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Keeping data safe
 and ensuring performance 

This chapter covers 
■ Persisting data to disk 
■ Replicating data to other machines 
■ Dealing with system failures 
■ Redis transactions 
■ Non-transactional pipelines 
■ Diagnosing performance issues 

In the last few chapters, you’ve learned about the variety of commands available in 
Redis and how they manipulate structures, and you’ve even solved a few problems 
using Redis. This chapter will prepare you for building real software with Redis by 
showing you how to keep your data safe, even in the face of system failure, and I’ll 
point out methods that you can use to improve Redis performance while preserv­
ing data integrity.

 We’ll start by exploring the various Redis persistence options available to you 
for getting your data on disk. We’ll then talk about the use of replication to keep 
up-to-date copies of your data on additional machines for both performance and 
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data reliability. Combining replication and persistence, we’ll talk about trade-offs you 
may need to make, and we’ll walk through a few examples of choosing persistence 
and replication options to suit your needs. We’ll then talk about Redis transactions 
and pipelines, and we’ll finish out the chapter by discussing how to diagnose some 
performance issues.

 As we go through this chapter, our focus is understanding more about how Redis 
works so that we can first ensure that our data is correct, and then work toward mak­
ing our operations on the data fast. 

 To start, let’s examine how Redis stores our information on disk so that, after 
restart, it’s still there. 

4.1 Persistence options 
Within Redis, there are two different ways of persisting data to disk. One is a method 
called snapshotting that takes the data as it exists at one moment in time and writes it to 
disk. The other method is called AOF, or append-only file, and it works by copying 
incoming write commands to disk as they happen. These methods can be used 
together, separately, or not at all in some circumstances. Which to choose will depend 
on your data and your application.

 One of the primary reasons why you’d want to store in-memory data on disk is so 
that you have it later, or so that you can back it up to a remote location in the case of 
failure. Additionally, the data that’s stored in Redis may have taken a long time to 
compute, or may be in the process of computation, and you may want to have access 
to it later without having to compute it again. For some Redis uses, “computation” 
may simply involve an act of copying data from another database into Redis (as was 
the case in section 2.4), but for others, Redis could be storing aggregate analytics data 
from billions of log lines.

 Two different groups of configuration options control how Redis will write data 
to disk. All of these configuration options with example configuration values can 
be seen in the following listing. We’ll talk about them all more specifically in sec­
tions 4.1.1 and 4.1.2, but for now, we’ll just look at the options so you can get famil­
iar with them. 

Listing 4.1 Options for persistence configuration available in Redis 

save 60 1000
 
stop-writes-on-bgsave-error no
 Snapshotting 

persistence optionsrdbcompression yes 
dbfilename dump.rdb
 

appendonly no
 
appendfsync everysec
 
no-appendfsync-on-rewrite no
 
auto-aof-rewrite-percentage 100
 
auto-aof-rewrite-min-size 64mb
 

dir ./
 

Append-only file 
persistence options Shared option, 

where to store 
the snapshot or 
append-only file 
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As you saw in listing 4.1, the first few options deal with basic snapshotting, like what to 
name the snapshot on disk, how often to perform an automatic snapshot, whether to 
compress the snapshot, and whether to keep accepting writes on failure. The second 
group of options configure the AOF subsystem, telling Redis whether to use it, how 
often to sync writes to disk, whether to sync during AOF compaction, and how often to 
compact the AOF. In the next section, we’ll talk about using snapshots to keep our 
data safe. 

4.1.1 Persisting to disk with snapshots 

In Redis, we can create a point-in-time copy of in-memory data by creating a snapshot. 
After creation, these snapshots can be backed up, copied to other servers to create a 
clone of the server, or left for a future restart. 

 On the configuration side of things, snapshots are written to the file referenced 
as dbfilename in the configuration, and stored in the path referenced as dir. Until 
the next snapshot is performed, data written to Redis since the last snapshot started 
(and completed) would be lost if there were a crash caused by Redis, the system, or 
the hardware.

 As an example, say that we have Redis running with 10 gigabytes of data currently 
in memory. A previous snapshot had been started at 2:35 p.m. and had finished. Now 
a snapshot is started at 3:06 p.m., and 35 keys are updated before the snapshot com­
pletes at 3:08 p.m. If some part of the system were to crash and prevent Redis from 
completing its snapshot operation between 3:06 p.m. and 3:08 p.m., any data written 
between 2:35 p.m. and now would be lost. But if the system were to crash just after the 
snapshot had completed, then only the updates to those 35 keys would be lost.

 There are five methods to initiate a snapshot, which are listed as follows: 

■	 Any Redis client can initiate a snapshot by calling the BGSAVE command. On 
platforms that support BGSAVE (basically all platforms except for Windows), 
Redis will fork,1 and the child process will write the snapshot to disk while the 
parent process continues to respond to commands. 

■	 A Redis client can also initiate a snapshot by calling the SAVE command, which 
causes Redis to stop responding to any/all commands until the snapshot com­
pletes. This command isn’t commonly used, except in situations where we need 
our data on disk, and either we’re okay waiting for it to complete, or we don’t 
have enough memory for a BGSAVE. 

■	 If Redis is configured with save lines, such as save 60 10000, Redis will auto­
matically trigger a BGSAVE operation if 10,000 writes have occurred within 60 
seconds since the last successful save has started (using the configuration 
option described). When multiple save lines are present, any time one of the 
rules match, a BGSAVE is triggered. 

1	 When a process forks, the underlying operating system makes a copy of the process. On Unix and Unix-like 
systems, the copying process is optimized such that, initially, all memory is shared between the child and par­
ent processes. When either the parent or child process writes to memory, that memory will stop being shared. 
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■	 When Redis receives a request to shut down by the SHUTDOWN command, or it 
receives a standard TERM signal, Redis will perform a SAVE, blocking clients from 
performing any further commands, and then shut down. 

■	 If a Redis server connects to another Redis server and issues the SYNC command 
to begin replication, the master Redis server will start a BGSAVE operation if one 
isn’t already executing or recently completed. See section 4.2 for more informa­
tion about replication. 

When using only snapshots for saving data, you must remember that if a crash were to 
happen, you’d lose any data changed since the last snapshot. For some applications, 
this kind of loss isn’t acceptable, and you should look into using append-only file per­
sistence, as described in section 4.1.2. But if your application can live with data loss, 
snapshots can be the right answer. Let’s look at a few scenarios and how you may want 
to configure Redis to get the snapshot persistence behavior you’re looking for. 

DEVELOPMENT 

For my personal development server, I’m mostly concerned with minimizing the over­
head of snapshots. To this end, and because I generally trust my hardware, I have a 
single rule: save 900 1. The save option tells Redis that it should perform a BGSAVE 
operation based on the subsequent two values. In this case, if at least one write has 
occurred in at least 900 seconds (15 minutes) since the last BGSAVE, Redis will auto­
matically start a new BGSAVE.

 If you’re planning on using snapshots on a production server, and you’re going to 
be storing a lot of data, you’ll want to try to run a development server with the same or 
similar hardware, the same save options, a similar set of data, and a similar expected 
load. By setting up an environment equivalent to what you’ll be running in produc­
tion, you can make sure that you’re not snapshotting too often (wasting resources) or 
too infrequently (leaving yourself open for data loss). 

AGGREGATING LOGS 

In the case of aggregating log files and analysis of page views, we really only need to 
ask ourselves how much time we’re willing to lose if something crashes between 
dumps. If we’re okay with losing up to an hour of work, then we can use save 3600 1 
(there are 3600 seconds in an hour). But how might we recover if we were process­
ing logs?

