SAMPLE
CHAPTER

SECOND EDITION

Christian Bauer
Gavin King
Gary Gregory

Foreworn BY Linda DeMichiel

/'I MANNING

Dottie
Text Box
SAMPLE
CHAPTER

Java Persistence with Hibernate
by Christian Bauer
Gavin King
Gary Gregory

Chapter 1

Copyright 2015 Manning Publications

brief contents

PART 1 GETTING STARTED WITH ORM........cccuuuuruummnnnnnnnnnennnnnnn. 1
1 = Understanding object/relational persistence 3
2 = Starting a project 19
3 ® Domain models and metadata 30

PART 2 MAPPING STRATEGIES ...ceteeeeecescecescescescscessescssessessssesces D9

4 = Mapping persistent classes 61

5
6
7
8
9

Mapping value types 81

Mapping inheritance 117

Mapping collections and entity associations 140
Advanced entity association mappings 172

Complex and legacy schemas 203

PART 3 TRANSACTIONAL DATA PROCESSING «ccveveeerercececscscscscee 227

10
11
12
13

Managing data 229

Transactions and concurrency 254
Fetch plans, strategies, and profiles 283
Filtering data 312

viii BRIEF CONTENTS

PART 4 WRITING QUERIES ...cceeuceuncrnerecenccrncrnceesssecssncsnscsnese 343

14 = Creating and executing queries 345
15 = The query languages 369

16 = Advanced query options 408

17 = Customizing SQL 426

PART 5 BUILDING APPLICATIONS .eeeteecercesceccscesssscscesssscscessnsene 469

18 = Designing client/server applications 471
19 = Building web applications 498
20 = Scaling Hibernate 532

Understanding
object/relational persistence

In this chapter

= Persistence with SQL databases in Java
applications

= The object/relational paradigm mismatch
= Introducing ORM, JPA, and Hibernate

This book is about Hibernate; our focus is on using Hibernate as a provider of the
Java Persistence API. We cover basic and advanced features and describe some ways
to develop new applications using Java Persistence. Often, these recommendations
aren’t specific to Hibernate. Sometimes they’re our own ideas about the best ways to
do things when working with persistent data, explained in the context of Hibernate.

The approach to managing persistent data has been a key design decision in
every software project we’ve worked on. Given that persistent data isn’t a new or
unusual requirement for Java applications, you’d expect to be able to make a simple
choice among similar, well-established persistence solutions. Think of web applica-
tion frameworks (JavaServer Faces versus Struts versus GWT), GUI component

11

CHAPTER 1 Understanding object/relational persistence

frameworks (Swing versus SWT), or template engines (JSP versus Thymeleaf). Each of
the competing solutions has various advantages and disadvantages, but they all share
the same scope and overall approach. Unfortunately, this isn’t yet the case with persis-
tence technologies, where we see some wildly differing solutions to the same problem.

Persistence has always been a hot topic of debate in the Java community. Is persis-
tence a problem that is already solved by SQL and extensions such as stored proce-
dures, or is it a more pervasive problem that must be addressed by special Java
component models, such as EJBs? Should we hand-code even the most primitive CRUD
(create, read, update, delete) operations in SQL and JDBC, or should this work be
automated? How do we achieve portability if every database management system has
its own SQL dialect? Should we abandon SQL completely and adopt a different data-
base technology, such as object database systems or NoSQL systems? The debate may
never end, but a solution called object/relational mapping (ORM) now has wide accep-
tance, thanks in large part to the innovations of Hibernate, an open source ORM ser-
vice implementation.

Before we can get started with Hibernate, you need to understand the core prob-
lems of object persistence and ORM. This chapter explains why you need tools like
Hibernate and specifications such as the Java Persistence API (JPA).

First we define persistent data management in the context of object-oriented appli-
cations and discuss the relationship of SQL, JDBC, and Java, the underlying technolo-
gies and standards that Hibernate builds on. We then discuss the so-called
object/relational paradigm mismatch and the generic problems we encounter in object-
oriented software development with SQL databases. These problems make it clear that
we need tools and patterns to minimize the time we have to spend on the persistence-
related code in our applications.

The best way to learn Hibernate isn’t necessarily linear. We understand that you
may want to try Hibernate right away. If this is how you’d like to proceed, skip to the
next chapter and set up a project with the “Hello World” example. We recommend
that you return here at some point as you go through this book; that way, you’ll be pre-
pared and have all the background concepts you need for the rest of the material.

What is persistence?

