

IN ACTION

Josiah L. Carlson
FOREWORD BY Salvatore Sanfilippo

SAMPLE CHAPTER
	

M A N N I N G

Redis in Action

by Josiah L. Carlson

Chapter 4

Copyright 2013 Manning Publications

vii

brief contents
PART 1 GETTING STARTED ..1

1 ■ Getting to know Redis 3

2 ■ Anatomy of a Redis web application 24

PART 2 CORE CONCEPTS...37

3 ■ Commands in Redis 39

4 ■ Keeping data safe and ensuring performance 63

5 ■ Using Redis for application support 90

6 ■ Application components in Redis 110

7 ■ Search-based applications 154

8 ■ Building a simple social network 185

PART 3 NEXT STEPS ...207

9 ■ Reducing memory use 209

10 ■ Scaling Redis 228

11 ■ Scripting Redis with Lua 249

Keeping data safe
 and ensuring performance

This chapter covers
■ Persisting data to disk
■ Replicating data to other machines
■ Dealing with system failures
■ Redis transactions
■ Non-transactional pipelines
■ Diagnosing performance issues

In the last few chapters, you’ve learned about the variety of commands available in
Redis and how they manipulate structures, and you’ve even solved a few problems
using Redis. This chapter will prepare you for building real software with Redis by
showing you how to keep your data safe, even in the face of system failure, and I’ll
point out methods that you can use to improve Redis performance while preserv­
ing data integrity.

 We’ll start by exploring the various Redis persistence options available to you
for getting your data on disk. We’ll then talk about the use of replication to keep
up-to-date copies of your data on additional machines for both performance and

63

64 CHAPTER 4 Keeping data safe and ensuring performance

data reliability. Combining replication and persistence, we’ll talk about trade-offs you
may need to make, and we’ll walk through a few examples of choosing persistence
and replication options to suit your needs. We’ll then talk about Redis transactions
and pipelines, and we’ll finish out the chapter by discussing how to diagnose some
performance issues.

 As we go through this chapter, our focus is understanding more about how Redis
works so that we can first ensure that our data is correct, and then work toward mak­
ing our operations on the data fast.

 To start, let’s examine how Redis stores our information on disk so that, after
restart, it’s still there.

4.1 Persistence options
Within Redis, there are two different ways of persisting data to disk. One is a method
called snapshotting that takes the data as it exists at one moment in time and writes it to
disk. The other method is called AOF, or append-only file, and it works by copying
incoming write commands to disk as they happen. These methods can be used
together, separately, or not at all in some circumstances. Which to choose will depend
on your data and your application.

 One of the primary reasons why you’d want to store in-memory data on disk is so
that you have it later, or so that you can back it up to a remote location in the case of
failure. Additionally, the data that’s stored in Redis may have taken a long time to
compute, or may be in the process of computation, and you may want to have access
to it later without having to compute it again. For some Redis uses, “computation”
may simply involve an act of copying data from another database into Redis (as was
the case in section 2.4), but for others, Redis could be storing aggregate analytics data
from billions of log lines.

 Two different groups of configuration options control how Redis will write data
to disk. All of these configuration options with example configuration values can
be seen in the following listing. We’ll talk about them all more specifically in sec­
tions 4.1.1 and 4.1.2, but for now, we’ll just look at the options so you can get famil­
iar with them.

Listing 4.1 Options for persistence configuration available in Redis

save 60 1000

stop-writes-on-bgsave-error no
 Snapshotting

persistence optionsrdbcompression yes
dbfilename dump.rdb

appendonly no

appendfsync everysec

no-appendfsync-on-rewrite no

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

dir ./

Append-only file
persistence options Shared option,

where to store
the snapshot or
append-only file

65 Persistence options

As you saw in listing 4.1, the first few options deal with basic snapshotting, like what to
name the snapshot on disk, how often to perform an automatic snapshot, whether to
compress the snapshot, and whether to keep accepting writes on failure. The second
group of options configure the AOF subsystem, telling Redis whether to use it, how
often to sync writes to disk, whether to sync during AOF compaction, and how often to
compact the AOF. In the next section, we’ll talk about using snapshots to keep our
data safe.

4.1.1 Persisting to disk with snapshots

In Redis, we can create a point-in-time copy of in-memory data by creating a snapshot.
After creation, these snapshots can be backed up, copied to other servers to create a
clone of the server, or left for a future restart.

 On the configuration side of things, snapshots are written to the file referenced
as dbfilename in the configuration, and stored in the path referenced as dir. Until
the next snapshot is performed, data written to Redis since the last snapshot started
(and completed) would be lost if there were a crash caused by Redis, the system, or
the hardware.

 As an example, say that we have Redis running with 10 gigabytes of data currently
in memory. A previous snapshot had been started at 2:35 p.m. and had finished. Now
a snapshot is started at 3:06 p.m., and 35 keys are updated before the snapshot com­
pletes at 3:08 p.m. If some part of the system were to crash and prevent Redis from
completing its snapshot operation between 3:06 p.m. and 3:08 p.m., any data written
between 2:35 p.m. and now would be lost. But if the system were to crash just after the
snapshot had completed, then only the updates to those 35 keys would be lost.

 There are five methods to initiate a snapshot, which are listed as follows:

■	 Any Redis client can initiate a snapshot by calling the BGSAVE command. On
platforms that support BGSAVE (basically all platforms except for Windows),
Redis will fork,1 and the child process will write the snapshot to disk while the
parent process continues to respond to commands.

■	 A Redis client can also initiate a snapshot by calling the SAVE command, which
causes Redis to stop responding to any/all commands until the snapshot com­
pletes. This command isn’t commonly used, except in situations where we need
our data on disk, and either we’re okay waiting for it to complete, or we don’t
have enough memory for a BGSAVE.

■	 If Redis is configured with save lines, such as save 60 10000, Redis will auto­
matically trigger a BGSAVE operation if 10,000 writes have occurred within 60
seconds since the last successful save has started (using the configuration
option described). When multiple save lines are present, any time one of the
rules match, a BGSAVE is triggered.

1	 When a process forks, the underlying operating system makes a copy of the process. On Unix and Unix-like
systems, the copying process is optimized such that, initially, all memory is shared between the child and par­
ent processes. When either the parent or child process writes to memory, that memory will stop being shared.

66	 CHAPTER 4 Keeping data safe and ensuring performance

■	 When Redis receives a request to shut down by the SHUTDOWN command, or it
receives a standard TERM signal, Redis will perform a SAVE, blocking clients from
performing any further commands, and then shut down.

■	 If a Redis server connects to another Redis server and issues the SYNC command
to begin replication, the master Redis server will start a BGSAVE operation if one
isn’t already executing or recently completed. See section 4.2 for more informa­
tion about replication.

When using only snapshots for saving data, you must remember that if a crash were to
happen, you’d lose any data changed since the last snapshot. For some applications,
this kind of loss isn’t acceptable, and you should look into using append-only file per­
sistence, as described in section 4.1.2. But if your application can live with data loss,
snapshots can be the right answer. Let’s look at a few scenarios and how you may want
to configure Redis to get the snapshot persistence behavior you’re looking for.

DEVELOPMENT

For my personal development server, I’m mostly concerned with minimizing the over­
head of snapshots. To this end, and because I generally trust my hardware, I have a
single rule: save 900 1. The save option tells Redis that it should perform a BGSAVE
operation based on the subsequent two values. In this case, if at least one write has
occurred in at least 900 seconds (15 minutes) since the last BGSAVE, Redis will auto­
matically start a new BGSAVE.

 If you’re planning on using snapshots on a production server, and you’re going to
be storing a lot of data, you’ll want to try to run a development server with the same or
similar hardware, the same save options, a similar set of data, and a similar expected
load. By setting up an environment equivalent to what you’ll be running in produc­
tion, you can make sure that you’re not snapshotting too often (wasting resources) or
too infrequently (leaving yourself open for data loss).