 To recover from data loss, we need to know what we lost in the first place. To  
know what we lost, we need to keep a record of our progress while processing logs. 
Let’s imagine that we have a function that’s called when new logs are ready to be pro­
cessed. This function is provided with a Redis connect, a path to where log files are 
stored, and a callback that will process individual lines in the log file. With our func­
tion, we can record which file we’re working on and the file position information as 
we’re processing. A log-processing function that records this information can be seen 
in the next listing. 
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Listing 4.2 The process_logs() function that keeps progress information in Redis 

Get the current 
progress. 

This closure is 
meant primarily to 

reduce the number of 
duplicated lines later. 

This will execute any 
outstanding log updates, 
as well as actually write 
our file and line number 

updates to Redis. 

If we’re continuing 
a file, skip over the 

parts that we’ve 
already processed. 

The enumerate function 
iterates over a sequence (in 

this case lines from a file), 
and produces pairs 

consisting of a numeric 
sequence starting from 0, 

and the original data. 

def process_logs(conn, path, callback):
 
current_file, offset = conn.mget(
 

'progress:file', 'progress:position')
 

pipe = conn.pipeline()
 

def update_progress():
 
pipe.mset({
 

'progress:file': fname,
 
'progress:position': offset
 

})
 
pipe.execute()
 

for fname in sorted(os.listdir(path)):
 
if fname < current_file:
 

continue
 

inp = open(os.path.join(path, fname), 'rb')
 
if fname == current_file:
 

inp.seek(int(offset, 10))
 
else:
 

offset = 0
 

current_file = None
 

for lno, line in enumerate(inp):
 
callback(pipe, line)
 
offset = int(offset) + len(line)
 

Our function will be provided 
with a callback that will take 
a connection and a log line, 
calling methods on the 
pipeline as necessary. 

We want to update our 
file and line number 
offsets into the log file. 

Iterate over the log 
files in sorted order. 

Skip over files 
that are before 
the current file. 

Handle the log line. 

Update our 
information 
about the offset 
into the file. 

if not (lno+1) % 1000:
 Write our progress back 
update_progress()
 to Redis every 1000 lines, or 

update_progress()
 when we’re done with a file. 

inp.close()
 

By keeping a record of our progress in Redis, we can pick up with processing logs if at 
any point some part of the system crashes. And because we used MULTI/EXEC pipelines 
as introduced in chapter 3, we ensure that the dump will only include processed log 
information when it also includes progress information. 

BIG DATA 

When the amount of data that we store in Redis tends to be under a few gigabytes, 
snapshotting can be the right answer. Redis will fork, save to disk, and finish the snap­
shot faster than you can read this sentence. But as our Redis memory use grows over 
time, so does the time to perform a fork operation for the BGSAVE. In situations where 
Redis is using tens of gigabytes of memory, there isn’t a lot of free memory, or if we’re 
running on a virtual machine, letting a BGSAVE occur may cause the system to pause 
for extended periods of time, or may cause heavy use of system virtual memory, which 
could degrade Redis’s performance to the point where it’s unusable.

 This extended pausing (and how significant it is) will depend on what kind of system 
we’re running on. Real hardware, VMWare virtualization, or KVM virtualization will gen­
erally allow us to create a fork of a Redis process at roughly 10–20ms per gigabyte of 
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memory that Redis is using. If our system is running within Xen virtualization, those 
numbers can be closer to 200–300ms per gigabyte of memory used by Redis, depending 
on the Xen configuration. So if we’re using 20 gigabytes of memory with Redis, running 
BGSAVE on standard hardware will pause Redis for 200–400 milliseconds for the fork. If 
we’re using Redis inside a Xen-virtualized machine (as is the case with Amazon EC2 and 
some other cloud providers), that same fork will cause Redis to pause for 4–6 seconds. 
You need to decide for your application whether this pause is okay.

 To prevent forking from causing such issues, we may want to disable automatic sav­
ing entirely. When automatic saving is disabled, we then need to manually call BGSAVE 
(which has all of the same potential issues as before, only now we know when they will 
happen), or we can call SAVE. With SAVE, Redis does block until the save is completed, 
but because there’s no fork, there’s no fork delay. And because Redis doesn’t have to 
fight with itself for resources, the snapshot will finish faster.

 As a point of personal experience, I’ve run Redis servers that used 50 gigabytes of 
memory on machines with 68 gigabytes of memory inside a cloud provider running 
Xen virtualization. When trying to use BGSAVE with clients writing to Redis, forking 
would take 15 seconds or more, followed by 15–20 minutes for the snapshot to com­
plete. But with SAVE, the snapshot would finish in 3–5 minutes. For our use, a daily 
snapshot at 3 a.m. was sufficient, so we wrote scripts that would stop clients from try­
ing to access Redis, call SAVE, wait for the SAVE to finish, back up the resulting snap­
shot, and then signal to the clients that they could continue.

 Snapshots are great when we can deal with potentially substantial data loss in 
Redis, but for many applications, 15 minutes or an hour or more of data loss or pro­
cessing time is too much. To allow Redis to keep more up-to-date information about 
data in memory stored on disk, we can use append-only file persistence. 

4.1.2 Append-only file persistence 

In basic terms, append-only log files keep a record of data changes that occur by writ­
ing each change to the end of the file. In doing this, anyone could recover the entire 
dataset by replaying the append-only log from the beginning to the end. Redis has 
functionality that does this as well, and it’s enabled by setting the configuration option 
appendonly yes, as shown in listing 4.1. Table 4.1 shows the appendfsync options and 
how they affect file-write syncing to disk. 

FILE SYNCING When writing files to disk, at least three things occur. The first is 
writing to a buffer, and this occurs when calling file.write() or its equivalent 
in other languages. When the data is in the buffer, the operating system can 
take that data and write it to disk at some point in the future. We can optionally 
take a second step and ask the operating system to write the data provided to 
disk when it next has a chance, with file.flush(), but this is only a request. 
Because data isn’t actually on disk until the operating system writes it to disk, 
we can tell the operating system to “sync” the files to disk, which will block until 
it’s completed. When that sync is completed, we can be fairly certain that our 
data is on disk and we can read it later if the system otherwise fails. 
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Table 4.1 Sync options to use with appendfsync 

Option How often syncing will occur 

always Every write command to Redis results in a write to disk. This 
slows Redis down substantially if used. 

everysec Once per second, explicitly syncs write commands to disk. 

no Lets the operating system control syncing to disk. 

If we were to set appendfsync always, every write to Redis would result in a write to 
disk, and we can ensure minimal data loss if Redis were to crash. Unfortunately,  
because we’re writing to disk with every write to Redis, we’re limited by disk perfor­
mance, which is roughly 200 writes/second for a spinning disk, and maybe a few tens 
of thousands for an SSD (a solid-state drive). 

WARNING: SSDS AND appendfsync always You’ll want to be careful if you’re 
using SSDs with appendfsync always. Writing every change to disk as they 
happen, instead of letting the operating system group writes together as is the 
case with the other appendfsync options, has the potential to cause an 
extreme form of what is known as write amplification. By writing small amounts 
of data to the end of a file, you can reduce the lifetime of SSDs from years to 
just a few months in some cases. 

As a reasonable compromise between keeping data safe and keeping our write perfor­
mance high, we can also set appendfsync everysec. This configuration will sync the 
append-only log once every second. For most common uses, we’ll likely not find sig­
nificant performance penalties for syncing to disk every second compared to not 
using any sort of persistence. By syncing to disk every second, if the system were to 
crash, we could lose at most one second of data that had been written or updated in 
Redis. Also, in the case where the disk is unable to keep up with the write volume 
that’s happening, Redis would gracefully slow down to accommodate the maximum 
write rate of the drive.