Almost all applications require persistent data. Persistence is one of the fundamental
concepts in application development. If an information system didn’t preserve data
when it was powered off, the system would be of little practical use. Object persistence
means individual objects can outlive the application process; they can be saved to a
data store and be re-created at a later point in time. When we talk about persistence in
Java, we’re normally talking about mapping and storing object instances in a database
using SQL. We start by taking a brief look at the technology and how it’s used in Java.
Armed with this information, we then continue our discussion of persistence and how
it’s implemented in object-oriented applications.

111

What is persistence? 5

Relational databases

You, like most other software engineers, have probably worked with SQL and rela-
tional databases; many of us handle such systems every day. Relational database man-
agement systems have SQI-based application programming interfaces; hence, we call
today’s relational database products SQL database management systems (DBMS) or, when
we’re talking about particular systems, SQL databases.

Relational technology is a known quantity, and this alone is sufficient reason for
many organizations to choose it. But to say only this is to pay less respect than is due.
Relational databases are entrenched because they’re an incredibly flexible and robust
approach to data management. Due to the well-researched theoretical foundation of
the relational data model, relational databases can guarantee and protect the integrity
of the stored data, among other desirable characteristics. You may be familiar with E.F.
Codd’s four-decades-old introduction of the relational model, A Relational Model of
Data for Large Shared Data Banks (Codd, 1970). A more recent compendium worth
reading, with a focus on SQL, is C. J. Date’s SQL and Relational Theory (Date, 2009).

Relational DBMSs aren’t specific to Java, nor is an SQL database specific to a partic-
ular application. This important principle is known as data independence. In other
words, and we can’t stress this important fact enough, data lives longer than any applica-
tion does. Relational technology provides a way of sharing data among different appli-
cations, or among different parts of the same overall system (the data entry
application and the reporting application, for example). Relational technology is a
common denominator of many disparate systems and technology platforms. Hence,
the relational data model is often the foundation for the common enterprise-wide
representation of business entities.

Before we go into more detail about the practical aspects of SQL databases, we
have to mention an important issue: although marketed as relational, a database sys-
tem providing only an SQL data language interface isn’t really relational and in many
ways isn’t even close to the original concept. Naturally, this has led to confusion. SQL
practitioners blame the relational data model for shortcomings in the SQL language,
and relational data management experts blame the SQL standard for being a weak
implementation of the relational model and ideals. Application engineers are stuck
somewhere in the middle, with the burden of delivering something that works. We
highlight some important and significant aspects of this issue throughout this book,
but generally we focus on the practical aspects. If you're interested in more back-
ground material, we highly recommend Practical Issues in Database Management: A Refer-
ence for the Thinking Practitioner by Fabian Pascal (Pascal, 2000) and An Introduction to
Database Systems by Chris Date (Date, 2003) for the theory, concepts, and ideals of
(relational) database systems. The latter book is an excellent reference (it’s big) for all
questions you may possibly have about databases and data management.

112

113

CHAPTER 1 Understanding object/relational persistence

Understanding SQL

To use Hibernate effectively, you must start with a solid understanding of the rela-
tional model and SQL. You need to understand the relational model and topics such
as normalization to guarantee the integrity of your data, and you’ll need to use your
knowledge of SQL to tune the performance of your Hibernate application. Hibernate
automates many repetitive coding tasks, but your knowledge of persistence technol-
ogy must extend beyond Hibernate itself if you want to take advantage of the full
power of modern SQL databases. To dig deeper, consult the bibliography at the end of
this book.

You’ve probably used SQL for many years and are familiar with the basic operations
and statements written in this language. Still, we know from our own experience that
SQL is sometimes hard to remember, and some terms vary in usage.

Let’s review some of the SQL terms used in this book. You use SQL as a data defini-
tion language (DDL) when creating, altering, and dropping artifacts such as tables and
constraints in the catalog of the DBMS. When this schema is ready, you use SQL as a dala
manipulation language (DML) to perform operations on data, including insertions,
updates, and deletions. You retrieve data by executing queries with restrictions, projections,
and Cartesian products. For efficient reporting, you use SQL to join, aggregate, and group
data as necessary. You can even nest SQL statements inside each other—a technique
that uses subselects. When your business requirements change, you’ll have to modify
the database schema again with DDL statements after data has been stored; this is
known as schema evolution.

If you’re an SQL veteran and you want to know more about optimization and how
SQL is executed, get a copy of the excellent book SQL Tuning, by Dan Tow (Tow,
2003). For a look at the practical side of SQL through the lens of how not to use SQL,
SOL Antipatterns: Avoiding the Pitfalls of Database Programming (Karwin, 2010) is a good
resource.

Although the SQL database is one part of ORM, the other part, of course, consists
of the data in your Java application that needs to be persisted to and loaded from the
database.