AGGREGATING LOGS

In the case of aggregating log files and analysis of page views, we really only need to
ask ourselves how much time we’re willing to lose if something crashes between
dumps. If we’re okay with losing up to an hour of work, then we can use save 3600 1
(there are 3600 seconds in an hour). But how might we recover if we were process­
ing logs?

 To recover from data loss, we need to know what we lost in the first place. To
know what we lost, we need to keep a record of our progress while processing logs.
Let’s imagine that we have a function that’s called when new logs are ready to be pro­
cessed. This function is provided with a Redis connect, a path to where log files are
stored, and a callback that will process individual lines in the log file. With our func­
tion, we can record which file we’re working on and the file position information as
we’re processing. A log-processing function that records this information can be seen
in the next listing.

Persistence options 67

Listing 4.2 The process_logs() function that keeps progress information in Redis

Get the current
progress.

This closure is
meant primarily to

reduce the number of
duplicated lines later.

This will execute any
outstanding log updates,
as well as actually write
our file and line number

updates to Redis.

If we’re continuing
a file, skip over the

parts that we’ve
already processed.

The enumerate function
iterates over a sequence (in

this case lines from a file),
and produces pairs

consisting of a numeric
sequence starting from 0,

and the original data.

def process_logs(conn, path, callback):

current_file, offset = conn.mget(

'progress:file', 'progress:position')

pipe = conn.pipeline()

def update_progress():

pipe.mset({

'progress:file': fname,

'progress:position': offset

})

pipe.execute()

for fname in sorted(os.listdir(path)):

if fname < current_file:

continue

inp = open(os.path.join(path, fname), 'rb')

if fname == current_file:

inp.seek(int(offset, 10))

else:

offset = 0

current_file = None

for lno, line in enumerate(inp):

callback(pipe, line)

offset = int(offset) + len(line)

Our function will be provided
with a callback that will take
a connection and a log line,
calling methods on the
pipeline as necessary.

We want to update our
file and line number
offsets into the log file.

Iterate over the log
files in sorted order.

Skip over files
that are before
the current file.

Handle the log line.

Update our
information
about the offset
into the file.

if not (lno+1) % 1000:
 Write our progress back
update_progress()
 to Redis every 1000 lines, or

update_progress()
 when we’re done with a file.

inp.close()

By keeping a record of our progress in Redis, we can pick up with processing logs if at
any point some part of the system crashes. And because we used MULTI/EXEC pipelines
as introduced in chapter 3, we ensure that the dump will only include processed log
information when it also includes progress information.

BIG DATA

When the amount of data that we store in Redis tends to be under a few gigabytes,
snapshotting can be the right answer. Redis will fork, save to disk, and finish the snap­
shot faster than you can read this sentence. But as our Redis memory use grows over
time, so does the time to perform a fork operation for the BGSAVE. In situations where
Redis is using tens of gigabytes of memory, there isn’t a lot of free memory, or if we’re
running on a virtual machine, letting a BGSAVE occur may cause the system to pause
for extended periods of time, or may cause heavy use of system virtual memory, which
could degrade Redis’s performance to the point where it’s unusable.

 This extended pausing (and how significant it is) will depend on what kind of system
we’re running on. Real hardware, VMWare virtualization, or KVM virtualization will gen­
erally allow us to create a fork of a Redis process at roughly 10–20ms per gigabyte of

68 CHAPTER 4 Keeping data safe and ensuring performance

memory that Redis is using. If our system is running within Xen virtualization, those
numbers can be closer to 200–300ms per gigabyte of memory used by Redis, depending
on the Xen configuration. So if we’re using 20 gigabytes of memory with Redis, running
BGSAVE on standard hardware will pause Redis for 200–400 milliseconds for the fork. If
we’re using Redis inside a Xen-virtualized machine (as is the case with Amazon EC2 and
some other cloud providers), that same fork will cause Redis to pause for 4–6 seconds.
You need to decide for your application whether this pause is okay.

 To prevent forking from causing such issues, we may want to disable automatic sav­
ing entirely. When automatic saving is disabled, we then need to manually call BGSAVE
(which has all of the same potential issues as before, only now we know when they will
happen), or we can call SAVE. With SAVE, Redis does block until the save is completed,
but because there’s no fork, there’s no fork delay. And because Redis doesn’t have to
fight with itself for resources, the snapshot will finish faster.

 As a point of personal experience, I’ve run Redis servers that used 50 gigabytes of
memory on machines with 68 gigabytes of memory inside a cloud provider running
Xen virtualization. When trying to use BGSAVE with clients writing to Redis, forking
would take 15 seconds or more, followed by 15–20 minutes for the snapshot to com­
plete. But with SAVE, the snapshot would finish in 3–5 minutes. For our use, a daily
snapshot at 3 a.m. was sufficient, so we wrote scripts that would stop clients from try­
ing to access Redis, call SAVE, wait for the SAVE to finish, back up the resulting snap­
shot, and then signal to the clients that they could continue.

 Snapshots are great when we can deal with potentially substantial data loss in
Redis, but for many applications, 15 minutes or an hour or more of data loss or pro­
cessing time is too much. To allow Redis to keep more up-to-date information about
data in memory stored on disk, we can use append-only file persistence.

4.1.2 Append-only file persistence

In basic terms, append-only log files keep a record of data changes that occur by writ­
ing each change to the end of the file. In doing this, anyone could recover the entire
dataset by replaying the append-only log from the beginning to the end. Redis has
functionality that does this as well, and it’s enabled by setting the configuration option
appendonly yes, as shown in listing 4.1. Table 4.1 shows the appendfsync options and
how they affect file-write syncing to disk.

FILE SYNCING When writing files to disk, at least three things occur. The first is
writing to a buffer, and this occurs when calling file.write() or its equivalent
in other languages. When the data is in the buffer, the operating system can
take that data and write it to disk at some point in the future. We can optionally
take a second step and ask the operating system to write the data provided to
disk when it next has a chance, with file.flush(), but this is only a request.
Because data isn’t actually on disk until the operating system writes it to disk,
we can tell the operating system to “sync” the files to disk, which will block until
it’s completed. When that sync is completed, we can be fairly certain that our
data is on disk and we can read it later if the system otherwise fails.

69 Persistence options

Table 4.1 Sync options to use with appendfsync

Option How often syncing will occur

always Every write command to Redis results in a write to disk. This
slows Redis down substantially if used.

everysec Once per second, explicitly syncs write commands to disk.

no Lets the operating system control syncing to disk.

If we were to set appendfsync always, every write to Redis would result in a write to
disk, and we can ensure minimal data loss if Redis were to crash. Unfortunately,
because we’re writing to disk with every write to Redis, we’re limited by disk perfor­
mance, which is roughly 200 writes/second for a spinning disk, and maybe a few tens
of thousands for an SSD (a solid-state drive).

WARNING: SSDS AND appendfsync always You’ll want to be careful if you’re
using SSDs with appendfsync always. Writing every change to disk as they
happen, instead of letting the operating system group writes together as is the
case with the other appendfsync options, has the potential to cause an
extreme form of what is known as write amplification. By writing small amounts
of data to the end of a file, you can reduce the lifetime of SSDs from years to
just a few months in some cases.

As a reasonable compromise between keeping data safe and keeping our write perfor­
mance high, we can also set appendfsync everysec. This configuration will sync the
append-only log once every second. For most common uses, we’ll likely not find sig­
nificant performance penalties for syncing to disk every second compared to not
using any sort of persistence. By syncing to disk every second, if the system were to
crash, we could lose at most one second of data that had been written or updated in
Redis. Also, in the case where the disk is unable to keep up with the write volume
that’s happening, Redis would gracefully slow down to accommodate the maximum
write rate of the drive.

