
SAMPLE CHAPTER

Prototype and Scriptaculous
in Action

Bear Bibeault

Copyright 2007 Manning Publications

Chapter 4

by Dave Crane

with Tom Locke

vii

PART I GETTING STARTED ...1

 1 ■ Introducing Prototype and Scriptaculous 3

 2 ■ Introducing QuickGallery 26

 3 ■ Simplifying Ajax with Prototype 45

 4 ■ Using Prototype’s Advanced Ajax Features 71

PART II SCRIPTACULOUS QUICKLY95

 5 ■ Scriptaculous Effects 97

 6 ■ Scriptaculous Controls 140

 7 ■ Scriptaculous Drag and Drop 204

PART III PROTOTYPE IN DEPTH249

 8 ■ All About Objects 251

 9 ■ Fun with Functions 277

 10 ■ Arrays Made Easy 292

 11 ■ Back to the Browser 325

brief contents

viii BRIEF CONTENTS

PART IV ADVANCED TOPICS 357

 12 ■ Prototype and Scriptaculous in Practice 359

 13 ■ Prototype, Scriptaculous, and Rails 410

 appendix A ■ HTTP Primer 443

 appendix B ■ Measuring HTTP Traffic 458

 appendix C ■ Installing and Running Tomcat 5.5 469

 appendix D ■ Installing and Running PHP 477

 appendix E ■ Porting Server-Side Techniques 489

71

Using Prototype’s
Advanced Ajax Features

In this chapter
■ Prototype's advanced Ajax classes
■ Using HTML and Ajax
■ Comparing data- and content-centric Ajax
■ Measuring HTTP traffic

72 CHAPTER 4

Using Prototype’s Advanced Ajax Features

This chapter will conclude our examination of the different styles of Ajax, of what
Ajax can bring to a web application, and how Prototype makes Ajax development
easy. In chapter 2, we introduced the QuickGallery application, a non-Ajax web
app that we were going to convert to use Ajax, in order to eliminate the full-page
refresh associated with every request made to the server and change the stop-start
pattern of user interaction. In chapter 3, we developed two Ajax-powered versions
of the QuickGallery application, using XML and JSON. Both transmitted updates
from the server as structured data, with the client-side JavaScript containing all
the logic for parsing this data and generating updates to the user interface. In
terms of the types of Ajax that we identified in section 3.1.1, the implementations
that we presented in chapter 3 clearly fitted the content-centric model.

 In this chapter, we’re going to rework QuickGallery, still using the content-
centric approach to Ajax, to see if we can cut down on the amount of client-side
code we have to write. That is, the server will generate updates as fragments of
HTML directly, relieving the client-side code of the burden of parsing data and
generating HTML markup in one fell swoop. All we have to do is read the
response data and stitch it into the document using the innerHTML property.

 In fact, we don’t even need to do that. In section 3.1.2, we alluded to “deluxe
models” of the Ajax helper class in the Prototype library. As we will see, Prototype
provides us with a special helper class, the Ajax.Updater, that will make working
with Ajax even easier. We’ll begin this chapter, then, by looking at the Ajax.Updater
and related classes. We’ll then move on to develop an implementation of Quick-
Gallery that makes use of these classes, and conclude by evaluating and comparing
the various styles of Ajax that we’ve encountered in chapters 3 and 4.

4.1 Prototype’s advanced Ajax classes

In the previous chapter, we looked at the Ajax.Request class supplied by Proto-
type.js. Ajax.Request provides an easy-to-use wrapper around the XMLHttpRequest
object, but it still leaves the developer with the job of writing code to make sense
of the response. Prototype.js also provides us with a pair of more advanced Ajax
helper classes, specifically designed to support content-centric Ajax. In this sec-
tion, we’ll look at these classes in more detail before making use of them in our
QuickGallery application.

4.1.1 Ajax.Updater

Ajax.Updater extends Ajax.Request in a very convenient way. When using the
content-centric approach to Ajax that we described earlier, we will generally

Prototype’s advanced Ajax classes 73

want to read the server response as a string, and then apply it as the innerHTML
property of a DOM element somewhere on the page. Ajax.Updater saves us the
trouble of doing this manually every time. When we create the object, we specify
a URL as an argument, as before, but also a container element to be populated
by the response. The container argument may be either a single DOM element,
or a pair of DOM elements, one of which will be populated if the response is suc-
cessful, the other if it is unsuccessful.

 Because Ajax.Updater extends Ajax.Request, we can still access all the configu-
ration options of the parent class when using the Ajax.Updater, as outlined in
table 3.1. In addition to these, some additional configuration options are pro-
vided, as listed in table 4.1.

Ajax.Updater neatly encapsulates a commonly used way of working with Ajax.
We’ll make use of this object in our QuickGallery application too, and look at its
advantages and disadvantages compared with direct use of the Ajax.Request.

4.1.2 Ajax.PeriodicalUpdater

The Ajax.PeriodicalUpdater helper class adds a final twist to the Prototype Ajax
classes, once again automating a commonly used Ajax coding idiom. Ajax.Periodi-
calUpdater extends Ajax.Updater by managing a timer object, so that the request
for fresh content is made automatically with a given frequency. Using this object,
an automatically updating stock ticker or news feed, for example, can be created
with a minimum of fuss. The Ajax.PeriodicalUpdater class is a direct descendant
of Ajax. Updater, and, as such, has access to all of its configuration options. New
options provided by Ajax.PeriodicalUpdater are shown in table 4.2.

