider



413TECHNIQUE 93 Running your site from the database

  return Previous.FileExists(virtualPath);
}

public override bool DirectoryExists(string virtualDir)
{
  if (IsVirtualPath(virtualDir))
    return true;

  return Previous.DirectoryExists(virtualDir);
}

VB:
 Private Function IsVirtualPath(ByVal virtualPath As String) As Boolean
      Return VirtualPathUtility.ToAppRelative(virtualPath).
                             StartsWith(Utility.BasePath, 
                               StringComparison.InvariantCultureIgnoreCase)
    End Function

Public Overloads Overrides Function FileExists(
                 ByVal virtualPath As String) As Boolean
      If IsVirtualPath(virtualPath) AndAlso
          Utility.FileExists(VirtualPathUtility.ToAppRelative(virtualPath))
      Then
        Return True
      End If

      Return Previous.FileExists(virtualPath)
    End Function

    Public Overloads Overrides Function DirectoryExists(
                 ByVal virtualDir As String) As Boolean
      If IsVirtualPath(virtualDir) Then
        Return True
      End If

      Return Previous.DirectoryExists(virtualDir)
    End Function

Last, but not least, to avoid performance loss, you must cache the compilation. Vir-
tualPathProvider has two methods that control caching behavior, as implemented in
the following listing.

C#:
public override CacheDependency GetCacheDependency(string virtualPath,
                IEnumerable virtualPathDependencies, DateTime utcStart)
{
  if (IsVirtualPath(virtualPath))
    return null;

  return base.GetCacheDependency(virtualPath, 
                     virtualPathDependencies, utcStart);    
}

public override string GetFileHash(string virtualPath, 
         IEnumerable virtualPathDependencies)                 

Listing 15.8 Controlling page compilation in VirtualPathProvider

Implementation 
default

Invalidate 
compilation



414 CHAPTER 15 Extreme ASP.NET 4.0

{
  HashCodeCombiner hashCodeCombiner = new HashCodeCombiner();

  List<string> unrecognizedDependencies = new List<string>();

  foreach (string virtualDependency in virtualPathDependencies)
  {
    if (IsVirtualPath(virtualDependency))
    {
      DatabaseFile file = (DatabaseFile)GetFile(virtualDependency);
      hashCodeCombiner.AddObject(file.LastModifiedTimeStamp);
    }
    else
    {
      unrecognizedDependencies.Add(virtualDependency);
    }
  }

  string result = hashCodeCombiner.CombinedHashString;

  if (unrecognizedDependencies.Count > 0)
  {
    result += Previous.GetFileHash(virtualPath, unrecognizedDependencies);
  }

  return result;
}

VB:
Public Overloads Overrides Function GetCacheDependency(
                                      ByVal virtualPath As String,
                     ByVal virtualPathDependencies As IEnumerable,
                     ByVal utcStart As DateTime) As CacheDependency
  If IsVirtualPath(virtualPath) Then
    Return Nothing
  End If

  Return MyBase.GetCacheDependency(
                      virtualPath,
                      virtualPathDependencies,
                      utcStart)                          
End Function

Public Overloads Overrides Function GetFileHash(
                                           ByVal virtualPath As String, 
                ByVal virtualPathDependencies As IEnumerable) As String
  Dim hashCodeCombiner As New HashCodeCombiner()              

  Dim unrecognizedDependencies As New List(Of String)()

  For Each virtualDependency As String In virtualPathDependencies
    If IsVirtualPath(virtualDependency) Then
      Dim file As DatabaseFile = DirectCast(
                       GetFile(virtualDependency), DatabaseFile)
      hashCodeCombiner.AddObject(file.LastModifiedTimeStamp)
    Else
      unrecognizedDependencies.Add(virtualDependency)
    End If
  Next

  Dim result As String = hashCodeCombiner.CombinedHashString

Implementation 
default

Invalidate 
compilation



415Summary

  If unrecognizedDependencies.Count > 0 Then
    result += Previous.GetFileHash(virtualPath, unrecognizedDependencies)
  End If

  Return result
End Function

The code used in this solution isn’t hard to understand, but it is a bit verbose; Vir-
tualPathProvider and its relative classes are general purpose and need a lot of
plumbing code to be implemented. As we’ve shown you in this example, you don’t
need to fully implement all of them, but only the one that’s useful in your scenario.

