

Learn PowerShell Scripting
in a Month of Lunches

by Don Jones
Jeffery Hicks

 Chapter 8

 Copyright 2018 Manning Publications

v

brief contents
PART 1 INTRODUCTION TO SCRIPTING1

1 ■ Before you begin 3

2 ■ Setting up your scripting environment 8

3 ■ WWPD: what would PowerShell do? 19

4 ■ Review: parameter binding and the PowerShell
pipeline 25

5 ■ Scripting language crash course 36

6 ■ The many forms of scripting (and which to use) 48

7 ■ Scripts and security 58

PART 2 BUILDING A POWERSHELL SCRIPT................................67

8 ■ Always design first 69

9 ■ Avoiding bugs: start with a command 80

10 ■ Building a basic function and script module 88

11 ■ Going advanced with your function 99

12 ■ Objects: the best kind of output 111

13 ■ Using all the pipelines 122

BRIEF CONTENTSvi

14 ■ Simple help: making a comment 136

15 ■ Dealing with errors 146

16 ■ Filling out a manifest 158

PART 3 GROWN-UP SCRIPTING ...169

17 ■ Changing your brain when it comes to scripting 171

18 ■ Professional-grade scripting 190

19 ■ An introduction to source control with git 202

20 ■ Pestering your script 221

21 ■ Signing your script 234

22 ■ Publishing your script 244

PART 4 ADVANCED TECHNIQUES ..253

23 ■ Squashing bugs 255

24 ■ Making script output prettier 272

25 ■ Wrapping up the .NET Framework 292

26 ■ Storing data—not in Excel! 302

27 ■ Never the end 314

69

Always design first

Before you sit down and start coding up a function or a class, you need to do some
thinking about its design. We almost constantly see toolmaking newcomers start
charging into their code, and before long they’ve made some monstrosity that’s
harder to work with than it should be. In this chapter, we’re going to lay out some of
the core PowerShell tool design principles, to help you stay on the path of Toolmak-
ing Righteousness. To be clear, all we’re doing here is building on what we laid out in
part 1 of this book. Now we’re ready to provide some more concrete examples.

8.1 Tools do one thing
As we’ve mentioned before, the Prime Directive for a PowerShell tool is that it does
one thing. You can see this in almost every single tool—that is, command—that ships
with PowerShell. Get-Service gets services. It doesn’t stop them. It doesn’t read
computer names from a text file. It doesn’t modify services. It does one thing.

 This concept is one we see newcomers violate the most. For example, we’ll see
folks build a command that has a -ComputerName parameter for accepting a remote
machine name, as well as a -FilePath parameter so that they can alternately read
computer names from a file. From PowerShell’s perspective and ours, that’s Dead
Wrong, because it means the tool is doing two things instead of just one. A correct
design to follow the paradigm would be to stick with the -ComputerName parameter
and let it accept strings (computer names) from the pipeline. You could also feed it
names from a file by using a -ComputerName (Get-Content filename.txt) paren-
thetical construct. Or define the -Computername parameter to accept input by value:

get-content filename.txt | get-serverstuff

70 CHAPTER 8 Always design first

The Get-Content command reads text files; you shouldn’t duplicate that functionality
in your command without a strong reason. Why reinvent the wheel?

 Let’s explore that antipattern for a moment. Here’s an example of using a com-
pletely fake command (meaning, don’t try this at home) in two different ways:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –FilePath ./names.txt

That approach overcomplicates the tool, making it harder to write, harder to debug,
harder to test, and harder to maintain. We’d go with this approach to provide the
exact same effect in a simpler tool:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –Computername (Get-Content ./names.txt)

Or if you were smart in making the tool...
Get-Content ./names.txt | Get-CompanyStuff

Those patterns do a much better job of mimicking how PowerShell’s own core com-
mands work. But let’s explore one more antipattern, which is “but I have the computer
names in a specially formatted file that only I know how to read.” Folks will convince
themselves that this is okay:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –FilePath ./names.dat