Using SQL in Java

When you work with an SQL database in a Java application, you issue SQL statements
to the database via the Java Database Connectivity (JDBC) API. Whether the SQL was
written by hand and embedded in the Java code or generated on the fly by Java code,
you use the JDBC API to bind arguments when preparing query parameters, executing
the query, scrolling through the query result, retrieving values from the result set, and
so on. These are low-level data access tasks; as application engineers, we’re more inter-
ested in the business problem that requires this data access. What we’d really like to
write is code that saves and retrieves instances of our classes, relieving us of this low-
level drudgery.

What is persistence? 7

Because these data access tasks are often so tedious, we have to ask, are the rela-
tional data model and (especially) SQL the right choices for persistence in object-
oriented applications? We answer this question unequivocally: yes! There are many
reasons why SQL databases dominate the computing industry—relational database
management systems are the only proven generic data management technology, and
they’re almost always a requirement in Java projects.

Note that we aren’t claiming that relational technology is always the best solution.
There are many data management requirements that warrant a completely different
approach. For example, internet-scale distributed systems (web search engines, con-
tent distribution networks, peer-to-peer sharing, instant messaging) have to deal with
exceptional transaction volumes. Many of these systems don’t require that after a data
update completes, all processes see the same updated data (strong transactional con-
sistency). Users might be happy with weak consistency; after an update, there might
be a window of inconsistency before all processes see the updated data. Some scien-
tific applications work with enormous but very specialized datasets. Such systems and
their unique challenges typically require equally unique and often custom-made per-
sistence solutions. Generic data management tools such as ACID-compliant transac-
tional SQL databases, JDBC, and Hibernate would play only a minor role.

Relational systems at internet scale

To understand why relational systems, and the data-integrity guarantees associated
with them, are difficult to scale, we recommend that you first familiarize yourself with
the CAP theorem. According to this rule, a distributed system can’t be consistent,
available, and tolerant against partition failures all at the same time.

A system may guarantee that all nodes will see the same data at the same time and
that data read and write requests are always answered. But when a part of the sys-
tem fails due to a host, network, or data center problem, you must either give up
strong consistency (linearizability) or 100% availability. In practice, this means you
need a strategy that detects partition failures and restores either consistency or
availability to a certain degree (for example, by making some part of the system tem-
porarily unavailable for data synchronization to occur in the background). Often
it depends on the data, the user, or the operation whether strong consistency is
necessary.

For relational DBMSs designed to scale easily, have a look at VoltDB
(www.voltdb.com) and NuoDB (www.nuodb.com). Another interesting read is how
Google scales its most important database, for the advertising business, and why it’'s
relational/SQL, in “F1 - The Fault-Tolerant Distributed RDBMS Supporting Google’s
Ad Business” (Shute, 2012).

In this book, we’ll think of the problems of data storage and sharing in the context of
an object-oriented application that uses a domain model. Instead of directly working
with the rows and columns of a java.sqgl.ResultSet, the business logic of an applica-
tion interacts with the application-specific object-oriented domain model. If the SQL

1.2

CHAPTER 1 Understanding object/relational persistence

database schema of an online auction system has ITEM and BID tables, for example,
the Java application defines Item and Bid classes. Instead of reading and writing the
value of a particular row and column with the ResultSet API, the application loads
and stores instances of Item and Bid classes.

At runtime, the application therefore operates with instances of these classes.
Each instance of a Bid has a reference to an auction Item, and each Item may have a
collection of references to Bid instances. The business logic isn’t executed in the
database (as an SQL stored procedure); it’s implemented in Java and executed in the
application tier. This allows business logic to use sophisticated object-oriented con-
cepts such as inheritance and polymorphism. For example, we could use well-known
design patterns such as Strategy, Mediator, and Composite (see Design Patterns: Elements of
Reusable Object-Oriented Software [Gamma, 1995]), all of which depend on polymorphic
method calls.

Now a caveat: not all Java applications are designed this way, nor should they be.
Simple applications may be much better off without a domain model. Use the JDBC
ResultSet if that’s all you need. Call existing stored procedures, and read their SQL
result sets, too. Many applications need to execute procedures that modify large sets
of data, close to the data. You might implement some reporting functionality with
plain SQL queries and render the result directly onscreen. SQL and the JDBC API are
perfectly serviceable for dealing with tabular data representations, and the JDBC Row-
Set makes CRUD operations even easier. Working with such a representation of persis-
tent data is straightforward and well understood.

But in the case of applications with nontrivial business logic, the domain model
approach helps to improve code reuse and maintainability significantly. In practice,
both strategies are common and needed.

For several decades, developers have spoken of a paradigm mismatch. This mismatch
explains why every enterprise project expends so much effort on persistence-related
concerns. The paradigms referred to are object modeling and relational modeling, or,
more practically, object-oriented programming and SQL.