 As you may guess, when setting appendfsync no, Redis doesn’t perform any 
explicit file syncing, leaving everything up to the operating system. There should be 
no performance penalties in this case, though if the system were to crash in one way 
or another, we’d lose an unknown and unpredictable amount of data. And if we’re 
using a hard drive that isn’t fast enough for our write load, Redis would perform 
fine until the buffers to write data to disk were filled, at which point Redis would get 
very slow as it got blocked from writing. For these reasons, I generally discourage 
the use of this configuration option, and include its description and semantics here 
for completeness.

 Append-only files are flexible, offering a variety of options to ensure that almost 
every level of paranoia can be addressed. But there’s a dark side to AOF persistence, 
and that is file size. 
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4.1.3 Rewriting/compacting append-only files 

After reading about AOF persistence, you’re probably wondering why snapshots exist 
at all. If by using append-only files we can minimize our data losses to one second (or 
essentially none at all), and minimize the time it takes to have data persisted to disk 
on a regular basis, it would seem that our choice should be clear. But the choice is  
actually not so simple: because every write to Redis causes a log of the command to be 
written to disk, the append-only log file will continuously grow. Over time, a growing 
AOF could cause your disk to run out of space, but more commonly, upon restart, 
Redis will be executing every command in the AOF in order. When handling large 
AOFs, Redis can take a very long time to start up.

 To solve the growing AOF problem, we can use BGREWRITEAOF, which will rewrite 
the AOF to be as short as possible by removing redundant commands. BGREWRITEAOF 
works similarly to the snapshotting BGSAVE: performing a fork and subsequently 
rewriting the append-only log in the child. As such, all of the same limitations with 
snapshotting performance regarding fork time, memory use, and so on still stand 
when using append-only files. But even worse, because AOFs can grow to be many 
times the size of a dump (if left uncontrolled), when the AOF is rewritten, the OS 
needs to delete the AOF, which can cause the system to hang for multiple seconds 
while it’s deleting an AOF of tens of gigabytes.

 With snapshots, we could use the save configuration option to enable the automatic 
writing of snapshots using BGSAVE. Using AOFs, there are two configuration options that 
enable automatic BGREWRITEAOF execution: auto-aof-rewrite-percentage and 
auto-aof-rewrite-min-size. Using the example values of auto-aof-rewrite­

percentage 100 and auto-aof-rewrite-min-size 64mb, when AOF is enabled, Redis 
will initiate a BGREWRITEAOF when the AOF is at least 100% larger than it was when Redis 
last finished rewriting the AOF, and when the AOF is at least 64 megabytes in size. As a 
point of configuration, if our AOF is rewriting too often, we can increase the 100 that rep­
resents 100% to something larger, though it will cause Redis to take longer to start up 
if it has been a while since a rewrite happened.

 Regardless of whether we choose append-only files or snapshots, having the data 
on disk is a great first step. But unless our data has been backed up somewhere else 
(preferably to multiple locations), we’re still leaving ourselves open to data loss. 
Whenever possible, I recommend backing up snapshots and newly rewritten append-
only files to other servers.

 By using either append-only files or snapshots, we can keep our data between sys­
tem reboots or crashes. As load increases, or requirements for data integrity become 
more stringent, we may need to look to replication to help us. 

4.2 Replication 
Over their years of scaling platforms for higher loads, engineers and administrators 
have added replication to their bag of tricks to help systems scale. Replication is a 
method by which other servers receive a continuously updated copy of the data as it’s 
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being written, so that the replicas can service read queries. In the relational database 
world, it’s not uncommon for a single master database to send writes out to multiple 
slaves, with the slaves performing all of the read queries. Redis has adopted this 
method of replication as a way of helping to scale, and this section will discuss config­
uring replication in Redis, and how Redis operates during replication.

 Though Redis may be fast, there are situations where one Redis server running 
isn’t fast enough. In particular, operations over SETs and ZSETs can involve dozens of 
SETs/ZSETs over tens of thousands or even millions of items. When we start getting 
millions of items involved, set operations can take seconds to finish, instead of milli­
seconds or microseconds. But even if single commands can complete in 10 millisec­
onds, that still limits us to 100 commands/second from a single Redis instance. 

EXAMPLE PERFORMANCE FOR SUNIONSTORE As a point to consider for the 
performance to expect from Redis, on a 2.4 GHz Intel Core 2 Duo, Redis 
will take 7–8 milliseconds to perform a SUNIONSTORE of two 10,000-item SETs 
that produces a single 20,000 item SET. 

For situations where we need to scale out read queries, or where we may need to write 
temporary data (we’ll talk about some of those in chapter 7), we can set up additional 
slave Redis servers to keep copies of our dataset. After receiving an initial copy of the 
data from the master, slaves are kept up to date in real time as clients write data to the 
master. With a master/slave setup, instead of connecting to the master for reading 
data, clients will connect to one of the slaves to read their data (typically choosing 
them in a random fashion to try to balance the load). 

 Let’s talk about configuring Redis for master/slave operation, and how Redis 
behaves during the entire process. 

4.2.1 Configuring Redis for replication 

As I mentioned in section 4.1.1, when a slave connects to the master, the master will 
start a BGSAVE operation. To configure replication on the master side of things, we 
only need to ensure that the path and filename listed under the dir and dbfilename 
configuration options shown in listing 4.1 are to a path and file that are writable by 
the Redis process.

 Though a variety of options control behavior of the slave itself, only one option is 
really necessary to enable slaving: slaveof. If we were to set slaveof host port in 
our configuration file, the Redis that’s started with that configuration will use the 
provided host and port as the master Redis server it should connect to. If we have an 
already running system, we can tell a Redis server to stop slaving, or even to slave to a 
new or different master. To connect to a new master, we can use the SLAVEOF host 
port command, or if we want to stop updating data from the master, we can use 
SLAVEOF no one.

 There’s not a lot to configuring Redis for master/slave operation, but what’s inter­
esting and useful to know is what happens to Redis when it becomes a master or slave. 
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4.2.2 Redis replication startup process 

I briefly described what happens when a slave connects—that the master starts a snap­
shot and sends that to the slave—but that’s the simple version. Table 4.2 lists all of the 
operations that occur on both the master and slave when a slave connects to a master. 

Table 4.2 What happens when a slave connects to a master 

Step Master operations Slave operations 

1 (waiting for a command) (Re-)connects to the master; issues the 
SYNC command 

2 Starts BGSAVE operation; keeps a backlog of 
all write commands sent after BGSAVE 

Serves old data (if any), or returns errors 
to commands (depending on configuration) 

3 Finishes BGSAVE; starts sending the snapshot 
to the slave; continues holding a backlog of 
write commands 

Discards all old data (if any); starts load­
ing the dump as it’s received 

4 Finishes sending the snapshot to the slave; 
starts sending the write command backlog to 
the slave 

Finishes parsing the dump; starts 
responding to commands normally again 

5 Finishes sending the backlog; starts live stream­
ing of write commands as they happen 

Finishes executing backlog of write com­
mands from the master; continues execut­
ing commands as they happen 

With the method outlined in table 4.2, Redis manages to keep up with most loads dur­
ing replication, except in cases where network bandwidth between the master and 
slave instances isn’t fast enough, or when the master doesn’t have enough memory to 
fork and keep a backlog of write commands. Though it isn’t necessary, it’s generally 
considered to be a good practice to have Redis masters only use about 50–65% of the 
memory in our system, leaving approximately 30–45% for spare memory during 
BGSAVE and command backlogs. 

 On the slave side of things, configuration is also simple. To configure the slave for 
master/slave replication, we can either set the configuration option SLAVEOF host 

port, or we can configure Redis during runtime with the SLAVEOF command. If we use 
the configuration option, Redis will initially load whatever snapshot/AOF is currently 
available (if any), and then connect to the master to start the replication process out­
lined in table 4.2. If we run the SLAVEOF command, Redis will immediately try to con­
nect to the master, and upon success, will start the replication process outlined in 
table 4.2. 