Recognize those? Yeah, it’s the same file-reading pattern that we just said we don’t like.
“But Get-Content can’t read my .DAT file,” the argument goes, “so I’m not duplicat-
ing functionality.” The argument misses the point: The “tools only do one thing” pat-
tern has little or nothing to do with duplicating functionality; it has everything to do
with simplicity. We’d use these patterns instead:

Specify three computer names
Get-CompanyStuff –Computername ONE,TWO,THREE

Specify a file containing computer names
Get-CompanyStuff –Computername (Get-SpecialDataFormat ./names.dat)

Or again, if you were really smart...
Get-SpecialDataFormat ./names.dat | Get-CompanyStuff

The idea here is to take that “special data-format-reading stuff” and put it into its own
standalone tool. Each tool then becomes simpler, easier to test by itself, easier to
debug and maintain, and so on. Not to overplay the hammer analogy from chapter 7,

71Tools are testable

but if we were designing hammers, none of them would have the claw end for remov-
ing nails. That’d be a separate tool.

8.2 Tools are testable
Another thing to bear in mind is that—if you’re trying to make tools like a real pro—
you’re going to want to create automated unit tests for your tools. We’ll get into how
that’s done in chapter 20; but from a design perspective, you want to make sure you’re
designing tools that are, in fact, testable.

 One way to do that is, again, to focus on tightly scoped tools that do just one thing.
The fewer pieces of functionality a tool introduces, the fewer things and permutations
you’ll have to test. The fewer logic branches within your code, the easier it will be to
thoroughly test your code using automated unit tests.

 For example, suppose you decide to design a tool that will query a bunch of
remote computers. Within that tool, you might decide to implement a check to make
sure each computer is reachable, perhaps by pinging it. That might be a bad idea. First
of all, your tool is now doing two things: querying whatever it is you’re querying, but
also pinging computers. That’s two distinct sets of functionality. The pinging part, in
particular, is likely to be code you’d use in many different tools, suggesting that it
should be its own tool. Having the pinging built into the same querying tool will make
testing harder, too, because you’ll have to explicitly write tests to make sure that the
pinging part works the way it’s supposed to.

 An alternate approach would be to write that Test-PCConnection functionality as a
distinct tool. So, if your querying tool is something like Get-Whatever, you might con-
coct a pattern like this:

Get-Content computernames.txt | Test-PCConnection | Get-Whatever

The idea is that Test-PCConnection would filter out whatever computers weren’t reach-
able, perhaps logging the failed ones in some fashion, so that Get-Whatever could focus
on its one job of querying something. Both tools would then become easier to inde-
pendently test, because each would have a tightly scoped set of functionality.

TIP Really, having testable tools is a side effect of having tools that only do
one thing. If you’re being careful with your tool design and creating tightly
scoped tools, you get all the benefits of more testable tools essentially for free.

You also want to avoid building functionality into your tools that will be difficult to
test. For example, you might decide to implement some error logging in a tool. That’s
great—but if that logging is going to a SQL Server database, it will be trickier to test
and make sure the logging is working as desired. Logging to a file might be easier,
because a file would be easier to check. Easier still would be to write a separate tool that
handles logging. You could then test that tool independently and use it in your other
tools. This gets back to the idea of having each tool do one thing, and one thing only,
as a good design pattern.

72 CHAPTER 8 Always design first

8.3 Tools are flexible
You want to design tools that can be used in a variety of scenarios. This often means
wiring up parameters to accept pipeline input. For example, suppose you write a tool
named Set-MachineStatus that changes some setting on a computer. You might specify
a -ComputerName parameter to accept computer names. Will it accept one computer
name, or many? Where will those computer names come from? The correct answers
are, “Always assume there will be more than one, if you can,” and “Don’t worry about
where they come from.” From a design perspective, you want to enable a variety of
approaches.