DISCUSSION

The scenario addressed in this section provided a good lesson in how extensible ASP.NET
is. The code isn’t difficult to understand and it uses some of the inner details of HttpRun-
time. You can apply this code in multiple ways, beginning with using a different store
for the file source to enable better administration and to simplify code distribution
across load-balanced web servers. As
you can see in figure 15.5, the result will
look as if the page was stored on a disk
and then traditionally executed.

 If you plan to use this code in pro-
duction, you’ll probably need to add
some caching to improve performance
and save your database from a few
calls. We’ve attached a simple page
(admin.aspx) to let you experiment
easily by administering the virtual file-
system content.

 This example is the last one in the chapter because it deals with compilation, the
Page Parser, and the inner details of ASP.NET engine. We hope it’s useful to you and
has shown you how easily you can enhance ASP.NET to suit your needs.

15.4 Summary
This chapter contained special techniques to address specific scenarios. Remember
that ASP.NET is built for flexibility; this characteristic reflects how many incredible
things you can do by using extreme techniques.

 HttpRuntime offers the right entry points to add your own custom mechanisms to
implement simple things like intercepting (and logging) exceptions and more complex
things like modifying page behavior using an HttpModule, or implementing a Virtual-
PathProvider to load code from a database. ASP.NET is so powerful that you can literally
do anything you need to: you just have to write code and express your imagination!

 The next chapter, which is the last one in the book, will continue on this path
and introduce you to useful tips that will increase the performance of your ASP.NET
applications.

 

Figure 15.5 The resulting page is served from the 
database that was previously created. When the 
database content is changed, the new version is 
automatically used.



A
SP.NET is a massive framework that requires a large amount 
of know-how from developers. Fortunately, this book distills 
over 100 practical ASP.NET techniques from the experience of 

a team of MVPs, and puts them right at your fi ngertips. 

Th e techniques are tested and selected for their usefulness, and 
they are all presented in a simple problem-solution-discussion 
format. You’ll discover methods for key new subjects like data 
integration with Entity Framework and ASP.NET MVC. Along the 
way, you’ll also fi nd ways to make your applications fast and secure.

What’s Inside
Th e Identity Map pattern in EF 4
Use Master Pages to defi ne a common UI
Adaptive Rendering
Save user login data securely
 … and much more 

Th is book is written for developers familiar with the basics of ASP
.NET, looking to become more productive with it.

Daniele Bochicchio, Stefano Mostarda, and Marco De Sanctis are ASP
.NET MVPs and core members of ASPItalia.com, Italy ’s largest 
.NET community. Th ey are also the authors of Manning’s Entity 
Framework 4 in Action.

For access to the book’s forum and a free ebook for owners of this 
book, go to www.manning.com/ASP.NET4.0inPractice

$54.99 / Can $63.99  [INCLUDING eBOOK]

.NET DEVELOPMENT

M A N N I N G

SEE  INSERT

“Th e right book to 
  sharpen your 
  ASP.NET skills.”
—Alessandro Gallo
     Microsoft  MVP

“Easy to read, full of 
  extremely helpful 
  techniques.” 
—David Barkol, Neudesic

“A great way to learn an 
  exciting new technology.”
—Gary A. Bushey
     ShareTech Consulting

“Get up to speed in no 
  time.” 
—Nikander and Margriet 
    Bruggeman
    Lois & Clark IT Services

Bochicchio     Mostarda     De Sanctis
ASP.NET 4.0  IN PRACTICE