DURING SYNC, THE SLAVE FLUSHES ALL OF ITS DATA Just to make sure that we’re 
all on the same page (some users forget this the first time they try using slaves): 
when a slave initially connects to a master, any data that had been in memory 
will be lost, to be replaced by the data coming from the master. 



73 Replication 

WARNING: REDIS DOESN’T SUPPORT MASTER-MASTER REPLICATION When shown 
master/slave replication, some people get the mistaken idea that because we 
can set slaving options after startup using the SLAVEOF command, that means 
we can get what’s known as multi-master replication by setting two Redis instances 
as being SLAVEOF each other (some have even considered more than two in a 
loop). Unfortunately, this does not work. At best, our two Redis instances will use 
as much processor as they can, will be continually communicating back and 
forth, and depending on which server we connect and try to read/write data 
from/to, we may get inconsistent data or no data. 

When multiple slaves attempt to connect to Redis, one of two different scenarios can 
occur. Table 4.3 describes them. 

Table 4.3 When a slave connects to an existing master, sometimes it can reuse an existing dump file. 

When additional slaves connect Master operation 

Before step 3 in table 4.2 All slaves will receive the same dump and same backlogged 
write commands. 

On or after step 3 in table 4.2 While the master is finishing up the five steps for earlier slaves, 
a new sequence of steps 1-5 will start for the new slave(s). 

For the most part, Redis does its best to ensure that it doesn’t have to do more work 
than is necessary. In some cases, slaves may try to connect at inopportune times and 
cause the master to do more work. On the other hand, if multiple slaves connect at 
the same time, the outgoing bandwidth used to synchronize all of the slaves initially 
may cause other commands to have difficulty getting through, and could cause gen­
eral network slowdowns for other devices on the same network. 

4.2.3 Master/slave chains 

Some developers have found that when they need to replicate to more than a handful 
of slaves, some networks are unable to keep up—especially when replication is being 
performed over the internet or between data centers. Because there’s nothing partic­
ularly special about being a master or a slave in Redis, slaves can have their own slaves, 
resulting in master/slave chaining.

 Operationally, the only difference in the replication process that occurs is that if a 
slave X has its own slave Y, when slave X hits step 4 from table 4.2, slave X will discon­
nect slave Y, causing Y to reconnect and resync.

 When read load significantly outweighs write load, and when the number of reads 
pushes well beyond what a single Redis server can handle, it’s common to keep adding 
slaves to help deal with the load. As load continues to increase, we can run into situa­
tions where the single master can’t write to all of its slaves fast enough, or is over­
loaded with slaves reconnecting and resyncing. To alleviate such issues, we may want 
to set up a layer of intermediate Redis master/slave nodes that can help with replica­
tion duties similar to figure 4.1. 
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Redis master 

Slave-1 Slave-2 Slave-3 

Slave-a Slave-b Slave-c Slave-d Slave-e Slave-f Slave-g Slave-h Slave-i 

Figure 4.1 An example Redis master/slave replica tree with nine lowest-level slaves and three 
intermediate replication helper servers 

Though the example shown in figure 4.1 may not necessarily need to be in a tree 
structure, remembering and understanding that this is both possible and reasonable 
for Redis replication can help you later.

 Back in section 4.1.2, we talked about using append-only files with syncing to limit 
the opportunities for us to lose data. We could prevent data loss almost entirely 
(except for system or hard drive crashes) by syncing every write to disk, but then we 
end up limiting performance severely. If we tell Redis to sync every second, we’re able 
to get the performance we need, but we could lose up to a second of writes if bad 
things happen. But by combining replication and append-only files, we can ensure 
that data gets to disk on multiple machines.

 In order to ensure that data gets to disk on multiple machines, we must obviously 
set up a master with slaves. By configuring our slaves (and optionally our master) with 
appendonly yes and appendfsync everysec, we now have a group of machines that 
will sync to disk every second. But that’s only the first part: we must wait for the write 
to reach the slave(s) and check to make sure that the data reached disk before we 
can continue. 

4.2.4 Verifying disk writes 

Verifying that the data we wrote to the master made it to the slave is easy: we merely 
need to write a unique dummy value after our important data, and then check for it 
on the slave. But verifying that the data made it to disk is more difficult. If we wait at 
least one second, we know that our data made it to disk. But if we’re careful, we may 
be able to wait less time by checking the output of INFO for the value of 
aof_pending_bio_fsync, which will be 0 if all data that the server knows about has 
been written to disk. To automate this check, we can use the function provided in the 
next listing, which we’d call after writing our data to the master by passing both the 
master and slave connections. 
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Listing 4.3 The wait_for_sync() function 

def wait_for_sync(mconn, sconn):
 
Add the tokenidentifier = str(uuid.uuid4())
 
to the master. mconn.zadd('sync:wait', identifier, time.time())
 

while not sconn.info()['master_link_status'] != 'up':
 Wait for the slave to 
time.sleep(.001)
 sync (if necessary). 

while not sconn.zscore('sync:wait', identifier):
 Wait for the slave to 
time.sleep(.001)
 receive the data change. 

deadline = time.time() + 1.01
 
Wait up to one second. while time.time() < deadline:
 

if sconn.info()['aof_pending_bio_fsync'] == 0: 
break 

time.sleep(.001) 
Check to see if the data 
is known to be on disk. 

mconn.zrem('sync:wait', identifier) 
mconn.zremrangebyscore('sync:wait', 0, time.time()-900) 

Clean up our status and clean out older 
entries that may have been left there. 

OTHER INFORMATION FROM THE INFO COMMAND The INFO command can offer a 
wide range of information about the current status of a Redis server—memory 
used, the number of connected clients, the number of keys in each database, 
the number of commands executed since the last snapshot, and more. Gener­
ally speaking, INFO is a good source of information about the general state of 
our Redis servers, and many resources online can explain more. 

To ensure correct operation, this function will first verify that the slave is connected to 
the master. It’ll then poll the slave, looking for the value that it had added to the sync 
wait ZSET. After it has found that the value has made it to the slave, it’ll then check on 
the status of the Redis write buffer, waiting for it to either say that there are no pending 
syncs to disk (signaling that the change had made it to disk), or wait for up to one sec­
ond. We wait for one second under the assumption that after one second, the data had 
been synced to disk, but there’s so much writing to Redis that we didn’t catch when the 
data had been synced. After verifying the write to disk, we then clean up after ourselves.

 By combining replication and append-only files, we can configure Redis to be resil­
ient against system failures. 

4.3 Handling system failures 
In order to be able to handle system failures in Redis, we need to prepare ourselves 
for the failure. The reason we’ve spent so much time talking about these topics is 
because if we’re going to rely on Redis as the sole data store for our application, then 
we must ensure that we never lose any data. Unlike a traditional relational database 
that offers ACID2 guarantees, when choosing to architect on top of a Redis back end, 

2	 ACID—or atomicity, consistency, isolation, and durability—is a functional description of what a database 
must guarantee to offer reliable transactions over data. 
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we need to do a little extra work to ensure data consistency. Redis is software, and it 
runs on hardware, and even if both were designed perfectly and couldn’t fail, power 
can fail, generators can run out of fuel, and batteries can run out of power. In looking 
at what Redis offers, we spent a lot of time preparing for potential system failures. This 
section will talk about what we can do when failure does happen. 

4.3.1 Verifying snapshots and append-only files 

When confronted with system failures, we have tools to help us recover when either 
snapshotting or append-only file logging had been enabled. Redis includes two com­
mand-line applications for testing the status of a snapshot and an append-only file. 
These commands are redis-check-aof and redis-check-dump. If we run either com­
mand without arguments, we’ll see the basic help that’s provided: 

$ redis-check-aof
 
Usage: redis-check-aof [--fix] <file.aof>
 
$ redis-check-dump
 
Usage: redis-check-dump <dump.rdb>
 
$
 

If we provide --fix as an argument to redis-check-aof, the command will fix the 
file. Its method to fix an append-only file is simple: it scans through the provided AOF, 
looking for an incomplete or incorrect command. Upon finding the first bad com­
mand, it trims the file to just before that command would’ve been executed. For most 
situations, this will discard the last partial write command. 