 It can help to sit down and write some examples of using your command that you
intend to work. These can become help-file examples later, but in the design stage they
can help make sure you’re designing to allow all of them. For example, you might
want to be able to support these usage patterns:

Get-Content names.txt | Set-MachineStatus
Get-ADComputer -filter * | Select -Expand Name | Set-MachineStatus
Get-ADComputer -filter * | Set-MachineStatus
Set-MachineStatus -ComputerName (Get-Content names.txt)

That third example will require some careful design, because you’re not going to
be able to pipe an AD computer object to the same -ComputerName parameter that
also accepts a String object from Get-Content! You may have identified a need for
two parameter sets, perhaps one using -ComputerName <string[]> and another
using -InputObject <ADComputer>, to accommodate both scenarios. Now, creating
two parameter sets will make the coding, and the automated unit testing, a bit
harder—so you’ll need to decide whether the tradeoff is worth it. Will that third
example be used so frequently that it justifies the extra coding and test development?
Or will it be a rare enough scenario that you can exclude it and instead rely on the
similar second example?

 The point is that every design decision you make will have downstream impact on
your tool’s code, its unit tests, and so on. It’s worth thinking about those decisions up
front, which is why it’s called the design phase!

8.4 Tools look native
Finally, be careful with tool and parameter names. We went over this in part 1, but it’s
worth repeating, because we see people get “creative” all the time. Tools should always
adopt the standard PowerShell verb-noun pattern and should only use the most appro-
priate verb from the list returned by Get-Verb. Microsoft also publishes that list online
(http://mng.bz/2vc8); the online list includes incorrect variations and explanations
that you can use to check yourself. Don’t beat yourself up too hard over fine distinctions
between approved verbs, like the difference between Get and Read. If you check out
that website, you’ll realize that Get-Content should probably be Read-Content; it’s
likely a distinction Microsoft came up with after Get-Content was already in the wild.

73For example

 We also recommend that you get in the habit of using a short prefix on your com-
mand’s noun. For example, if you work for Globomantics, Inc., then you might design
commands named Get-GloboSystemStatus rather than just Get-SystemStatus. The pre-
fix helps prevent your command name from conflicting with those written by other
people and it will make it easier to discover and identify commands and tools created
for your organization.

NOTE One reason we went on about native patterns in part 1 of this book is
that they’re so important. Don’t ever forget that the existing commands, par-
ticularly the core ones authored by the PowerShell team at Microsoft, repre-
sent their vision for how PowerShell works. Break with that vision at your
own peril!

Parameter names should also follow native PowerShell patterns. Whenever you need a
parameter, take a look at a bunch of native PowerShell commands and see what
parameter name they use for similar purposes. For example, if you needed to accept
computer names, you’d use -ComputerName (notice it’s singular!) and not some varia-
tion like “MachineName”. If you need a filename, that’s usually -FilePath or -Path
on most native commands.

8.5 For example
Before we even start thinking about design decisions, we like to review the business
requirements for a new tool. We try to translate those business requirements to usage
examples so it’s clearer to us how a tool might be used. If other stakeholders are
involved—such as the people who might consume this tool, once it’s finished—we get
them to sign off on this functional specification so that we can go into the design

The verb quandary
One area where you can get a bit wound up is in choosing the right verb for your
command name. Honestly, Microsoft probably has too many verbs to choose from,
and although we’re sure someone in the company had a clear idea of the differences
among them all, that hasn’t always been well-communicated to the PowerShell
public. For example, if you’re writing a command that will retrieve information from a
SQL Server database, is the command name Get-MyWhateverData, or is it Read-
MyWhateverData? The company offers some guidance, stating, “The Get verb is used
to retrieve a resource, such as a file. The Read verb is used to get information from a
source, such as a file.” This implies Get would be used to get a file, meaning an
object representing the file itself, whereas Read would be used to retrieve the contents
of the file. Except that Get-Content is a thing, so Microsoft didn’t even take its
own advice.

Our advice? Do what seems to be the most consistent with whatever’s already in
PowerShell. If you’re truly stuck, post a question in the forums at Powershell.org to
get a little feedback from experienced pros.

74 CHAPTER 8 Always design first

phase with clear, mutual expectations for the new tool. We also try to capture problem
statements that this new tool is meant to solve, because those sometimes offer a clearer
business perspective than a specification that someone else may have written.