 As you may guess, when setting appendfsync no, Redis doesn’t perform any
explicit file syncing, leaving everything up to the operating system. There should be
no performance penalties in this case, though if the system were to crash in one way
or another, we’d lose an unknown and unpredictable amount of data. And if we’re
using a hard drive that isn’t fast enough for our write load, Redis would perform
fine until the buffers to write data to disk were filled, at which point Redis would get
very slow as it got blocked from writing. For these reasons, I generally discourage
the use of this configuration option, and include its description and semantics here
for completeness.

 Append-only files are flexible, offering a variety of options to ensure that almost
every level of paranoia can be addressed. But there’s a dark side to AOF persistence,
and that is file size.

70 CHAPTER 4 Keeping data safe and ensuring performance

4.1.3 Rewriting/compacting append-only files

After reading about AOF persistence, you’re probably wondering why snapshots exist
at all. If by using append-only files we can minimize our data losses to one second (or
essentially none at all), and minimize the time it takes to have data persisted to disk
on a regular basis, it would seem that our choice should be clear. But the choice is
actually not so simple: because every write to Redis causes a log of the command to be
written to disk, the append-only log file will continuously grow. Over time, a growing
AOF could cause your disk to run out of space, but more commonly, upon restart,
Redis will be executing every command in the AOF in order. When handling large
AOFs, Redis can take a very long time to start up.

 To solve the growing AOF problem, we can use BGREWRITEAOF, which will rewrite
the AOF to be as short as possible by removing redundant commands. BGREWRITEAOF
works similarly to the snapshotting BGSAVE: performing a fork and subsequently
rewriting the append-only log in the child. As such, all of the same limitations with
snapshotting performance regarding fork time, memory use, and so on still stand
when using append-only files. But even worse, because AOFs can grow to be many
times the size of a dump (if left uncontrolled), when the AOF is rewritten, the OS
needs to delete the AOF, which can cause the system to hang for multiple seconds
while it’s deleting an AOF of tens of gigabytes.

 With snapshots, we could use the save configuration option to enable the automatic
writing of snapshots using BGSAVE. Using AOFs, there are two configuration options that
enable automatic BGREWRITEAOF execution: auto-aof-rewrite-percentage and
auto-aof-rewrite-min-size. Using the example values of auto-aof-rewrite­

percentage 100 and auto-aof-rewrite-min-size 64mb, when AOF is enabled, Redis
will initiate a BGREWRITEAOF when the AOF is at least 100% larger than it was when Redis
last finished rewriting the AOF, and when the AOF is at least 64 megabytes in size. As a
point of configuration, if our AOF is rewriting too often, we can increase the 100 that rep­
resents 100% to something larger, though it will cause Redis to take longer to start up
if it has been a while since a rewrite happened.

 Regardless of whether we choose append-only files or snapshots, having the data
on disk is a great first step. But unless our data has been backed up somewhere else
(preferably to multiple locations), we’re still leaving ourselves open to data loss.
Whenever possible, I recommend backing up snapshots and newly rewritten append-
only files to other servers.

 By using either append-only files or snapshots, we can keep our data between sys­
tem reboots or crashes. As load increases, or requirements for data integrity become
more stringent, we may need to look to replication to help us.

4.2 Replication
Over their years of scaling platforms for higher loads, engineers and administrators
have added replication to their bag of tricks to help systems scale. Replication is a
method by which other servers receive a continuously updated copy of the data as it’s

71 Replication

being written, so that the replicas can service read queries. In the relational database
world, it’s not uncommon for a single master database to send writes out to multiple
slaves, with the slaves performing all of the read queries. Redis has adopted this
method of replication as a way of helping to scale, and this section will discuss config­
uring replication in Redis, and how Redis operates during replication.

 Though Redis may be fast, there are situations where one Redis server running
isn’t fast enough. In particular, operations over SETs and ZSETs can involve dozens of
SETs/ZSETs over tens of thousands or even millions of items. When we start getting
millions of items involved, set operations can take seconds to finish, instead of milli­
seconds or microseconds. But even if single commands can complete in 10 millisec­
onds, that still limits us to 100 commands/second from a single Redis instance.

EXAMPLE PERFORMANCE FOR SUNIONSTORE As a point to consider for the
performance to expect from Redis, on a 2.4 GHz Intel Core 2 Duo, Redis
will take 7–8 milliseconds to perform a SUNIONSTORE of two 10,000-item SETs
that produces a single 20,000 item SET.

For situations where we need to scale out read queries, or where we may need to write
temporary data (we’ll talk about some of those in chapter 7), we can set up additional
slave Redis servers to keep copies of our dataset. After receiving an initial copy of the
data from the master, slaves are kept up to date in real time as clients write data to the
master. With a master/slave setup, instead of connecting to the master for reading
data, clients will connect to one of the slaves to read their data (typically choosing
them in a random fashion to try to balance the load).

 Let’s talk about configuring Redis for master/slave operation, and how Redis
behaves during the entire process.

4.2.1 Configuring Redis for replication

As I mentioned in section 4.1.1, when a slave connects to the master, the master will
start a BGSAVE operation. To configure replication on the master side of things, we
only need to ensure that the path and filename listed under the dir and dbfilename
configuration options shown in listing 4.1 are to a path and file that are writable by
the Redis process.

 Though a variety of options control behavior of the slave itself, only one option is
really necessary to enable slaving: slaveof. If we were to set slaveof host port in
our configuration file, the Redis that’s started with that configuration will use the
provided host and port as the master Redis server it should connect to. If we have an
already running system, we can tell a Redis server to stop slaving, or even to slave to a
new or different master. To connect to a new master, we can use the SLAVEOF host
port command, or if we want to stop updating data from the master, we can use
SLAVEOF no one.

 There’s not a lot to configuring Redis for master/slave operation, but what’s inter­
esting and useful to know is what happens to Redis when it becomes a master or slave.

72 CHAPTER 4 Keeping data safe and ensuring performance

4.2.2 Redis replication startup process

I briefly described what happens when a slave connects—that the master starts a snap­
shot and sends that to the slave—but that’s the simple version. Table 4.2 lists all of the
operations that occur on both the master and slave when a slave connects to a master.

Table 4.2 What happens when a slave connects to a master

Step Master operations Slave operations

1 (waiting for a command) (Re-)connects to the master; issues the
SYNC command

2 Starts BGSAVE operation; keeps a backlog of
all write commands sent after BGSAVE

Serves old data (if any), or returns errors
to commands (depending on configuration)

3 Finishes BGSAVE; starts sending the snapshot
to the slave; continues holding a backlog of
write commands

Discards all old data (if any); starts load­
ing the dump as it’s received

4 Finishes sending the snapshot to the slave;
starts sending the write command backlog to
the slave

Finishes parsing the dump; starts
responding to commands normally again

5 Finishes sending the backlog; starts live stream­
ing of write commands as they happen

Finishes executing backlog of write com­
mands from the master; continues execut­
ing commands as they happen

With the method outlined in table 4.2, Redis manages to keep up with most loads dur­
ing replication, except in cases where network bandwidth between the master and
slave instances isn’t fast enough, or when the master doesn’t have enough memory to
fork and keep a backlog of write commands. Though it isn’t necessary, it’s generally
considered to be a good practice to have Redis masters only use about 50–65% of the
memory in our system, leaving approximately 30–45% for spare memory during
BGSAVE and command backlogs.

 On the slave side of things, configuration is also simple. To configure the slave for
master/slave replication, we can either set the configuration option SLAVEOF host

port, or we can configure Redis during runtime with the SLAVEOF command. If we use
the configuration option, Redis will initially load whatever snapshot/AOF is currently
available (if any), and then connect to the master to start the replication process out­
lined in table 4.2. If we run the SLAVEOF command, Redis will immediately try to con­
nect to the master, and upon success, will start the replication process outlined in
table 4.2.