 Unfortunately, there’s no currently supported method of repairing a corrupted 
snapshot. Though there’s the potential to discover where the first error had occurred, 
because the snapshot itself is compressed, an error partway through the dump has the 
potential to make the remaining parts of the snapshot unreadable. It’s for these rea­
sons that I’d generally recommend keeping multiple backups of important snapshots, 
and calculating the SHA1 or SHA256 hashes to verify content during restoration. 
(Modern Linux and Unix platforms will have available sha1sum and sha256sum com­
mand-line applications for generating and verifying these hashes.) 

CHECKSUMS AND HASHES Redis versions including 2.6 and later include a 
CRC64 checksum of the snapshot as part of the snapshot. The use of a CRC-
family checksum is useful to discover errors that are typical in some types of 
network transfers or disk corruption. The SHA family of cryptographic hashes 
is much better suited for discovering arbitrary errors. To the point, if we calcu­
lated the CRC64 of a file, then flipped any number of bits inside the file, we 
could later flip a subset of the last 64 bits of the file to produce the original 
checksum. There’s no currently known method for doing the same thing with 
SHA1 or SHA256. 

After we’ve verified that our backups are what we had saved before, and we’ve cor­
rected the last write to AOF as necessary, we may need to replace a Redis server. 
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4.3.2 Replacing a failed master 

When we’re running a group of Redis servers with replication and persistence, there 
may come a time when some part of our infrastructure stops working for one reason 
or another. Maybe we get a bad hard drive, maybe bad memory, or maybe the power 
just went out. Regardless of what causes the system to fail, we’ll eventually need to 
replace a Redis server. Let’s look at an example scenario involving a master, a slave, 
and needing to replace the master.

 Machine A is running a copy of Redis that’s acting as the master, and machine B is 
running a copy of Redis that’s acting as the slave. Unfortunately, machine A has just 
lost network connectivity for some reason that we haven’t yet been able to diagnose. 
But we have machine C with Redis installed that we’d like to use as the new master.

 Our plan is simple: We’ll tell machine B to produce a fresh snapshot with SAVE. 
We’ll then copy that snapshot over to machine C. After the snapshot has been copied 
into the proper path, we’ll start Redis on machine C. Finally, we’ll tell machine B to 
become a slave of machine C.3 Some example commands to make this possible on this 
hypothetical set of systems are shown in the following listing. 

Listing 4.4 An example sequence of commands for replacing a failed master node 

user@vpn-master ~:$ ssh root@machine-b.vpn
 Connect to machine B 
Last login: Wed Mar 28 15:21:06 2012 from ...
 on our VPN network. 
root@machine-b ~:$ redis-cli
 
redis 127.0.0.1:6379> SAVE Start a SAVE, and when Start up the command-
OK it’s done, QUIT so that line redis client to do a 
redis 127.0.0.1:6379> QUIT we can continue. few simple operations. 
root@machine-b ~:$ scp \
 

Copy the snapshot over to> /var/local/redis/dump.rdb machine-c.vpn:/var/local/redis/
 
the new master, machine C. 

dump.rdb 100% 525MB 8.1MB/s 01:05
 
root@machine-b ~:$ ssh machine-c.vpn
 
Last login: Tue Mar 27 12:42:31 2012 from ...
 
root@machine-c ~:$ sudo /etc/init.d/redis-server start
 
Starting Redis server...
 
root@machine-c ~:$ exit
 

Connect to the new 
master and start Redis. 

root@machine-b ~:$ redis-cli
 Tell machine B’s Redis 
redis 127.0.0.1:6379> SLAVEOF machine-c.vpn 6379
 that it should use C as 

the new master. OK
 
redis 127.0.0.1:6379> QUIT
 
root@machine-b ~:$ exit
 
user@vpn-master ~:$
 

Most of these commands should be familiar to those who have experience using and 
maintaining Unix or Linux systems. The only interesting things in the commands 
being run here are that we can initiate a SAVE on machine B by running a command, 
and we later set up machine B to be a slave of machine C by running a command.

 As an alternative to creating a new master, we may want to turn the slave into a mas­
ter and create a new slave. Either way, Redis will be able to pick up where it left off, 

Because B was originally a slave, our clients shouldn’t have been writing to B, so we won’t have any race con­
ditions with clients writing to B after the snapshot operation was started. 

3 

mailto:root@machine-b.vpn
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and our only job from then on is to update our client configuration to read and write 
to the proper servers, and optionally update the on-disk server configuration if we 
need to restart Redis. 

REDIS SENTINEL A relatively recent addition to the collection of tools avail­
able with Redis is Redis Sentinel. By the final publishing of this manuscript, 
Redis Sentinel should be complete. Generally, Redis Sentinel pays attention 
to Redis masters and the slaves of the masters and automatically handles 
failover if the master goes down. We’ll discuss Redis Sentinel in chapter 10. 

In the next section, we’ll talk about keeping our data from being corrupted by multiple 
writers working on the same data, which is a necessary step toward keeping our data safe. 

4.4 Redis transactions 
Part of keeping our data correct is understanding that when other clients are working 
on the same data, if we aren’t careful, we may end up with data corruption. In this sec­
tion, we’ll talk about using Redis transactions to prevent data corruption and, in some 
cases, to improve performance.

 Transactions in Redis are different from transactions that exist in more traditional 
relational databases. In a relational database, we can tell the database server BEGIN, at 
which point we can perform a variety of read and write operations that will be consis­
tent with respect to each other, after which we can run either COMMIT to make our 
changes permanent or ROLLBACK to discard our changes.

 Within Redis, there’s a simple method for handling a sequence of reads and writes 
that will be consistent with each other. We begin our transaction by calling the special 
command MULTI, passing our series of commands, followed by EXEC (as introduced in 
section 3.7.2). The problem is that this simple transaction doesn’t actually do anything 
until EXEC is called, which means that we can’t use data we read to make decisions until 
after we may have needed it. This may not seem important, but there’s a class of prob­
lems that become difficult to solve because of not being able to read the data in a con­
sistent fashion, or allow for transactions to fail where they should succeed (as is the case 
when we have multiple simultaneous transactions against a single object when using two-
phase commit, a common solution to the problem). One of these problems is the pro­
cess of purchasing an item from a marketplace. Let’s see an example of this in action. 

DELAYED EXECUTION WITH MULTI/EXEC CAN IMPROVE PERFORMANCE Because of 
Redis’s delaying execution of commands until EXEC is called when using MULTI/ 
EXEC, many clients (including the Python client that we’re using) will hold off 
on even sending commands until all of them are known. When all of the com­
mands are known, the client will send MULTI, followed by the series of com­
mands to be executed, and EXEC, all at the same time. The client will then wait 
until all of the replies from all of the commands are received. This method of 
sending multiple commands at once and waiting for all of the replies is gener­
ally referred to as pipelining, and has the ability to improve Redis’s performance 
when executing multiple commands by reducing the number of network round 
trips that a client needs to wait for. 
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In the last few months, Fake Game Company has seen major growth in their web-
based RPG that’s played on YouTwitFace, a fictional social network. Because it pays 
attention to the needs and desires of its community, it has determined that the players 
need the ability to buy and sell items in a marketplace. It’s our job to design and build 
a marketplace that can scale to the needs of the community. 