With this realization, you can begin to see the problems—some well understood
and some less well understood—that an application that combines both data repre-
sentations must solve: an object-oriented domain model and a persistent relational
model. Let’s take a closer look at this so-called paradigm mismatch.

The paradigm mismatch

The object/relational paradigm mismatch can be broken into several parts, which we
examine one at a time. Let’s start our exploration with a simple example that is prob-
lem free. As we build on it, you’ll see the mismatch begin to appear.

Suppose you have to design and implement an online e-commerce application. In
this application, you need a class to represent information about a user of the system,
and you need another class to represent information about the user’s billing details,
as shown in figure 1.1.

The paradigm mismatch 9

User L BillingDetails Figure 1.1 A simple UML diagram of the
User and BillingDetails entities

In this diagram, you can see that a User has many BillingDetails. You can navigate
the relationship between the classes in both directions; this means you can iterate
through collections or call methods to get to the “other” side of the relationship. The
classes representing these entities may be extremely simple:

public class User {

String username;
String address;
Set billingDetails;

// Accessor methods (getter/setter), business methods, etc.

}
public class BillingDetails {

String account;
String bankname;
User user;

// Accessor methods (getter/setter), business methods, etc.

Note that you’re only interested in the state of the entities with regard to persistence,
so we’ve omitted the implementation of property accessors and business methods,
such as getUsername () or billAuction().

It’s easy to come up with an SQL schema design for this case:

create table USERS (
USERNAME varchar (15) not null primary key,
ADDRESS varchar (255) not null

)

create table BILLINGDETAILS (
ACCOUNT varchar (15) not null primary key,
BANKNAME varchar (255) not null,
USERNAME varchar (15) not null,
foreign key (USERNAME) references USERS
)

The foreign key-constrained column USERNAME in BILLINGDETAILS represents the
relationship between the two entities. For this simple domain model, the object/rela-
tional mismatch is barely in evidence; it’s straightforward to write JDBC code to insert,
update, and delete information about users and billing details.

Now let’s see what happens when you consider something a little more realistic.
The paradigm mismatch will be visible when you add more entities and entity relation-
ships to your application.

10

121

CHAPTER 1 Understanding object/relational persistence

The problem of granularity

The most glaringly obvious problem with the current implementation is that you’ve
designed an address as a simple String value. In most systems, it’s necessary to store
street, city, state, country, and ZIP code information separately. Of course, you could
add these properties directly to the User class, but because it’s highly likely that other
classes in the system will also carry address information, it makes more sense to create
an Address class. Figure 1.2 shows the updated model.

Address User 1" | BilingDetails | Figure 1.2 The User has an
Address.

Should you also add an ADDRESS table? Not necessarily; it’s common to keep address
information in the USERS table, in individual columns. This design is likely to perform
better, because a table join isn’t needed if you want to retrieve the user and address in
a single query. The nicest solution may be to create a new SQL data type to represent
addresses, and to add a single column of that new type in the USERS table instead of
several new columns.

You have the choice of adding either several columns or a single column (of a new
SQL data type). This is clearly a problem of granularity. Broadly speaking, granularity
refers to the relative size of the types you're working with.

Let’s return to the example. Adding a new data type to the database catalog, to
store Address Java instances in a single column, sounds like the best approach:
create table USERS (

USERNAME varchar (15) not null primary key,

ADDRESS address not null
)

A new Address type (class) in Java and a new ADDRESS SQL data type should guarantee
interoperability. But you’ll find various problems if you check the support for user-
defined data types (UDTs) in today’s SQL database management systems.

UDT support is one of a number of so-called object-relational extensions to traditional
SQL. This term alone is confusing, because it means the database management system
has (or is supposed to support) a sophisticated data type system—something you take
for granted if somebody sells you a system that can handle data in a relational fashion.
Unfortunately, UDT support is a somewhat obscure feature of most SQL DBMSs and
certainly isn’t portable between different products. Furthermore, the SQL standard
supports user-defined data types, but poorly.

This limitation isn’t the fault of the relational data model. You can consider the
failure to standardize such an important piece of functionality as fallout from the
objectrelational database wars between vendors in the mid-1990s. Today, most engi-
neers accept that SQL products have limited type systems—no questions asked. Even
with a sophisticated UDT system in your SQL DBMS, you would still likely duplicate the
type declarations, writing the new type in Java and again in SQL. Attempts to find a

1.2.2

The paradigm mismatch 11

better solution for the Java space, such as SQLJ, unfortunately, have not had much suc-
cess. DBMS products rarely support deploying and executing Java classes directly on
the database, and if support is available, it’s typically limited to very basic functionality
and complex in everyday usage.