DURING SYNC, THE SLAVE FLUSHES ALL OF ITS DATA Just to make sure that we’re
all on the same page (some users forget this the first time they try using slaves):
when a slave initially connects to a master, any data that had been in memory
will be lost, to be replaced by the data coming from the master.

73 Replication

WARNING: REDIS DOESN’T SUPPORT MASTER-MASTER REPLICATION When shown
master/slave replication, some people get the mistaken idea that because we
can set slaving options after startup using the SLAVEOF command, that means
we can get what’s known as multi-master replication by setting two Redis instances
as being SLAVEOF each other (some have even considered more than two in a
loop). Unfortunately, this does not work. At best, our two Redis instances will use
as much processor as they can, will be continually communicating back and
forth, and depending on which server we connect and try to read/write data
from/to, we may get inconsistent data or no data.

When multiple slaves attempt to connect to Redis, one of two different scenarios can
occur. Table 4.3 describes them.

Table 4.3 When a slave connects to an existing master, sometimes it can reuse an existing dump file.

When additional slaves connect Master operation

Before step 3 in table 4.2 All slaves will receive the same dump and same backlogged
write commands.

On or after step 3 in table 4.2 While the master is finishing up the five steps for earlier slaves,
a new sequence of steps 1-5 will start for the new slave(s).

For the most part, Redis does its best to ensure that it doesn’t have to do more work
than is necessary. In some cases, slaves may try to connect at inopportune times and
cause the master to do more work. On the other hand, if multiple slaves connect at
the same time, the outgoing bandwidth used to synchronize all of the slaves initially
may cause other commands to have difficulty getting through, and could cause gen­
eral network slowdowns for other devices on the same network.

4.2.3 Master/slave chains

Some developers have found that when they need to replicate to more than a handful
of slaves, some networks are unable to keep up—especially when replication is being
performed over the internet or between data centers. Because there’s nothing partic­
ularly special about being a master or a slave in Redis, slaves can have their own slaves,
resulting in master/slave chaining.

 Operationally, the only difference in the replication process that occurs is that if a
slave X has its own slave Y, when slave X hits step 4 from table 4.2, slave X will discon­
nect slave Y, causing Y to reconnect and resync.

 When read load significantly outweighs write load, and when the number of reads
pushes well beyond what a single Redis server can handle, it’s common to keep adding
slaves to help deal with the load. As load continues to increase, we can run into situa­
tions where the single master can’t write to all of its slaves fast enough, or is over­
loaded with slaves reconnecting and resyncing. To alleviate such issues, we may want
to set up a layer of intermediate Redis master/slave nodes that can help with replica­
tion duties similar to figure 4.1.

74 CHAPTER 4 Keeping data safe and ensuring performance

Redis master

Slave-1 Slave-2 Slave-3

Slave-a Slave-b Slave-c Slave-d Slave-e Slave-f Slave-g Slave-h Slave-i

Figure 4.1 An example Redis master/slave replica tree with nine lowest-level slaves and three
intermediate replication helper servers

Though the example shown in figure 4.1 may not necessarily need to be in a tree
structure, remembering and understanding that this is both possible and reasonable
for Redis replication can help you later.

 Back in section 4.1.2, we talked about using append-only files with syncing to limit
the opportunities for us to lose data. We could prevent data loss almost entirely
(except for system or hard drive crashes) by syncing every write to disk, but then we
end up limiting performance severely. If we tell Redis to sync every second, we’re able
to get the performance we need, but we could lose up to a second of writes if bad
things happen. But by combining replication and append-only files, we can ensure
that data gets to disk on multiple machines.

 In order to ensure that data gets to disk on multiple machines, we must obviously
set up a master with slaves. By configuring our slaves (and optionally our master) with
appendonly yes and appendfsync everysec, we now have a group of machines that
will sync to disk every second. But that’s only the first part: we must wait for the write
to reach the slave(s) and check to make sure that the data reached disk before we
can continue.

4.2.4 Verifying disk writes

Verifying that the data we wrote to the master made it to the slave is easy: we merely
need to write a unique dummy value after our important data, and then check for it
on the slave. But verifying that the data made it to disk is more difficult. If we wait at
least one second, we know that our data made it to disk. But if we’re careful, we may
be able to wait less time by checking the output of INFO for the value of
aof_pending_bio_fsync, which will be 0 if all data that the server knows about has
been written to disk. To automate this check, we can use the function provided in the
next listing, which we’d call after writing our data to the master by passing both the
master and slave connections.

75 Handling system failures

Listing 4.3 The wait_for_sync() function

def wait_for_sync(mconn, sconn):

Add the tokenidentifier = str(uuid.uuid4())

to the master. mconn.zadd('sync:wait', identifier, time.time())

while not sconn.info()['master_link_status'] != 'up':
 Wait for the slave to
time.sleep(.001)
 sync (if necessary).

while not sconn.zscore('sync:wait', identifier):
 Wait for the slave to
time.sleep(.001)
 receive the data change.

deadline = time.time() + 1.01

Wait up to one second. while time.time() < deadline:

if sconn.info()['aof_pending_bio_fsync'] == 0:
break

time.sleep(.001)
Check to see if the data
is known to be on disk.

mconn.zrem('sync:wait', identifier)
mconn.zremrangebyscore('sync:wait', 0, time.time()-900)

Clean up our status and clean out older
entries that may have been left there.

OTHER INFORMATION FROM THE INFO COMMAND The INFO command can offer a
wide range of information about the current status of a Redis server—memory
used, the number of connected clients, the number of keys in each database,
the number of commands executed since the last snapshot, and more. Gener­
ally speaking, INFO is a good source of information about the general state of
our Redis servers, and many resources online can explain more.

To ensure correct operation, this function will first verify that the slave is connected to
the master. It’ll then poll the slave, looking for the value that it had added to the sync
wait ZSET. After it has found that the value has made it to the slave, it’ll then check on
the status of the Redis write buffer, waiting for it to either say that there are no pending
syncs to disk (signaling that the change had made it to disk), or wait for up to one sec­
ond. We wait for one second under the assumption that after one second, the data had
been synced to disk, but there’s so much writing to Redis that we didn’t catch when the
data had been synced. After verifying the write to disk, we then clean up after ourselves.

 By combining replication and append-only files, we can configure Redis to be resil­
ient against system failures.

4.3 Handling system failures
In order to be able to handle system failures in Redis, we need to prepare ourselves
for the failure. The reason we’ve spent so much time talking about these topics is
because if we’re going to rely on Redis as the sole data store for our application, then
we must ensure that we never lose any data. Unlike a traditional relational database
that offers ACID2 guarantees, when choosing to architect on top of a Redis back end,

2	 ACID—or atomicity, consistency, isolation, and durability—is a functional description of what a database
must guarantee to offer reliable transactions over data.

76 CHAPTER 4 Keeping data safe and ensuring performance

we need to do a little extra work to ensure data consistency. Redis is software, and it
runs on hardware, and even if both were designed perfectly and couldn’t fail, power
can fail, generators can run out of fuel, and batteries can run out of power. In looking
at what Redis offers, we spent a lot of time preparing for potential system failures. This
section will talk about what we can do when failure does happen.

4.3.1 Verifying snapshots and append-only files

When confronted with system failures, we have tools to help us recover when either
snapshotting or append-only file logging had been enabled. Redis includes two com­
mand-line applications for testing the status of a snapshot and an append-only file.
These commands are redis-check-aof and redis-check-dump. If we run either com­
mand without arguments, we’ll see the basic help that’s provided:

$ redis-check-aof

Usage: redis-check-aof [--fix] <file.aof>

$ redis-check-dump

Usage: redis-check-dump <dump.rdb>

$

If we provide --fix as an argument to redis-check-aof, the command will fix the
file. Its method to fix an append-only file is simple: it scans through the provided AOF,
looking for an incomplete or incorrect command. Upon finding the first bad com­
mand, it trims the file to just before that command would’ve been executed. For most
situations, this will discard the last partial write command.