4.4.1 Defining users and their inventory 

We’ll start by showing some structures that define our users and their inventory. User 
information is stored as a HASH, with keys and values that store user attributes like 
name, funds, and anything else. A user’s inventory will be a SET that holds unique 
identifiers for each item, which can be seen in figure 4.2. 

name Frank 
funds 43 

users:17 hash 

ItemM 
ItemN 

ItemL 

inventory:17 set 

name Bill 
funds 125 

users:27 hash 

ItemP 
ItemQ 

ItemO 

inventory:27 set 

Figure 4.2 Example user inventory and user information. Frank has 43 e-dollars and an item 

that he’s considering selling from his inventory.
 

Our requirements for the market are simple: a user can list an item for a given price, 
and when another user purchases the item, the seller receives the money. We’ll also 
say that the part of the market we’ll be worrying about only needs to be ordered by 
selling price. In chapter 7, we’ll cover some 
topics for handling other orders.

 To include enough information to sell a 
given item in the market, we’ll concatenate the 
item ID for the item with the user ID of the 
seller and use that as a member of a market 
ZSET, with the score being the item’s selling 
price. By including all of this information 
together, we greatly simplify our data struc­

market: zset 

ItemA.4 35 
ItemC.7 48 
ItemE.2 60 
ItemG.3 73 

Items to be sold Prices of the items 
Owners of the itemstures and what we need to look up, and get the 

benefit of being able to easily paginate 
Figure 4.3 Our basic marketplace that

through a presorted market. A small version of includes an ItemA being sold by user 4 for 
the marketplace is shown in figure 4.3. 35 e-dollars 
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Now that we know what structures our marketplace uses, let’s list items in the market. 

4.4.2 Listing items in the marketplace 

In the process of listing, we’ll use a Redis operation called WATCH, which we combine 
with MULTI and EXEC, and sometimes UNWATCH or DISCARD. When we’ve watched keys 
with WATCH, if at any time some other client replaces, updates, or deletes any keys that 
we’ve WATCHed before we have performed the EXEC operation, our operations against 
Redis will fail with an error message when we try to EXEC (at which point we can retry 
or abort the operation). By using WATCH, MULTI/EXEC, and UNWATCH/DISCARD, we can 
ensure that the data that we’re working with doesn’t change while we’re doing some­
thing important, which protects us from data corruption. 

WHAT IS DISCARD? In the same way that UNWATCH will let us reset our connec­
tion if sent after WATCH but before MULTI, DISCARD will also reset the connec­
tion if sent after MULTI but before EXEC. That is to say, if we’d WATCHed a key or 
keys, fetched some data, and then started a transaction with MULTI followed 
by a group of commands, we could cancel the WATCH and clear out any 
queued commands with DISCARD. We don’t use DISCARD here, primarily 
because we know whether we want to perform a MULTI/EXEC or UNWATCH, so a 
DISCARD is unnecessary for our purposes. 

Let’s go about listing an item in the marketplace. To do so, we add the item to the 
market ZSET, while WATCHing the seller’s inventory to make sure that the item is still 
available to be sold. The function to list an item is shown here. 

Listing 4.5 The list_item() function 

def list_item(conn, itemid, sellerid, price):
 
inventory = "inventory:%s"%sellerid
 
item = "%s.%s"%(itemid, sellerid)
 
end = time.time() + 5
 
pipe = conn.pipeline()
 

Watch for changes to while time.time() < end:
 Verify that the the user’s inventory. If the item isn’t in the try:
 
user’s inventory, stop pipe.watch(inventory)
 

watching the inventory if not pipe.sismember(inventory, itemid):
 
key and return. pipe.unwatch()
 

return None
 

pipe.multi()

Actually list pipe.zadd("market:", item, price)
 

the item. pipe.srem(inventory, itemid)
 
pipe.execute()
 
return True
 

user still has the 
item to be listed. 

If execute returns without 
a WatchError being raised, 
then the transaction is 
complete and the inventory 
key is no longer watched. 

except redis.exceptions.WatchError:
 The user’s inventory 
pass
 was changed; retry. 

return False
 

After some initial setup, we’ll do what we described earlier. We’ll tell Redis that we 
want to watch the seller’s inventory, verify that the seller can still sell the item, and if 
so, add the item to the market and remove the item from their inventory. If there’s an 
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update or change to the inventory while we’re looking at it, we’ll receive an error and 
retry, as is shown by the while loop outside of our actual operation.

 Let’s look at the sequence of operations that are performed when Frank (user 17) 
wants to sell ItemM for 97 e-dollars in figure 4.4. 

watch('inventory:17') 

ItemM 
ItemN 

ItemL 

inventory:17 set 

Watch the inventory for any changes. 

sismember('inventory:17', 'ItemM') 

ItemM 
ItemN 

ItemL 

inventory:17 set 

Ensure that the item to be sold is 
still in Frank’s inventory. 

market: zset 

ItemA.4 35 
ItemC.7 48 
ItemE.2 60 
ItemG.3 73 
ItemM.17 97 

zadd('market:', 'ItemM.17', 97) 

srem('inventory:17', 'ItemM') 

set 

ItemM 
ItemN 

ItemL 

inventory:17 

Redis doesn’t have a way of 
simultaneously removing an item 
from a SET and adding it to a ZSET 
while also changing the item’s name, 
so we need to use two commands to 
perform the operation. 

Figure 4.4 list_item(conn, "ItemM", 17, 97) 

http:ItemM.17
http:ItemM.17
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Generally, listing an item should occur without any significant issue, since only the 
user should be selling their own items (which is enforced farther up the application 
stack). But as I mentioned before, if a user’s inventory were to change between the 
WATCH and EXEC, our attempt to list the item would fail, and we’d retry.

 Now that you know how to list an item, it’s time to purchase an item. 

4.4.3 Purchasing items 

To process the purchase of an item, we first WATCH the market and the user who’s buy­
ing the item. We then fetch the buyer’s total funds and the price of the item, and ver­
ify that the buyer has enough money. If they don’t have enough money, we cancel the 
transaction. If they do have enough money, we perform the transfer of money 
between the accounts, move the item into the buyer’s inventory, and remove the item 
from the market. On WATCH error, we retry for up to 10 seconds in total. We can see 
the function which handles the purchase of an item in the following listing. 

Listing 4.6 The purchase_item() function 

def purchase_item(conn, buyerid, itemid, sellerid, lprice):
 
buyer = "users:%s"%buyerid
 
seller = "users:%s"%sellerid
 
item = "%s.%s"%(itemid, sellerid)
 
inventory = "inventory:%s"%buyerid
 
end = time.time() + 10
 
pipe = conn.pipeline()
 

while time.time() < end:
 
try:
 

pipe.watch("market:", buyer)
 

price = pipe.zscore("market:", item)
 
funds = int(pipe.hget(buyer, "funds"))
 
if price != lprice or price > funds:
 

pipe.unwatch()
 
return None
 

pipe.multi()
 
pipe.hincrby(seller, "funds", int(price))
 
pipe.hincrby(buyer, "funds", int(-price))
 
pipe.sadd(inventory, itemid)
 
pipe.zrem("market:", item)
 
pipe.execute()
 
return True
 

Watch for changes to the 
market and to the buyer’s 
account information. 

Check for a sold/repriced 
item or insufficient funds. 

Transfer funds from the buyer 
to the seller, and transfer the 
item to the buyer. 

except redis.exceptions.WatchError: Retry if the buyer’s account 
pass or the market changed. 

return False 

To purchase an item, we need to spend more time preparing the data, and we need to 
watch both the market and the buyer’s information. We watch the market to ensure 
that the item can still be bought (or that we can notice that it has already been 
bought), and we watch the buyer’s information to verify that they have enough money. 
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When we’ve verified that the item is still there, and that the buyer has enough money, 
we go about actually moving the item into their inventory, as well as moving money 
from the buyer to the seller.