For these and whatever other reasons, use of UDTs or Java types in an SQL database
isn’t common practice in the industry at this time, and it’s unlikely that you’ll encoun-
ter a legacy schema that makes extensive use of UDTs. You therefore can’t and won’t
store instances of your new Address class in a single new column that has the same
data type as the Java layer.

The pragmatic solution for this problem has several columns of built-in vendor-
defined SQL types (such as Boolean, numeric, and string data types). You usually
define the USERS table as follows:

create table USERS (
USERNAME varchar (15) not null primary key,
ADDRESS_STREET varchar (255) not null,
ADDRESS_ZIPCODE varchar(5) not null,
ADDRESS_CITY varchar (255) not null

)

Classes in the Java domain model come in a range of different levels of granularity:
from coarse-grained entity classes like User, to finer-grained classes like Address,
down to simple SwisszipCode extending AbstractNumericZipCode (or whatever your
desired level of abstraction is). In contrast, just two levels of type granularity are visible
in the SQL database: relation types created by you, like USERS and BILLINGDETAILS,
and built-in data types such as VARCHAR, BIGINT, or TIMESTAMP.

Many simple persistence mechanisms fail to recognize this mismatch and so end
up forcing the less flexible representation of SQL products on the object-oriented
model, effectively flattening it.

It turns out that the granularity problem isn’t especially difficult to solve. We prob-
ably wouldn’t even discuss it, were it not for the fact that it’s visible in so many existing
systems. We describe the solution to this problem in section 4.1.

A much more difficult and interesting problem arises when we consider domain
models that rely on inheritance, a feature of object-oriented design you may use to bill
the users of your e-commerce application in new and interesting ways.

The problem of subtypes

In Java, you implement type inheritance using superclasses and subclasses. To illus-
trate why this can present a mismatch problem, let’s add to your e-commerce applica-
tion so that you now can accept not only bank account billing, but also credit and
debit cards. The most natural way to reflect this change in the model is to use inheri-
tance for the BillingDetails superclass, along with several concrete subclasses:
CreditCard, BankAccount, and so on. Each of these subclasses defines slightly differ-
ent data (and completely different functionality that acts on that data). The UML class
diagram in figure 1.3 illustrates this model.

12

1.2.3

CHAPTER 1 Understanding object/relational persistence

User - BillingDetails
CreditCard BankAccount Figure 1.3 Using inheritance for
different billing strategies

What changes must you make to support this updated Java class structure? Can you
create a table CREDITCARD that extends BILLINGDETAILS? SQL database products don’t
generally implement table inheritance (or even data type inheritance), and if they do
implement it, they don’t follow a standard syntax and might expose us to data integ-
rity problems (limited integrity rules for updatable views).

We aren’t finished with inheritance. As soon as we introduce inheritance into the
model, we have the possibility of polymorphism.

The User class has an association to the BillingDetails superclass. This is a poly-
morphic association. At runtime, a User instance may reference an instance of any of
the subclasses of BillingDetails. Similarly, you want to be able to write polymorphic
queries that refer to the BillingDetails class, and have the query return instances of
its subclasses.

SQL databases also lack an obvious way (or at least a standardized way) to represent
a polymorphic association. A foreign key constraint refers to exactly one target table;
itisn’t straightforward to define a foreign key that refers to multiple tables. You’d have
to write a procedural constraint to enforce this kind of integrity rule.

The result of this mismatch of subtypes is that the inheritance structure in a model
must be persisted in an SQL database that doesn’t offer an inheritance mechanism. In
chapter 6, we discuss how ORM solutions such as Hibernate solve the problem of per-
sisting a class hierarchy to an SQL database table or tables, and how polymorphic
behavior can be implemented. Fortunately, this problem is now well understood in
the community, and most solutions support approximately the same functionality.

The next aspect of the object/relational mismatch problem is the issue of object
identity. You probably noticed that the example defined USERNAME as the primary key of
the USERS table. Was that a good choice? How do you handle identical objects in Java?

The problem of identity

Although the problem of identity may not be obvious at first, you’ll encounter it often
in your growing and expanding e-commerce system, such as when you need to check
whether two instances are identical. There are three ways to tackle this problem: two
in the Java world and one in your SQL database. As expected, they work together only
with some help.

Java defines two different notions of sameness:

= Instance identity (roughly equivalent to memory location, checked with a == b)

= Instance equality, as determined by the implementation of the equals()
method (also called equality by value)

The paradigm mismatch 13

On the other hand, the identity of a database row is expressed as a comparison of pri-
mary key values. As you’ll see in section 10.1.2, neither equals () nor == is always equiv-
alent to a comparison of primary key values. It’s common for several non-identical
instances in Java to simultaneously represent the same row of the database—for exam-
ple, in concurrently running application threads. Furthermore, some subtle difficul-
ties are involved in implementing equals() correctly for a persistent class and
understanding when this might be necessary.