 Unfortunately, there’s no currently supported method of repairing a corrupted
snapshot. Though there’s the potential to discover where the first error had occurred,
because the snapshot itself is compressed, an error partway through the dump has the
potential to make the remaining parts of the snapshot unreadable. It’s for these rea­
sons that I’d generally recommend keeping multiple backups of important snapshots,
and calculating the SHA1 or SHA256 hashes to verify content during restoration.
(Modern Linux and Unix platforms will have available sha1sum and sha256sum com­
mand-line applications for generating and verifying these hashes.)

CHECKSUMS AND HASHES Redis versions including 2.6 and later include a
CRC64 checksum of the snapshot as part of the snapshot. The use of a CRC-
family checksum is useful to discover errors that are typical in some types of
network transfers or disk corruption. The SHA family of cryptographic hashes
is much better suited for discovering arbitrary errors. To the point, if we calcu­
lated the CRC64 of a file, then flipped any number of bits inside the file, we
could later flip a subset of the last 64 bits of the file to produce the original
checksum. There’s no currently known method for doing the same thing with
SHA1 or SHA256.

After we’ve verified that our backups are what we had saved before, and we’ve cor­
rected the last write to AOF as necessary, we may need to replace a Redis server.

Handling system failures 77

4.3.2 Replacing a failed master

When we’re running a group of Redis servers with replication and persistence, there
may come a time when some part of our infrastructure stops working for one reason
or another. Maybe we get a bad hard drive, maybe bad memory, or maybe the power
just went out. Regardless of what causes the system to fail, we’ll eventually need to
replace a Redis server. Let’s look at an example scenario involving a master, a slave,
and needing to replace the master.

 Machine A is running a copy of Redis that’s acting as the master, and machine B is
running a copy of Redis that’s acting as the slave. Unfortunately, machine A has just
lost network connectivity for some reason that we haven’t yet been able to diagnose.
But we have machine C with Redis installed that we’d like to use as the new master.

 Our plan is simple: We’ll tell machine B to produce a fresh snapshot with SAVE.
We’ll then copy that snapshot over to machine C. After the snapshot has been copied
into the proper path, we’ll start Redis on machine C. Finally, we’ll tell machine B to
become a slave of machine C.3 Some example commands to make this possible on this
hypothetical set of systems are shown in the following listing.

Listing 4.4 An example sequence of commands for replacing a failed master node

user@vpn-master ~:$ ssh root@machine-b.vpn
 Connect to machine B
Last login: Wed Mar 28 15:21:06 2012 from ...
 on our VPN network.
root@machine-b ~:$ redis-cli

redis 127.0.0.1:6379> SAVE Start a SAVE, and when Start up the command-
OK it’s done, QUIT so that line redis client to do a
redis 127.0.0.1:6379> QUIT we can continue. few simple operations.
root@machine-b ~:$ scp \

Copy the snapshot over to> /var/local/redis/dump.rdb machine-c.vpn:/var/local/redis/

the new master, machine C.

dump.rdb 100% 525MB 8.1MB/s 01:05

root@machine-b ~:$ ssh machine-c.vpn

Last login: Tue Mar 27 12:42:31 2012 from ...

root@machine-c ~:$ sudo /etc/init.d/redis-server start

Starting Redis server...

root@machine-c ~:$ exit

Connect to the new
master and start Redis.

root@machine-b ~:$ redis-cli
 Tell machine B’s Redis
redis 127.0.0.1:6379> SLAVEOF machine-c.vpn 6379
 that it should use C as

the new master. OK

redis 127.0.0.1:6379> QUIT

root@machine-b ~:$ exit

user@vpn-master ~:$

Most of these commands should be familiar to those who have experience using and
maintaining Unix or Linux systems. The only interesting things in the commands
being run here are that we can initiate a SAVE on machine B by running a command,
and we later set up machine B to be a slave of machine C by running a command.

 As an alternative to creating a new master, we may want to turn the slave into a mas­
ter and create a new slave. Either way, Redis will be able to pick up where it left off,

Because B was originally a slave, our clients shouldn’t have been writing to B, so we won’t have any race con­
ditions with clients writing to B after the snapshot operation was started.

3

mailto:root@machine-b.vpn

78 CHAPTER 4 Keeping data safe and ensuring performance

and our only job from then on is to update our client configuration to read and write
to the proper servers, and optionally update the on-disk server configuration if we
need to restart Redis.

REDIS SENTINEL A relatively recent addition to the collection of tools avail­
able with Redis is Redis Sentinel. By the final publishing of this manuscript,
Redis Sentinel should be complete. Generally, Redis Sentinel pays attention
to Redis masters and the slaves of the masters and automatically handles
failover if the master goes down. We’ll discuss Redis Sentinel in chapter 10.

In the next section, we’ll talk about keeping our data from being corrupted by multiple
writers working on the same data, which is a necessary step toward keeping our data safe.

4.4 Redis transactions
Part of keeping our data correct is understanding that when other clients are working
on the same data, if we aren’t careful, we may end up with data corruption. In this sec­
tion, we’ll talk about using Redis transactions to prevent data corruption and, in some
cases, to improve performance.

 Transactions in Redis are different from transactions that exist in more traditional
relational databases. In a relational database, we can tell the database server BEGIN, at
which point we can perform a variety of read and write operations that will be consis­
tent with respect to each other, after which we can run either COMMIT to make our
changes permanent or ROLLBACK to discard our changes.

 Within Redis, there’s a simple method for handling a sequence of reads and writes
that will be consistent with each other. We begin our transaction by calling the special
command MULTI, passing our series of commands, followed by EXEC (as introduced in
section 3.7.2). The problem is that this simple transaction doesn’t actually do anything
until EXEC is called, which means that we can’t use data we read to make decisions until
after we may have needed it. This may not seem important, but there’s a class of prob­
lems that become difficult to solve because of not being able to read the data in a con­
sistent fashion, or allow for transactions to fail where they should succeed (as is the case
when we have multiple simultaneous transactions against a single object when using two-
phase commit, a common solution to the problem). One of these problems is the pro­
cess of purchasing an item from a marketplace. Let’s see an example of this in action.

DELAYED EXECUTION WITH MULTI/EXEC CAN IMPROVE PERFORMANCE Because of
Redis’s delaying execution of commands until EXEC is called when using MULTI/
EXEC, many clients (including the Python client that we’re using) will hold off
on even sending commands until all of them are known. When all of the com­
mands are known, the client will send MULTI, followed by the series of com­
mands to be executed, and EXEC, all at the same time. The client will then wait
until all of the replies from all of the commands are received. This method of
sending multiple commands at once and waiting for all of the replies is gener­
ally referred to as pipelining, and has the ability to improve Redis’s performance
when executing multiple commands by reducing the number of network round
trips that a client needs to wait for.

79 Redis transactions

In the last few months, Fake Game Company has seen major growth in their web-
based RPG that’s played on YouTwitFace, a fictional social network. Because it pays
attention to the needs and desires of its community, it has determined that the players
need the ability to buy and sell items in a marketplace. It’s our job to design and build
a marketplace that can scale to the needs of the community.

4.4.1 Defining users and their inventory

We’ll start by showing some structures that define our users and their inventory. User
information is stored as a HASH, with keys and values that store user attributes like
name, funds, and anything else. A user’s inventory will be a SET that holds unique
identifiers for each item, which can be seen in figure 4.2.

name Frank
funds 43

users:17 hash

ItemM
ItemN

ItemL

inventory:17 set

name Bill
funds 125

users:27 hash

ItemP
ItemQ

ItemO

inventory:27 set

Figure 4.2 Example user inventory and user information. Frank has 43 e-dollars and an item

that he’s considering selling from his inventory.

Our requirements for the market are simple: a user can list an item for a given price,
and when another user purchases the item, the seller receives the money. We’ll also
say that the part of the market we’ll be worrying about only needs to be ordered by
selling price. In chapter 7, we’ll cover some
topics for handling other orders.