 We have a lot of different computers deployed in our company, which have differ-
ent hardware vendors, different versions of Windows, different configurations, and so
on. When users call the help desk, it’s often difficult for the technicians to figure out
what kind of computer they’re dealing with. Users aren’t always aware of details like
model numbers, OS versions, installed RAM, and so on. We have a configuration man-
agement system the help desk can check, but it isn’t always up to date or accurate.
We’d like a tool that the help desk can use to quickly query a computer, if it’s online,
and get some key information about its OS and hardware configuration. In some
cases, we have downtime and can query that information from multiple computers
and double-check the accuracy of the configuration management system. The help
desk can update that database if it needs updating.

Be careful of context
When you start designing tools, it’s fine to make business-level problem
statements. That’s a large part of what the design is for, after all! Statements like,
“When users call the help desk, it’s often difficult for the technicians to figure out
what kind of computer they’re dealing with,” are fantastic.

Stating desired outcomes, such as when we wrote, “We’d like a tool that the help
desk can use to quickly query a computer,” is fine as well—it defines a business
need. But it’s hugely important that not every business statement be something
you try to solve with a single tool or command. You may find that you need a suite
of tools, which could be packaged as a module…but we’re getting ahead of
ourselves.

We’ve gone on at length about the need for tools to be as detached as possible
from a particular context, yet our business statement has provided a very clear
context: “We want technicians to query things.” That context leads to certain
assumptions, like, “The output needs to be human-readable,” and maybe, “Our
technicians aren’t that experienced, so a GUI will be needed for them to operate this
thing.” This is good background information, but it doesn’t mean you’re going to
solve it all with a single tool.

Our complete business statement kind of implies the creation of a tool to do the
data retrieval, and perhaps a controller script to provide the help desk with an
input/output interface. The tool doesn’t need to worry about how the technician
uses it or what the technician will see as a result; the controller can worry about
those context-specific things and use the tool under the hood to get the data.

Never lose track of the tool/controller design pattern. Get used to reading business
statements that will ultimately need tools and controllers, and understand which
elements of a business solution will be best solved by each type of script.

75For example

Taking the last part of the previous sidebar to heart would lead us to some more
detailed questions, asking for specifics about what the tool needs to query. Suppose
the answer came back as follows:

 Computer host name
 Manufacturer
 Model
 OS version and build number
 Service pack version, if any
 Installed RAM
 Processor type
 Processor socket count
 Total core count
 Free space on system drive (usually C: but not always)

That’s fine—we know we can get all that information somehow. We know we’re
going to write a tool, maybe called Get-MachineInfo, and it will probably have at
least a -ComputerName parameter that accepts one or more computer names as strings.
Thinking ahead, we might also start making notes for an Update-OrgCMDatabase com-
mand, which could consume the output of Get-MachineInfo and automatically update
the organization’s configuration management database. Nobody asked for that, but it’s
kind of implied in the business problem statements, and we can see them asking for it
once we deliver the first tool—“Hey, because the tool gets all the data, is there any way
we can have it just push that into the CM database?” We’ll keep that in mind as we
design the first tool—we want to ensure that the tool is outputting something that
could be easily consumed by another command sometime in the future.

 We’ll assume that some computers won’t respond to the query, and so we’ll design
a way to deal with that situation. We’ll also assume that we have some old versions of
Windows out there, so we’ll make sure the tool is designed to work with as old a ver-
sion of Windows as possible, as well as the latest and greatest.

 Our design usage examples might be pretty simple:

Get-MachineInfo -ComputerName CLIENT
Get-MachineInfo -ComputerName CLIENTA,CLIENTB
Get-MachineInfo -ComputerName (Get-Content names.txt)
Get-MachineInfo -ComputerName (Get-ADComputer -id CLIENTA |
➥ Select -Expand name)
Get-Content names.txt | Get-MachineInfo
Get-ADComputer -id CLIENTA | Select -Expand name | Get-MachineInfo

The second chunk of examples will all require the same design elements, whereas
the last chunk of examples will all be made possible by another set of design ele-
ments. No problem. The output of these should be pretty deterministic. That is,
given a specific set of inputs, we should get the same output, which will make this a
fairly straightforward design for which to write unit tests. Our command is only doing

76 CHAPTER 8 Always design first

one thing, and it has very few parameters, which gives us a good feeling about the
design’s tight scope.

We’d take that set of examples back to the team and ask what they think. Almost
invariably, doing so will generate questions.