Let’s use an example to discuss another problem related to database identity. In
the table definition for USERS, USERNAME is the primary key. Unfortunately, this deci-
sion makes it difficult to change a user’s name; you need to update not only the row in
USERS, but also the foreign key values in (many) rows of BILLINGDETAILS. To solve this
problem, later in this book we recommend that you use surrogate keys whenever you
can’t find a good natural key. We also discuss what makes a good primary key. A surro-
gate key column is a primary key column with no meaning to the application user—in
other words, a key that isn’t presented to the application user. Its only purpose is iden-
tifying data inside the application.

For example, you may change your table definitions to look like this:

create table USERS (
ID bigint not null primary key,
USERNAME varchar (15) not null unique,

)

create table BILLINGDETAILS (
ID bigint not null primary key,
ACCOUNT varchar (15) not null,
BANKNAME varchar (255) not null,
USER_ID bigint not null,
foreign key (USER_ID) references USERS
)

The ID columns contain system-generated values. These columns were introduced
purely for the benefit of the data model, so how (if at all) should they be represented
in the Java domain model? We discuss this question in section 4.2, and we find a solu-
tion with ORM.

In the context of persistence, identity is closely related to how the system handles
caching and transactions. Different persistence solutions have chosen different strate-
gies, and this has been an area of confusion. We cover all these interesting topics—
and show how they’re related—in section 10.1.

So far, the skeleton e-commerce application you’ve designed has exposed the para-
digm mismatch problems with mapping granularity, subtypes, and identity. You're
almost ready to move on to other parts of the application, but first we need to discuss
the important concept of associations: how the relationships between entities are
mapped and handled. Is the foreign key constraint in the database all you need?

14

124

CHAPTER 1 Understanding object/relational persistence

Problems relating to associations

In your domain model, associations represent the relationships between entities. The
User, Address, and BillingDetails classes are all associated; but unlike Address,
BillingDetails stands on its own. BillingDetails instances are stored in their own
table. Association mapping and the management of entity associations are central
concepts in any object persistence solution.

Object-oriented languages represent associations using object references; but in the
relational world, a foreign key—constrained column represents an association, with copies
of key values. The constraint is a rule that guarantees integrity of the association.
There are substantial differences between the two mechanisms.

Object references are inherently directional; the association is from one instance
to the other. They’re pointers. If an association between instances should be navigable
in both directions, you must define the association twice, once in each of the associ-
ated classes. You’ve already seen this in the domain model classes:
public class User {

Set billingDetails;
}

public class BillingDetails {
User user;

}

Navigation in a particular direction has no meaning for a relational data model
because you can create arbitrary data associations with join and projection operators.
The challenge is to map a completely open data model, which is independent of the
application that works with the data, to an application-dependent navigational
model—a constrained view of the associations needed by this particular application.

Java associations can have many-to-many multiplicity. For example, the classes could
look like this:

public class User {
Set billingDetails;
}

public class BillingDetails {
Set users;

}

But the foreign key declaration on the BILLINGDETAILS table is a many-to-one associa-
tion: each bank account is linked to a particular user. Each user may have multiple
linked bank accounts.

If you wish to represent a many-to-many association in an SQL database, you must
introduce a new table, usually called a lnk table. In most cases, this table doesn’t
appear anywhere in the domain model. For this example, if you consider the relation-
ship between the user and the billing information to be many-to-many, you define the
link table as follows:

125

The paradigm mismatch 15

create table USER_BILLINGDETAILS (

USER_ID bigint,

BILLINGDETAILS_ID bigint,

primary key (USER_ID, BILLINGDETAILS_ID),

foreign key (USER_ID) references USERS,

foreign key (BILLINGDETAILS_ID) references BILLINGDETAILS
)

You no longer need the USER_ID foreign key column and constraint on the BILLING-
DETAILS table; this additional table now manages the links between the two entities.
We discuss association and collection mappings in detail in chapter 7.

So far, the issues we’ve considered are mainly structural: you can see them by con-
sidering a purely static view of the system. Perhaps the most difficult problem in object
persistence is a dynamic problem: how data is accessed at runtime.

The problem of data navigation

There is a fundamental difference in how you access data in Java and in a relational
database. In Java, when you access a user’s billing information, you call
someUser.getBillingDetails () .iterator().next() or something similar. This is
the most natural way to access object-oriented data, and it’s often described as walking
the object network. You navigate from one instance to another, even iterating collections,
following prepared pointers between classes. Unfortunately, this isn’t an efficient way
to retrieve data from an SQL database.