 To include enough information to sell a
given item in the market, we’ll concatenate the
item ID for the item with the user ID of the
seller and use that as a member of a market
ZSET, with the score being the item’s selling
price. By including all of this information
together, we greatly simplify our data struc­

market: zset

ItemA.4 35
ItemC.7 48
ItemE.2 60
ItemG.3 73

Items to be sold Prices of the items
Owners of the itemstures and what we need to look up, and get the

benefit of being able to easily paginate
Figure 4.3 Our basic marketplace that

through a presorted market. A small version of includes an ItemA being sold by user 4 for
the marketplace is shown in figure 4.3. 35 e-dollars

80 CHAPTER 4 Keeping data safe and ensuring performance

Now that we know what structures our marketplace uses, let’s list items in the market.

4.4.2 Listing items in the marketplace

In the process of listing, we’ll use a Redis operation called WATCH, which we combine
with MULTI and EXEC, and sometimes UNWATCH or DISCARD. When we’ve watched keys
with WATCH, if at any time some other client replaces, updates, or deletes any keys that
we’ve WATCHed before we have performed the EXEC operation, our operations against
Redis will fail with an error message when we try to EXEC (at which point we can retry
or abort the operation). By using WATCH, MULTI/EXEC, and UNWATCH/DISCARD, we can
ensure that the data that we’re working with doesn’t change while we’re doing some­
thing important, which protects us from data corruption.

WHAT IS DISCARD? In the same way that UNWATCH will let us reset our connec­
tion if sent after WATCH but before MULTI, DISCARD will also reset the connec­
tion if sent after MULTI but before EXEC. That is to say, if we’d WATCHed a key or
keys, fetched some data, and then started a transaction with MULTI followed
by a group of commands, we could cancel the WATCH and clear out any
queued commands with DISCARD. We don’t use DISCARD here, primarily
because we know whether we want to perform a MULTI/EXEC or UNWATCH, so a
DISCARD is unnecessary for our purposes.

Let’s go about listing an item in the marketplace. To do so, we add the item to the
market ZSET, while WATCHing the seller’s inventory to make sure that the item is still
available to be sold. The function to list an item is shown here.

Listing 4.5 The list_item() function

def list_item(conn, itemid, sellerid, price):

inventory = "inventory:%s"%sellerid

item = "%s.%s"%(itemid, sellerid)

end = time.time() + 5

pipe = conn.pipeline()

Watch for changes to while time.time() < end:
 Verify that the the user’s inventory. If the item isn’t in the try:

user’s inventory, stop pipe.watch(inventory)

watching the inventory if not pipe.sismember(inventory, itemid):

key and return. pipe.unwatch()

return None

pipe.multi()

Actually list pipe.zadd("market:", item, price)

the item. pipe.srem(inventory, itemid)

pipe.execute()

return True

user still has the
item to be listed.

If execute returns without
a WatchError being raised,
then the transaction is
complete and the inventory
key is no longer watched.

except redis.exceptions.WatchError:
 The user’s inventory
pass
 was changed; retry.

return False

After some initial setup, we’ll do what we described earlier. We’ll tell Redis that we
want to watch the seller’s inventory, verify that the seller can still sell the item, and if
so, add the item to the market and remove the item from their inventory. If there’s an

81 Redis transactions

update or change to the inventory while we’re looking at it, we’ll receive an error and
retry, as is shown by the while loop outside of our actual operation.

 Let’s look at the sequence of operations that are performed when Frank (user 17)
wants to sell ItemM for 97 e-dollars in figure 4.4.

watch('inventory:17')

ItemM
ItemN

ItemL

inventory:17 set

Watch the inventory for any changes.

sismember('inventory:17', 'ItemM')

ItemM
ItemN

ItemL

inventory:17 set

Ensure that the item to be sold is
still in Frank’s inventory.

market: zset

ItemA.4 35
ItemC.7 48
ItemE.2 60
ItemG.3 73
ItemM.17 97

zadd('market:', 'ItemM.17', 97)

srem('inventory:17', 'ItemM')

set

ItemM
ItemN

ItemL

inventory:17

Redis doesn’t have a way of
simultaneously removing an item
from a SET and adding it to a ZSET
while also changing the item’s name,
so we need to use two commands to
perform the operation.

Figure 4.4 list_item(conn, "ItemM", 17, 97)

http:ItemM.17
http:ItemM.17

82 CHAPTER 4 Keeping data safe and ensuring performance

Generally, listing an item should occur without any significant issue, since only the
user should be selling their own items (which is enforced farther up the application
stack). But as I mentioned before, if a user’s inventory were to change between the
WATCH and EXEC, our attempt to list the item would fail, and we’d retry.

 Now that you know how to list an item, it’s time to purchase an item.

4.4.3 Purchasing items

To process the purchase of an item, we first WATCH the market and the user who’s buy­
ing the item. We then fetch the buyer’s total funds and the price of the item, and ver­
ify that the buyer has enough money. If they don’t have enough money, we cancel the
transaction. If they do have enough money, we perform the transfer of money
between the accounts, move the item into the buyer’s inventory, and remove the item
from the market. On WATCH error, we retry for up to 10 seconds in total. We can see
the function which handles the purchase of an item in the following listing.

Listing 4.6 The purchase_item() function

def purchase_item(conn, buyerid, itemid, sellerid, lprice):

buyer = "users:%s"%buyerid

seller = "users:%s"%sellerid

item = "%s.%s"%(itemid, sellerid)

inventory = "inventory:%s"%buyerid

end = time.time() + 10

pipe = conn.pipeline()

while time.time() < end:

try:

pipe.watch("market:", buyer)

price = pipe.zscore("market:", item)

funds = int(pipe.hget(buyer, "funds"))

if price != lprice or price > funds:

pipe.unwatch()

return None

pipe.multi()

pipe.hincrby(seller, "funds", int(price))

pipe.hincrby(buyer, "funds", int(-price))

pipe.sadd(inventory, itemid)

pipe.zrem("market:", item)

pipe.execute()

return True

Watch for changes to the
market and to the buyer’s
account information.

Check for a sold/repriced
item or insufficient funds.

Transfer funds from the buyer
to the seller, and transfer the
item to the buyer.

except redis.exceptions.WatchError: Retry if the buyer’s account
pass or the market changed.

return False

To purchase an item, we need to spend more time preparing the data, and we need to
watch both the market and the buyer’s information. We watch the market to ensure
that the item can still be bought (or that we can notice that it has already been
bought), and we watch the buyer’s information to verify that they have enough money.

83 Redis transactions

When we’ve verified that the item is still there, and that the buyer has enough money,
we go about actually moving the item into their inventory, as well as moving money
from the buyer to the seller.

 After seeing the available items in the market, Bill (user 27) decides that he wants
to buy ItemM from Frank through the marketplace. Let’s follow along to see how our
data changes through figures 4.5 and 4.6.

If either the market ZSET or Bill’s account information changes between our WATCH
and our EXEC, the purchase_item() function will either retry or abort, based on how
long it has been trying to purchase the item, as shown in listing 4.6.

WHY DOESN’T REDIS IMPLEMENT TYPICAL LOCKING? When accessing data for
writing (SELECT FOR UPDATE in SQL), relational databases will place a lock on
rows that are accessed until a transaction is completed with COMMIT or ROLL­
BACK. If any other client attempts to access data for writing on any of the same
rows, that client will be blocked until the first transaction is completed. This
form of locking works well in practice (essentially all relational databases
implement it), though it can result in long wait times for clients waiting to
acquire locks on a number of rows if the lock holder is slow.

Because there’s potential for long wait times, and because the design of Redis
minimizes wait time for clients (except in the case of blocking LIST pops),
Redis doesn’t lock data during WATCH. Instead, Redis will notify clients if some­
one else modified the data first, which is called optimistic locking (the actual
locking that relational databases perform could be viewed as pessimistic). Opti­
mistic locking also works well in practice because clients are never waiting on
the first holder of the lock; instead they retry if some other client was faster.