 After seeing the available items in the market, Bill (user 27) decides that he wants 
to buy ItemM from Frank through the marketplace. Let’s follow along to see how our 
data changes through figures 4.5 and 4.6. 

If either the market ZSET or Bill’s account information changes between our WATCH 
and our EXEC, the purchase_item() function will either retry or abort, based on how 
long it has been trying to purchase the item, as shown in listing 4.6. 

WHY DOESN’T REDIS IMPLEMENT TYPICAL LOCKING? When accessing data for 
writing (SELECT FOR UPDATE in SQL), relational databases will place a lock on 
rows that are accessed until a transaction is completed with COMMIT or ROLL­
BACK. If any other client attempts to access data for writing on any of the same 
rows, that client will be blocked until the first transaction is completed. This 
form of locking works well in practice (essentially all relational databases 
implement it), though it can result in long wait times for clients waiting to 
acquire locks on a number of rows if the lock holder is slow. 

Because there’s potential for long wait times, and because the design of Redis 
minimizes wait time for clients (except in the case of blocking LIST pops), 
Redis doesn’t lock data during WATCH. Instead, Redis will notify clients if some­
one else modified the data first, which is called optimistic locking (the actual 
locking that relational databases perform could be viewed as pessimistic). Opti­
mistic locking also works well in practice because clients are never waiting on 
the first holder of the lock; instead they retry if some other client was faster. 

Watch the market and Bill’s 
information for changes. 

Verify that the item is 
still listed for the same 
price, and that Bill still 
has enough money. price ! = 97 or price < funds? 

watch('market:', 'users:27') 

price = zscore('market', 'ItemM.17') 
funds = int(hget('users:27', 'funds')) 

market: zset 

ItemA.4 35 
ItemC.7 48 
ItemE.2 60 
ItemG.3 73 
ItemM.17 97 

name Bill 
funds 125 

users:27 hash 

Figure 4.5 Before the item can be purchased, we must watch the market and the buyer’s information 
to verify that the item is still available, and that the buyer has enough money. 
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Move the item into Bill’s inventory. Move money from Bill to Frank. 

hincbry('users:27', 'funds', -97) 

hincbry('users:17', 'funds', 97) 

zrem('market:', 'ItemM.17') 

sadd('inventory:27', 'ItemM') 

market: zset 

ItemA.4 35 
ItemC.7 48 
ItemE.2 60 
ItemG.3 73 
ItemM.17 97 

inventory:27 set 

ItemO 
ItemP 
ItemQ 
ItemM 

name Bill 
funds 28 

users:27 hash 

name Bill 
funds 140 

users:17 

125 

43 

Figure 4.6 In order to complete the item purchase, we must actually transfer money from the buyer 
to the seller, and we must remove the item from the market while adding it to the buyer’s inventory. 

In this section, we’ve discussed combining WATCH, MULTI, and EXEC to handle the 
manipulation of multiple types of data so that we can implement a marketplace. Given 
this functionality as a basis, it wouldn’t be out of the question to make our market­
place into an auction, add alternate sorting options, time out old items in the market, 
or even add higher-level searching and filtering based on techniques discussed in 
chapter 7.

 As long as we consistently use transactions in Redis, we can keep our data from 
being corrupted while being operated on by multiple clients. Let’s look at how we can 
make our operations even faster when we don’t need to worry about other clients 
altering our data. 

4.5 Non-transactional pipelines 
When we first introduced MULTI/EXEC in chapter 3, we talked about them as having a 
“transaction” property—everything between the MULTI and EXEC commands will exe­
cute without other clients being able to do anything. One benefit to using transactions 
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is the underlying library’s use of a pipeline, which improves performance. This section 
will show how to use a pipeline without a transaction to further improve performance. 

 You’ll remember from chapter 2 that some commands take multiple arguments for 
adding/updating—commands like MGET, MSET, HMGET, HMSET, RPUSH/LPUSH, SADD, ZADD, 
and others. Those commands exist to streamline calls to perform the same operation 
repeatedly. As you saw in chapter 2, this can result in significant performance 
improvements. Though not as drastic as these commands, the use of non-transac­
tional pipelines offers many of the same performance advantages, and allows us to run 
a variety of commands at the same time.

 In the case where we don’t need transactions, but where we still want to do a lot of 
work, we could still use MULTI/EXEC for their ability to send all of the commands at the 
same time to minimize round trips and latency. Unfortunately, MULTI and EXEC aren’t 
free, and can delay other important commands from executing. But we can gain all the 
benefits of pipelining without using MULTI/EXEC. When we used MULTI/EXEC in Python 
in chapter 3 and in section 4.4, you may have noticed that we did the following: 

pipe = conn.pipeline()
 

By passing True to the pipeline() method (or omitting it), we’re telling our client to 
wrap the sequence of commands that we’ll call with a MULTI/EXEC pair. If instead of 
passing True we were to pass False, we’d get an object that prepared and collected 
commands to execute similar to the transactional pipeline, only it wouldn’t be 
wrapped with MULTI/EXEC. For situations where we want to send more than one com­
mand to Redis, the result of one command doesn’t affect the input to another, and we 
don’t need them all to execute transactionally, passing False to the pipeline() 
method can further improve overall Redis performance. Let’s look at an example.

 Way back in sections 2.1 and 2.5, we wrote and updated a function called 
update_token(), which kept a record of recent items viewed and recent pages viewed, 
and kept the user’s login cookie updated. The updated code from section 2.5 is shown 
in listing 4.7. Note how the function will make three or five calls to Redis for every call 
of the function. As written, that will result in three or five round trips between Redis 
and our client. 

Listing 4.7 The update_token() function from section 2.5 

Keep a mapping from the 
token to the logged-in user. 

Record that the user 
viewed the item. 

Remove old items, 
keeping the most 

recent 25. 

Get thedef update_token(conn, token, user, item=None):
 
timestamp.timestamp = time.time()
 

conn.hset('login:', token, user)
 
conn.zadd('recent:', token, timestamp)
 Record 
if item:
 when the 

conn.zadd('viewed:' + token, item, timestamp)
 token was 
conn.zremrangebyrank('viewed:' + token, 0, -26)
 last seen. 
conn.zincrby('viewed:', item, -1)
 

Update the number 
of times the given 
item was viewed. 
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If our Redis and web servers are connected over LAN with only one or two steps, we could 
expect that the round trip between the web server and Redis would be around 1–2 mil­
liseconds. With three to five round trips between Redis and the web server, we could 
expect that it would take 3–10 milliseconds for update_token() to execute. At that 
speed, we could only expect a single web server thread to be able to handle 100–333 
requests per second. This is great, but we could do better. Let’s quickly create a non-
transactional pipeline and make all of our requests over that pipeline. You can see the 
updated function in the next listing. 

Listing 4.8 The update_token_pipeline() function 

def update_token_pipeline(conn, token, user, item=None): 
timestamp = time.time() 
pipe = conn.pipeline(False) Set up the pipeline. 
pipe.hset('login:', token, user) 
pipe.zadd('recent:', token, timestamp) 
if item: 

pipe.zadd('viewed:' + token, item, timestamp) 
pipe.zremrangebyrank('viewed:' + token, 0, -26) 
pipe.zincrby('viewed:', item, -1) 

pipe.execute() 

Execute the commands 
in the pipeline. 

By replacing our standard Redis connection with a pipelined connection, we can 
reduce our number of round trips by a factor of 3–5, and reduce the expected time to 
execute update_token_pipeline() to 1–2 milliseconds. At that speed, a single web 
server thread could handle 500–1000 requests per second if it only had to deal with 
updating item view information. Theoretically, this is great, but what about in reality?