How will we know if a machine fails? Will the tool keep going? Will it log that
information anyplace?

Okay—we need to evolve the design a bit. We know that we need to keep going in the
event of a failure and give the user the option to log failures to, perhaps, a text file:

Get-MachineInfo -ComputerName ONE,TWO,BUCKLE,SHOE
➥ -LogFailuresToPath errorlog.txt

Provided the team is happy with a text file as the error log, we’re good including that
in the design. If they wanted something more complicated—the option to log to a
database or to an event log—then we’d design a separate logging tool to do all of that.
For the sake of argument, though, let’s say they’re okay with the text file.

 What about older computers? We know some machines use WMI and others will
only take CIM. We thought about that, but we didn’t make it explicitly clear in the
design. And, to be fair, we could handle that situation entirely within the tool—but it
could make the tool’s performance slower if it had to repeatedly try WMI and then
CIM for each computer. It might be better to design an option so that if the techni-
cian knew one or the other would work, they could just say so. We could still fall back
automatically if we weren’t told otherwise:

Get-MachineInfo -ComputerName PC1,PC2 -Protocol WMI -ProtocolFallback

The beauty of usage examples in design
Stating usage examples as part of your tool design is a wonderful idea. For one
thing, it helps you make sure you’re not bleeding from tool design into controller
design. If your usage examples start to take up 10 sheets of paper and look
complicated, then you know you’re probably not scoping your tool’s functionality
tightly enough, and you might be looking at several tools instead of just one.

Usage examples can also become part of your eventual help file. There’s a school of
thought that you should start tool design by writing the help file. The help file can then
exist as a kind of functional specification, which you code to. Similarly, writing usage
examples can help support test-driven development (TDD), in which you write automated
tests first, to sort of specify how your tool should work, and then write the code.

Writing usage examples first can also help you avoid bad design decisions. If you’re
struggling to write all the examples you know you need, and you still keep coming up
with an overly long or overly complicated list, then you know you’re on the wrong
track entirely. It might be worth sitting down with a colleague to try and refactor the
whole project to keep it simpler.

77Your turn

We’ll plan to default -Protocol to CIM and allow either WMI or CIM to be specified.
By adding -ProtocolFallback, we’ll always try the specified protocol first, but we’ll try
the other one on a per-computer basis if the first attempt fails. If -ProtocolFallback
isn’t specified, we’ll only try the specified protocol, which will save time when the tool
runs. There’s no need at this stage to figure out how we’ll do all that; right now, we’re
just designing the thing.

 Let’s say that the team is satisfied with these additions and that we have our desired
usage examples locked down. We can now get into the coding. But before we do, why
don’t you take a stab at your own design exercise?

8.6 Your turn
If you’re working with a group, this will make a great discussion exercise. You won’t
need a computer, just a whiteboard or a pen and paper. The idea is to read through
the business requirements and come up with some usage examples that meet the
requirements. We’ll provide all the business requirements in a single statement, so
that you don’t have to “go back to the team” and gather more information.

8.6.1 Start here

Your team has come to you and asked you to design a PowerShell tool that will help
them automate a repetitive, boring task. They’re all skilled in using PowerShell, so
they just need a command or set of commands that will help automate this task.

Designing sets of commands
The forgoing discussion is great when you’re writing a command to do something
self-contained, like retrieving management information from multiple computers.
There’s a slightly different discussion, however, when you start writing sets of
commands to help manage a large system.

For example, suppose you want to write a set of commands to help manage a
customer information-tracking application. What commands might you need to write?

Start by inventorying the nouns in the system. What are the things that the system
works with? Users? Customers? Orders? Items in an order? Addresses? Write down
that list somewhere.

Next, look at each noun and decide what the system can do with it. For users, what
tasks does the system offer? Creating new ones? Removing them? Modifying
existing ones? Listing them all? Those give you your verbs—New, Remove, Set, and
Get, in this case, yielding commands like New-SystemUser, Remove-SystemUser,
Set-SystemUser, and Get-SystemUser (assuming System is a useful prefix for your
organization).

This little inventory exercise helps make sure you’re not missing any key functionality.
Having the command list doesn’t automatically mean you’re going to write all of those
commands, but it does give you a checklist to prioritize and work against.