Watch the market and Bill’s
information for changes.

Verify that the item is
still listed for the same
price, and that Bill still
has enough money. price ! = 97 or price < funds?

watch('market:', 'users:27')

price = zscore('market', 'ItemM.17')
funds = int(hget('users:27', 'funds'))

market: zset

ItemA.4 35
ItemC.7 48
ItemE.2 60
ItemG.3 73
ItemM.17 97

name Bill
funds 125

users:27 hash

Figure 4.5 Before the item can be purchased, we must watch the market and the buyer’s information
to verify that the item is still available, and that the buyer has enough money.

hash

84 CHAPTER 4 Keeping data safe and ensuring performance

Move the item into Bill’s inventory. Move money from Bill to Frank.

hincbry('users:27', 'funds', -97)

hincbry('users:17', 'funds', 97)

zrem('market:', 'ItemM.17')

sadd('inventory:27', 'ItemM')

market: zset

ItemA.4 35
ItemC.7 48
ItemE.2 60
ItemG.3 73
ItemM.17 97

inventory:27 set

ItemO
ItemP
ItemQ
ItemM

name Bill
funds 28

users:27 hash

name Bill
funds 140

users:17

125

43

Figure 4.6 In order to complete the item purchase, we must actually transfer money from the buyer
to the seller, and we must remove the item from the market while adding it to the buyer’s inventory.

In this section, we’ve discussed combining WATCH, MULTI, and EXEC to handle the
manipulation of multiple types of data so that we can implement a marketplace. Given
this functionality as a basis, it wouldn’t be out of the question to make our market­
place into an auction, add alternate sorting options, time out old items in the market,
or even add higher-level searching and filtering based on techniques discussed in
chapter 7.

 As long as we consistently use transactions in Redis, we can keep our data from
being corrupted while being operated on by multiple clients. Let’s look at how we can
make our operations even faster when we don’t need to worry about other clients
altering our data.

4.5 Non-transactional pipelines
When we first introduced MULTI/EXEC in chapter 3, we talked about them as having a
“transaction” property—everything between the MULTI and EXEC commands will exe­
cute without other clients being able to do anything. One benefit to using transactions

85 Non-transactional pipelines

is the underlying library’s use of a pipeline, which improves performance. This section
will show how to use a pipeline without a transaction to further improve performance.

 You’ll remember from chapter 2 that some commands take multiple arguments for
adding/updating—commands like MGET, MSET, HMGET, HMSET, RPUSH/LPUSH, SADD, ZADD,
and others. Those commands exist to streamline calls to perform the same operation
repeatedly. As you saw in chapter 2, this can result in significant performance
improvements. Though not as drastic as these commands, the use of non-transac­
tional pipelines offers many of the same performance advantages, and allows us to run
a variety of commands at the same time.

 In the case where we don’t need transactions, but where we still want to do a lot of
work, we could still use MULTI/EXEC for their ability to send all of the commands at the
same time to minimize round trips and latency. Unfortunately, MULTI and EXEC aren’t
free, and can delay other important commands from executing. But we can gain all the
benefits of pipelining without using MULTI/EXEC. When we used MULTI/EXEC in Python
in chapter 3 and in section 4.4, you may have noticed that we did the following:

pipe = conn.pipeline()

By passing True to the pipeline() method (or omitting it), we’re telling our client to
wrap the sequence of commands that we’ll call with a MULTI/EXEC pair. If instead of
passing True we were to pass False, we’d get an object that prepared and collected
commands to execute similar to the transactional pipeline, only it wouldn’t be
wrapped with MULTI/EXEC. For situations where we want to send more than one com­
mand to Redis, the result of one command doesn’t affect the input to another, and we
don’t need them all to execute transactionally, passing False to the pipeline()
method can further improve overall Redis performance. Let’s look at an example.

 Way back in sections 2.1 and 2.5, we wrote and updated a function called
update_token(), which kept a record of recent items viewed and recent pages viewed,
and kept the user’s login cookie updated. The updated code from section 2.5 is shown
in listing 4.7. Note how the function will make three or five calls to Redis for every call
of the function. As written, that will result in three or five round trips between Redis
and our client.

Listing 4.7 The update_token() function from section 2.5

Keep a mapping from the
token to the logged-in user.

Record that the user
viewed the item.

Remove old items,
keeping the most

recent 25.

Get thedef update_token(conn, token, user, item=None):

timestamp.timestamp = time.time()

conn.hset('login:', token, user)

conn.zadd('recent:', token, timestamp)
 Record
if item:
 when the

conn.zadd('viewed:' + token, item, timestamp)
 token was
conn.zremrangebyrank('viewed:' + token, 0, -26)
 last seen.
conn.zincrby('viewed:', item, -1)

Update the number
of times the given
item was viewed.

86 CHAPTER 4 Keeping data safe and ensuring performance

If our Redis and web servers are connected over LAN with only one or two steps, we could
expect that the round trip between the web server and Redis would be around 1–2 mil­
liseconds. With three to five round trips between Redis and the web server, we could
expect that it would take 3–10 milliseconds for update_token() to execute. At that
speed, we could only expect a single web server thread to be able to handle 100–333
requests per second. This is great, but we could do better. Let’s quickly create a non-
transactional pipeline and make all of our requests over that pipeline. You can see the
updated function in the next listing.

Listing 4.8 The update_token_pipeline() function

def update_token_pipeline(conn, token, user, item=None):
timestamp = time.time()
pipe = conn.pipeline(False) Set up the pipeline.
pipe.hset('login:', token, user)
pipe.zadd('recent:', token, timestamp)
if item:

pipe.zadd('viewed:' + token, item, timestamp)
pipe.zremrangebyrank('viewed:' + token, 0, -26)
pipe.zincrby('viewed:', item, -1)

pipe.execute()

Execute the commands
in the pipeline.

By replacing our standard Redis connection with a pipelined connection, we can
reduce our number of round trips by a factor of 3–5, and reduce the expected time to
execute update_token_pipeline() to 1–2 milliseconds. At that speed, a single web
server thread could handle 500–1000 requests per second if it only had to deal with
updating item view information. Theoretically, this is great, but what about in reality?

 Let’s test both of these functions by performing a simple benchmark. We’ll test the
number of requests that can be processed per second against a copy of Redis that’s on
the same machine, across a fast and low-latency network connection, and across a slow
and higher latency connection. We’ll first start with the benchmark code that we’ll use
to test the performance of these connections. In our benchmark, we’ll call either
update_token()or update_token_pipeline() repeatedly until we reach a prespecified
timeout, and then calculate the number of requests we can service at a given time. The
following listing shows the code that we’ll use to run our two update_token commands.

Listing 4.9 The benchmark_update_token() function

def benchmark_update_token(conn, duration):

for function in (update_token, update_token_pipeline):

count = 0
 Set up our counters
start = time.time()
 and our ending
end = start + duration
 conditions.
while time.time() < end:

count += 1

Execute both the
update_token() and the
update_token_pipeline()
functions.

Call one function(conn, 'token', 'user', 'item') Calculate the duration.

of the two delta = time.time() - start

functions. print function.__name__, count, delta, count / delta Print information
about the results.

87 Performance considerations

When we run the benchmark function across a variety of connections with the given
available bandwidth (gigabits or megabits) and latencies, we get data as shown in
table 4.4.

Table 4.4	 Performance of pipelined and nonpipelined connections over different types of connections.
For high-speed connections, we’ll tend to run at the limit of what a single processor can
perform for encoding/decoding commands in Redis. For slower connections, we’ll run at the
limit of bandwidth and/or latency.