 Let’s test both of these functions by performing a simple benchmark. We’ll test the 
number of requests that can be processed per second against a copy of Redis that’s on 
the same machine, across a fast and low-latency network connection, and across a slow 
and higher latency connection. We’ll first start with the benchmark code that we’ll use 
to test the performance of these connections. In our benchmark, we’ll call either 
update_token()or update_token_pipeline() repeatedly until we reach a prespecified 
timeout, and then calculate the number of requests we can service at a given time. The 
following listing shows the code that we’ll use to run our two update_token commands. 

Listing 4.9 The benchmark_update_token() function 

def benchmark_update_token(conn, duration):
 
for function in (update_token, update_token_pipeline):
 

count = 0
 Set up our counters 
start = time.time()
 and our ending 
end = start + duration
 conditions. 
while time.time() < end:
 

count += 1
 

Execute both the 
update_token() and the 
update_token_pipeline() 
functions. 

Call one function(conn, 'token', 'user', 'item') Calculate the duration. 

of the two delta = time.time() - start 

functions. print function.__name__, count, delta, count / delta Print information 
about the results. 
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When we run the benchmark function across a variety of connections with the given 
available bandwidth (gigabits or megabits) and latencies, we get data as shown in 
table 4.4. 

Table 4.4	 Performance of pipelined and nonpipelined connections over different types of connections. 
For high-speed connections, we’ll tend to run at the limit of what a single processor can 
perform for encoding/decoding commands in Redis. For slower connections, we’ll run at the 
limit of bandwidth and/or latency. 

Description Bandwidth Latency 
update_table() 

calls per second 

update_table_ 
pipeline() 

calls per second 

Local machine, Unix 
domain socket 

Local machine, local-
host 

Remote machine, 
shared switch 

Remote machine, con­
nected through VPN 

>1 gigabit 

>1 gigabit 

1 gigabit 

1.8 megabit 

0.015ms 

0.015ms 

0.271ms 

48ms 

3,761 

3,257 

739 

3.67 

6,394 

5,991 

2,841 

18.2 

Looking at the table, note that for high-latency connections, we can multiply perfor­
mance by a factor of five using pipelines over not using pipelines. Even with very low-
latency remote connections, we’re able to improve performance by almost four times. 
For local connections, we actually run into the single-core performance limit of 
Python sending and receiving short command sequences using the Redis protocol 
(we’ll talk about this more in section 4.6).

 You now know how to push Redis to perform better without transactions. Beyond 
using pipelines, are there any other standard ways of improving the performance of 
Redis? 

4.6 Performance considerations 
When coming from a relational database background, most users will be so happy with 
improving performance by a factor of 100 times or more by adding Redis, they won’t 
realize that they can make Redis perform even better. In the previous section, we intro­
duced non-transactional pipelines as a way to minimize the number of round trips 
between our application and Redis. But what if we’ve already built an application, and 
we know that it could perform better? How do we find ways to improve performance?

 Improving performance in Redis requires having an understanding of what to  
expect in terms of performance for the types of commands that we’re sending to 
Redis. To get a better idea of what to expect from Redis, we’ll quickly run a bench­
mark that’s included with Redis, redis-benchmark, as can be seen in listing 4.10. Feel 
free to explore redis-benchmark on your own to discover the performance character­
istics of your server and of Redis. 
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Listing 4.10 Running redis-benchmark on an Intel Core-2 Duo 2.4 GHz desktop 

$ redis-benchmark -c 1 -q
 
PING (inline): 34246.57 requests per second
 
PING: 34843.21 requests per second
 
MSET (10 keys): 24213.08 requests per second
 
SET: 32467.53 requests per second
 
GET: 33112.59 requests per second
 
INCR: 32679.74 requests per second
 
LPUSH: 33333.33 requests per second
 
LPOP: 33670.04 requests per second
 
SADD: 33222.59 requests per second
 
SPOP: 34482.76 requests per second
 

We run with the ‘-q’ option to 
get simple output and ‘-c 1’ to 
use a single client. 

LPUSH (again, in order to bench LRANGE): 33222.59 requests per second
 
LRANGE (first 100 elements): 22988.51 requests per second
 
LRANGE (first 300 elements): 13888.89 requests per second
 
LRANGE (first 450 elements): 11061.95 requests per second
 
LRANGE (first 600 elements): 9041.59 requests per second
 

The output of redis-benchmark shows a group of commands that are typically used in 
Redis, as well as the number of commands of that type that can be run in a single sec­
ond. A standard run of this benchmark without any options will try to push Redis to its 
limit using 50 clients, but it’s a lot easier to compare performance of a single bench­
mark client against one copy of our own client, rather than many.

 When looking at the output of redis-benchmark, we must be careful not to try to 
directly compare its output with how quickly our application performs. This is 
because redis-benchmark doesn’t actually process the result of the commands that it 
performs, which means that the results of some responses that require substantial 
parsing overhead aren’t taken into account. Generally, compared to redis-benchmark 
running with a single client, we can expect the Python Redis client to perform at 
roughly 50–60% of what redis-benchmark will tell us for a single client and for non­
pipelined commands, depending on the complexity of the command to call.

 If you find that your commands are running at about half of what you’d expect 
given redis-benchmark (about 25–30% of what redis-benchmark reports), or if you 
get errors reporting “Cannot assign requested address,” you may be accidentally creat­
ing a new connection for every command.

 I’ve listed some performance numbers relative to a single redis-benchmark client 
using the Python client, and have described some of the most likely causes of slow­
downs and/or errors in table 4.5. 

 This list of possible performance issues and solutions is short, but these issues 
amount to easily 95% of the performance-related problems that users report on a reg­
ular basis (aside from using Redis data structures incorrectly). If we’re experiencing 
slowdowns that we’re having difficulty in diagnosing, and we know it isn’t one of the 
problems listed in table 4.5, we should request help by one of the ways described in 
section 1.4. 

http:11061.95
http:13888.89
http:22988.51
http:33222.59
http:34482.76
http:33222.59
http:33670.04
http:33333.33
http:32679.74
http:33112.59
http:32467.53
http:24213.08
http:34843.21
http:34246.57
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Table 4.5	 A table of general performance comparisons against a single redis-benchmark client and 
what may be causing potential slowdowns 

Performance or error Likely cause Remedy 

50–60% of redis-benchmark 
for a single client 

25–30% of redis-benchmark 
for a single client 

Client error: “Cannot assign 
requested address” 

Expected performance without 
pipelining 

Connecting for every com­
mand/group of commands 

Connecting for every com­
mand/group of commands 

N/A 

Reuse your Redis connections 

Reuse your Redis connections 

Most client libraries that access Redis offer some level of connection pooling built in. 
For Python, we only need to create a single redis.Redis() for every unique Redis 
server we need to connect to (we need to create a new connection for each numbered 
database we’re using). The redis.Redis() object itself will handle creating connec­
tions as necessary, reusing existing connections, and discarding timed-out connections. 
As written, the Python client connection pooling is both thread safe and fork() safe. 

4.7 Summary 
Through this chapter, we’ve covered topics that can help keep Redis performing well 
while keeping your data secure against system failures. The first half of the chapter pri­
marily discussed the use of persistence and replication to prepare for failures and deal 
with failures. The latter half dealt with keeping your data from being corrupted, using 
pipelines to improve performance, and diagnosing potential performance problems.

 If there are two things you should take from this chapter, they are that the use of 
replication and append-only files can go a long way toward keeping your data safe, 
and that using WATCH/MULTI/EXEC can keep your data from being corrupted by multi­
ple clients working on the same data.

 Hopefully our discussion of WATCH/MULTI/EXEC introduced in chapter 3 has helped 
you to better understand how to fully utilize transactions in Redis. In chapter 6, we’ll 
revisit transactions, but now let’s move on to chapter 5, where you’ll learn more about 
using Redis to help with system administration tasks. 
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