78 CHAPTER 8 Always design first

 You’ve been lazy about changing service logon passwords. Many have been
switched over to Managed Service Accounts, so you don’t need to, but you have a lot
of services—many of which run on multiple computers in a cluster—that haven’t had
a password change in years. The native Set-Service command doesn’t do it. You’d
like a tool that will let you change the logon user account as well as the password, for a
single service, on one or more machines at once. If any machine fails, you need to
know about it so you can handle it manually. Displaying onscreen and/or logging to a
text file is fine.

 This needs to run on a variety of Windows Server versions, so either WMI or
CIM will work, but usually it’s one or the other, not both. In most cases, the tech
running this won’t know if it has to be CIM or WMI, so the tool will need to han-
dle it. CIM is probably more common right now, but you know you’ve got old
WMI-only machines, too.

 You don’t usually need to script this, so the password can be provided in clear text
on the command line as a parameter. You’d like the command to output something
no matter what happens—such as the name of each computer and whether it suc-
ceeded, the service it was changing, and the logon account the service is now using
(whether that was changed or not). You’ll usually want that output either onscreen, in
a simple HTML report, or in a CSV file you can load into Microsoft Excel.

8.6.2 Your task

Your job is to design the tool that will meet the team’s business requirements. You are
not writing any code at this point. When creating a new tool, you have to consider who
will use the tool, how they might use it, and their expectations. And the user might be
you! The end result of your design will be a list of command usage examples (like
those we’ve shown you), which should illustrate how each of the team’s business needs
will be solved by the tool. It’s fine to include existing PowerShell commands in your
examples, if those commands play a role in meeting the requirements.

TRY IT NOW Stop reading here, and complete the task before resuming.

8.6.3 Our take

We’ll design the command name as Set-TMServiceLogon. The TM stands for Toolmak-
ing, because we don’t have a specific company or organizational name to use. We’ll
design the following use cases:

Set-TMServiceLogon -ServiceName LOBApp
 -NewPassword "P@ssw0rd"
 -ComputerName SERVER1,SERVER2
 -ErrorLogFilePath failed.txt
 -Verbose

Our intent is that -Verbose will generate onscreen warnings about failures, and -Error-
LogFilePath will write failed computer names to a file. Notice that, to make this

79Your turn

specification easier to read, we’ve put each parameter on its own line. The command
won’t execute exactly like that, but that’s fine—clarity is the idea at this point:

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -NewUser "COMPANY\User"
 -ComputerName SERVER1,SERVER2

This example illustrates that -ErrorLogFilePath and -Verbose are optional, as is -New-
User; if a new user isn’t specified, we’ll leave that property alone. We also want to illus-
trate some of our flexible execution options:

Get-Content servers.txt |
➥ Set-TMServiceLogon -ServiceName TheService -NewPassword "P@ssw0rd"

This illustrates our ability to accept computer names from the pipeline. Finally

Import-CSV tochange.csv | Set-TMServiceLogon | ConvertTo-HTML

We’re illustrating two things here. First is that we can accept an imported CSV file,
assuming it has columns named ServiceName, NewPassword, ComputerName, and,
optionally, NewUser. Our output is also consumable by standard PowerShell com-
mands like ConvertTo-HTML, which also implies that Format- commands and Export-
commands will also work.

Big designs don’t mean big coding
We usually create initial designs that are all-encompassing. That doesn’t mean we
immediately sit down and start implementing the entire design. In software, there’s
a difference between vision and execution.

We’re just talking about PowerShell commands, so there’s perhaps no need to go
all philosophical on you, but this is an important point. You may have no desire right
this minute to implement error logging in your command. Fine. That doesn’t mean
you can’t plan for it to someday exist. Planning—in other words, having a vision for
your code—means you can take that into account as you write the code you do need
right away.

“You know, I have no plans to log failed computers right now, but I know I will
someday. I’ll go ahead and implement a code structure that’ll be easier to add
logging to in the future.” Your execution today, in other words, doesn’t have to be
the entire vision. You can create your vision now and then execute it in increments
as you have time and need.