The single most important thing you can do to improve the performance of data
access code is to minimize the number of requests to the database. The most obvious way to
do this is to minimize the number of SQL queries. (Of course, other, more sophisti-
cated, ways—such as extensive caching—follow as a second step.)

Therefore, efficient access to relational data with SQL usually requires joins
between the tables of interest. The number of tables included in the join when retriev-
ing data determines the depth of the object network you can navigate in memory. For
example, if you need to retrieve a User and aren’t interested in the user’s billing infor-
mation, you can write this simple query:

select * from USERS u where u.ID = 123

On the other hand, if you need to retrieve a User and then subsequently visit each of
the associated BillingDetails instances (let’s say, to list all the user’s bank accounts),
you write a different query:
select * from USERS u

left outer join BILLINGDETAILS bd

on bd.USER_ID = u.ID
where u.ID = 123

As you can see, to use joins efficiently you need to know what portion of the object
network you plan to access when you retrieve the initial instance before you start navi-
gating the object network! Careful, though: if you retrieve too much data (probably

16

1.3

CHAPTER 1 Understanding object/relational persistence

more than you might need), you’re wasting memory in the application tier. You may
also overwhelm the SQL database with huge Cartesian product result sets. Imagine
retrieving not only users and bank accounts in one query, but also all orders paid from
each bank account, the products in each order, and so on.

Any object persistence solution worth its salt provides functionality for fetching the
data of associated instances only when the association is first accessed in Java code.
This is known as lazy loading: retrieving data on demand only. This piecemeal style of
data access is fundamentally inefficient in the context of an SQL database, because it
requires executing one statement for each node or collection of the object network
that is accessed. This is the dreaded n+1 selects problem.

This mismatch in the way you access data in Java and in a relational database is per-
haps the single most common source of performance problems in Java information
systems. Yet although we’ve been blessed with innumerable books and articles advising
us to use StringBuffer for string concatenation, avoiding the Cartesian product and
n+1 selects problems is still a mystery for many Java programmers. (Admit it: you just
thought StringBuilder would be much better than StringBuffer.)

Hibernate provides sophisticated features for efficiently and transparently fetching
networks of objects from the database to the application accessing them. We discuss
these features in chapter 12.

We now have quite a list of object/relational mismatch problems, and it can be
costly (in time and effort) to find solutions, as you may know from experience. It will
take us most of this book to provide a complete answer to these questions and to dem-
onstrate ORM as a viable solution. Let’s get started with an overview of ORM, the Java
Persistence standard, and the Hibernate project.

ORM and JPA

In a nutshell, object/relational mapping is the automated (and transparent) persis-
tence of objects in a Java application to the tables in an SQL database, using metadata
that describes the mapping between the classes of the application and the schema of
the SQL database. In essence, ORM works by transforming (reversibly) data from one
representation to another. Before we move on, you need to understand what Hiber-
nate can’t do for you.

A supposed advantage of ORM is that it shields developers from messy SQL. This
view holds that object-oriented developers can’t be expected to understand SQL or
relational databases well and that they find SQL somehow offensive. On the contrary,
we believe that Java developers must have a sufficient level of familiarity with—and
appreciation of—relational modeling and SQL in order to work with Hibernate. ORM
is an advanced technique used by developers who have already done it the hard way.
To use Hibernate effectively, you must be able to view and interpret the SQL state-
ments it issues and understand their performance implications.

ORM and JPA 17

Let’s look at some of the benefits of Hibernate:

= Productivity—Hibernate eliminates much of the grunt work (more than you’d
expect) and lets you concentrate on the business problem. No matter which
application-development strategy you prefer—top-down, starting with a domain
model, or bottom-up, starting with an existing database schema—Hibernate,
used together with the appropriate tools, will significantly reduce development time.

= Maintainability—Automated ORM with Hibernate reduces lines of code (LOC),
making the system more understandable and easier to refactor. Hibernate provides a
buffer between the domain model and the SQL schema, insulating each model
from minor changes to the other.

= Performance—Although hand-coded persistence might be faster in the same
sense that assembly code can be faster than Java code, automated solutions like
Hibernate allow the use of many optimizations at all times. One example of this
is efficient and easily tunable caching in the application tier. This means devel-
opers can spend more energy hand-optimizing the few remaining real bottle-
necks instead of prematurely optimizing everything.

= Vendor independence—Hibernate can help mitigate some of the risks associated
with vendor lock-in. Even if you plan never to change your DBMS product, ORM
tools that support a number of different DBMSs enable a certain level of portability.
In addition, DBMS independence helps in development scenarios where engi-
neers use a lightweight local database but deploy for testing and production on a
different system.