Description Bandwidth Latency
update_table()

calls per second

update_table_
pipeline()

calls per second

Local machine, Unix
domain socket

Local machine, local-
host

Remote machine,
shared switch

Remote machine, con­
nected through VPN

>1 gigabit

>1 gigabit

1 gigabit

1.8 megabit

0.015ms

0.015ms

0.271ms

48ms

3,761

3,257

739

3.67

6,394

5,991

2,841

18.2

Looking at the table, note that for high-latency connections, we can multiply perfor­
mance by a factor of five using pipelines over not using pipelines. Even with very low-
latency remote connections, we’re able to improve performance by almost four times.
For local connections, we actually run into the single-core performance limit of
Python sending and receiving short command sequences using the Redis protocol
(we’ll talk about this more in section 4.6).

 You now know how to push Redis to perform better without transactions. Beyond
using pipelines, are there any other standard ways of improving the performance of
Redis?

4.6 Performance considerations
When coming from a relational database background, most users will be so happy with
improving performance by a factor of 100 times or more by adding Redis, they won’t
realize that they can make Redis perform even better. In the previous section, we intro­
duced non-transactional pipelines as a way to minimize the number of round trips
between our application and Redis. But what if we’ve already built an application, and
we know that it could perform better? How do we find ways to improve performance?

 Improving performance in Redis requires having an understanding of what to
expect in terms of performance for the types of commands that we’re sending to
Redis. To get a better idea of what to expect from Redis, we’ll quickly run a bench­
mark that’s included with Redis, redis-benchmark, as can be seen in listing 4.10. Feel
free to explore redis-benchmark on your own to discover the performance character­
istics of your server and of Redis.

88 CHAPTER 4 Keeping data safe and ensuring performance

Listing 4.10 Running redis-benchmark on an Intel Core-2 Duo 2.4 GHz desktop

$ redis-benchmark -c 1 -q

PING (inline): 34246.57 requests per second

PING: 34843.21 requests per second

MSET (10 keys): 24213.08 requests per second

SET: 32467.53 requests per second

GET: 33112.59 requests per second

INCR: 32679.74 requests per second

LPUSH: 33333.33 requests per second

LPOP: 33670.04 requests per second

SADD: 33222.59 requests per second

SPOP: 34482.76 requests per second

We run with the ‘-q’ option to
get simple output and ‘-c 1’ to
use a single client.

LPUSH (again, in order to bench LRANGE): 33222.59 requests per second

LRANGE (first 100 elements): 22988.51 requests per second

LRANGE (first 300 elements): 13888.89 requests per second

LRANGE (first 450 elements): 11061.95 requests per second

LRANGE (first 600 elements): 9041.59 requests per second

The output of redis-benchmark shows a group of commands that are typically used in
Redis, as well as the number of commands of that type that can be run in a single sec­
ond. A standard run of this benchmark without any options will try to push Redis to its
limit using 50 clients, but it’s a lot easier to compare performance of a single bench­
mark client against one copy of our own client, rather than many.

 When looking at the output of redis-benchmark, we must be careful not to try to
directly compare its output with how quickly our application performs. This is
because redis-benchmark doesn’t actually process the result of the commands that it
performs, which means that the results of some responses that require substantial
parsing overhead aren’t taken into account. Generally, compared to redis-benchmark
running with a single client, we can expect the Python Redis client to perform at
roughly 50–60% of what redis-benchmark will tell us for a single client and for non­
pipelined commands, depending on the complexity of the command to call.

 If you find that your commands are running at about half of what you’d expect
given redis-benchmark (about 25–30% of what redis-benchmark reports), or if you
get errors reporting “Cannot assign requested address,” you may be accidentally creat­
ing a new connection for every command.

 I’ve listed some performance numbers relative to a single redis-benchmark client
using the Python client, and have described some of the most likely causes of slow­
downs and/or errors in table 4.5.

 This list of possible performance issues and solutions is short, but these issues
amount to easily 95% of the performance-related problems that users report on a reg­
ular basis (aside from using Redis data structures incorrectly). If we’re experiencing
slowdowns that we’re having difficulty in diagnosing, and we know it isn’t one of the
problems listed in table 4.5, we should request help by one of the ways described in
section 1.4.

http:11061.95
http:13888.89
http:22988.51
http:33222.59
http:34482.76
http:33222.59
http:33670.04
http:33333.33
http:32679.74
http:33112.59
http:32467.53
http:24213.08
http:34843.21
http:34246.57

Summary	 89

Table 4.5	 A table of general performance comparisons against a single redis-benchmark client and
what may be causing potential slowdowns

Performance or error Likely cause Remedy

50–60% of redis-benchmark
for a single client

25–30% of redis-benchmark
for a single client

Client error: “Cannot assign
requested address”

Expected performance without
pipelining

Connecting for every com­
mand/group of commands

Connecting for every com­
mand/group of commands

N/A

Reuse your Redis connections

Reuse your Redis connections

Most client libraries that access Redis offer some level of connection pooling built in.
For Python, we only need to create a single redis.Redis() for every unique Redis
server we need to connect to (we need to create a new connection for each numbered
database we’re using). The redis.Redis() object itself will handle creating connec­
tions as necessary, reusing existing connections, and discarding timed-out connections.
As written, the Python client connection pooling is both thread safe and fork() safe.

4.7 Summary
Through this chapter, we’ve covered topics that can help keep Redis performing well
while keeping your data secure against system failures. The first half of the chapter pri­
marily discussed the use of persistence and replication to prepare for failures and deal
with failures. The latter half dealt with keeping your data from being corrupted, using
pipelines to improve performance, and diagnosing potential performance problems.

 If there are two things you should take from this chapter, they are that the use of
replication and append-only files can go a long way toward keeping your data safe,
and that using WATCH/MULTI/EXEC can keep your data from being corrupted by multi­
ple clients working on the same data.

 Hopefully our discussion of WATCH/MULTI/EXEC introduced in chapter 3 has helped
you to better understand how to fully utilize transactions in Redis. In chapter 6, we’ll
revisit transactions, but now let’s move on to chapter 5, where you’ll learn more about
using Redis to help with system administration tasks.

DATABASES/NOSQL

Redis IN ACTION
Josiah L. Carlson

W
hen you need near-real-time access to a fast-moving data
stream, key-value stores like Redis are the way to go.
Redis expands on the key-value pattern by accepting a

wide variety of data types, including hashes, strings, lists, and
other structures. It provides lightning-fast operations on
in-memory datasets, and also makes it easy to persist to disk
on the fly. Plus, it’s free and open source.

Redis in Action introduces Redis and the key-value model.
You’ll quickly dive into real use cases including simple caching,
distributed ad targeting, and more. You’ll learn how to scale
Redis from small jobs to massive datasets and discover how
to integrate with traditional RDBMS or other NoSQL stores.
Experienced developers will appreciate the in-depth chapters
on clustering and internal scripting.

What’s Inside
● Redis from the ground up
● Preprocessing real-time data
● Managing in-memory datasets
● Pub/sub and confi guration
● Persisting to disk

Written for developers familiar with database concepts. No
prior exposure to NoSQL database concepts nor to Redis itself
is required. Appropriate for systems administrators comfortable
with programming.

Dr. Josiah L. Carlson is a seasoned database professional and an
active contributor to the Redis community.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/RedisinAction

SEE INSERT

“A great addition to

 the Redis ecosystem.”
—From the Foreword by Salvatore

Sanfilippo, Creator of Redis

“The examples, taken from

real-world use cases, are one

of the major strengths

 of the book.”
—Filippo Pacini, SG Consulting

“Fom beginner to expert

with real and comprehensive

examples.”
—Felipe Gutierrez
VMware/Spring Source

“Excellent in-depth analysis

... insightful real-world

examples.”
—Bobby Abraham, Integri LLC

“Pure gold!”—Leo Cassarani
Unboxed Consulting

M A N N I N G $44.99 / Can $47.99 [INCLUDING eBOOK]