The Hibernate approach to persistence was well received by Java developers, and the
standard Java Persistence API was designed along similar lines.

JPA became a key part of the simplifications introduced in recent EJB and Java EE
specifications. We should be clear up front that neither Java Persistence nor Hiber-
nate are limited to the Java EE environment; they’re general-purpose solutions to the
persistence problem that any type of Java (or Groovy, or Scala) application can use.

The JPA specification defines the following:

= A facility for specifying mapping metadata—how persistent classes and their
properties relate to the database schema. JPA relies heavily on Java annotations
in domain model classes, but you can also write mappings in XML files.

= APIs for performing basic CRUD operations on instances of persistent classes,
most prominently javax.persistence.EntityManager to store and load data.

= Alanguage and APIs for specifying queries that refer to classes and properties of
classes. This language is the Java Persistence Query Language (JPQL) and looks
similar to SQL. The standardized API allows for programmatic creation of criteria
queries without string manipulation.

= How the persistence engine interacts with transactional instances to perform
dirty checking, association fetching, and other optimization functions. The lat-
est JPA specification covers some basic caching strategies.

18

CHAPTER 1 Understanding object/relational persistence

Hibernate implements JPA and supports all the standardized mappings, queries, and

programming interfaces.

14 Summary

With object persistence, individual objects can outlive their application process, be
saved to a data store, and be re-created later. The object/relational mismatch
comes into play when the data store is an SQL-based relational database man-
agement system. For instance, a network of objects can’t be saved to a database
table; it must be disassembled and persisted to columns of portable SQL data
types. A good solution for this problem is object/relational mapping (ORM).
ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the devel-
oper of 95% of object persistence work, such as writing complex SQL statements
with many table joins and copying values from JDBC result sets to objects or
graphs of objects.

A fullfeatured ORM middleware solution may provide database portability, cer-
tain optimization techniques like caching, and other viable functions that
aren’t easy to hand-code in a limited time with SQL and JDBC.

Better solutions than ORM might exist someday. We (and many others) may
have to rethink everything we know about data management systems and their
languages, persistence API standards, and application integration. But the evo-
lution of today’s systems into true relational database systems with seamless
object-oriented integration remains pure speculation. We can’t wait, and there
is no sign that any of these issues will improve soon (a multibillion-dollar indus-
try isn’t very agile). ORM is the best solution currently available, and it’s a time-
saver for developers facing the object/relational mismatch every day.

JAVA/HIBERNATE

Java Persistence with Hibernate scconp enimion
Baver « King o Gregory

ersistence—the ability of data to outlive an instance of a

program—is central to modern applications. Hibernate,

the most popular Java persistence tool, offers automatic and
transparent object/relational mapping, making it a snap to work
with SQL databases in Java applications.

explores Hibernate by developing
an application that ties together hundreds of individual examples.
You'll immediately dig into the rich programming model of Hi-
bernate, working through mappings, queries, fetching strategies,
transactions, conversations, caching, and more. Along the way
you'll find a well-illustrated discussion of best practices in data-
base design and optimization techniques. In this revised edition,
authors Christian Bauer, Gavin King, and Gary Gregory cover
Hibernate 5 in detail with the Java Persistence 2.1 standard (JSR
338). All examples have been updated for the latest Hibernate
and Java EE specification versions.

* Object/relational mapping concepts

e Efficient database application design

e Comprehensive Hibernate and Java Persistence reference

e Integration of Java Persistence with EJB, CDI, JSF, and JAX-RS
e Unmatched breadth and depth

The book assumes a working knowledge of Java.

is a member of the Hibernate developer team and
a trainer and consultant. is the founder of the Hiber-
nate project and a member of the Java Persistence expert group
(JSR 220). is a principal software engineer working
on application servers and legacy integration.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit
manning.com/books/java-persistence-with-hibernate-second-edition

$59.99 / Can $68.99 [INCLUDING eBOOK]

¢¢The most comprehensive
book about Hibernate Persis-
tence ... works well both as a
tutorial and as a reference.??

—Sergio Fernandez Gonzalez
Accenture Software

¢CThe essential guidebook
for navigating the
intricacies of Hibernate.??

—José Diaz, OptumHealth

¢CAn excellent update to a
classic and essential book.??

—Jerry Goodnough
Cognitive Medical Systems

¢CThe must-have reference
for every Hibernate user.??

—Stephan Heffner
SPIEGEL-Verlag Rudolf Augstein
GmbH & Co. KG

ISBN 13: 978-1-b1729-045-9
ISBN 10: 1-EL729-045-9

“ “‘ ““| ‘| l
9ll78161711290459