Table 4.1 Optional properties of the Ajax.Updater object

Name Default value Comments

insertion null A Prototype.js Insertion object (see chapter 11) that, if present, will
be used to insert the response content into the existing markup
for the target element. If omitted, the response replaces any exist-
ing markup.

evalScripts false When a DOM element's content is rewritten using innerHTML,
<script> tags present in the markup are ignored. The Ajax.Updater
will strip out any <script> tags in the response. If evalScripts
is set to true, the content of these scripts will be evaluated.

onComplete null Supplied by Ajax.Request-see table 3.1. Programmatic callbacks
can still be used with the Ajax.Updater. These will be executed
after the target's content has been updated.

74 CHAPTER 4

Using Prototype’s Advanced Ajax Features

The Ajax.PeriodicalUpdater class also introduces two useful methods, stop() and
start(), which will pause and resume the automated polling of the server.

 Ajax.PeriodicalUpdater is useful for situations where regular updates from the
server are required. It should be noted, though, that it makes it extremely easy to
increase both the amount of HTTP traffic that an application generates, and the
load on the server. It should therefore be used with caution.

 As you can see, Prototype provides us with some very useful tools for content-
centric Ajax. In the next section, we’ll put them to use in our QuickGallery appli-
cation. First, though, we’ll round off our tour of the Ajax helper classes provided
by Prototype with a quick mention of a recently added feature.

4.1.3 Ajax.Responders

In version 1.5 of Prototype, a new Ajax feature was added to the library. We’ve
already seen in chapter 3 how to attach callback handler functions to an
Ajax.Request object by specifying an onComplete, onSuccess, or onFailure option in
the options passed to the constructor. These functions will be triggered only when
a specific response comes in. In most cases, this is exactly what we need, but in a few
cases, we might also want to be notified whenever any Ajax response comes in.

 The Ajax.Responders object looks after this requirement for us. It maintains a
list of objects that will automatically be notified whenever any Ajax request is
made. We’ll see the Ajax.Responders object in action later in this chapter.

 That’s enough of an introduction for now. In the next section, we’ll return to
the QuickGallery example and see how these extra Ajax helper classes operate.

4.2 Using HTML and Ajax

In this section, we’ll develop the third Ajax-based version of QuickGallery. We orig-
inally applied Ajax to QuickGallery in order to get rid of unnecessary full-page
refreshes in the app, and both of the implementations in chapter 3 succeeded on
that score. However, we had to develop a lot of JavaScript code to handle the
response data and manually update the user interface. On first glance,

Table 4.2 Optional properties of the Ajax.Updater object

Name Default value Comments

frequency 2 Frequency of automatic update of the content, measured in seconds.

decay 1 Decay in frequency of updates when the received response is the same
as the previous response. Set to a value less than 1 to increase the fre-
quency on successive polls, or greater than 1 to decrease the frequency
(i.e., increase the length of time between updates).

Using HTML and Ajax 75

Ajax.Updater looks like it will make things much simpler for us on the client. All we
need to do is tell it which DOM node we want to update, and generate the request
as we did previously.

 In this section, we’ll put those first impressions to the test and see how much
added convenience Ajax.Updater really offers us.

4.2.1 Generating the HTML fragment

Let’s get started, then. The most complex part of the user interface in QuickGallery
is the thumbnail images, so we’ll begin by generating HTML fragments for that.
Because our server-side code is well-factored, we don’t need to even touch our busi-
ness logic, but simply alter the template that generates the response. Listing 2.2 pre-
sented the original template for the pre-Ajax application, and listing 3.2 the
modified template for our XML-powered version of the app. Listing 4.1 shows how
we’ve modified the template to generate a fragment of HTML.

<?php
require('../config.php');
require('images.inc.php');
if (count($imgs)>0){
 foreach ($imgs as $i => $value){
 $full_img=implode('/',array($path,$value));
?>
<div class='img_tile'>
 <img border='0'
 src="<?php echo $img_pre_path.$full_img ?>.thumb.jpg"
 onclick="showCloseup('<?php echo $img_pre_path.$full_img ?>.jpg')"/>

 <?php echo $value ?>

</div>
<?php
 }
}
?>

The template is very straightforward. We simply import the business logic code
that generates the data on thumbnails, subfolders, etc., for the current folder, and
then iterate over the list of images, outputting a bit of HTML for each one . So
far, so good. Now let’s take a look at the client.

Listing 4.1 contentUpdate/images.php

Import
business logic

B

Render
image tile

C

B

C

76 CHAPTER 4

Using Prototype’s Advanced Ajax Features

4.2.2 Modifying the client-side code

On the client side, our task is equally simple. In the load() function, we create an
Ajax.Updater object rather than an Ajax.Request, and pass it a reference to the
DOM element that we want to receive the content. The code required to do this is
as follows:

function load(newPath){
 if (newPath!=null){ currPath=newPath; }
 new Ajax.Updater(
 "images",
 "images.php?path="+currPath,
 {
 method: "get",
 onComplete: function(){
 Element.hide(ui.closeup);
 }
 }
);
}

Creating the Ajax.Updater looks pretty familiar after our work with Ajax.Request,
but there is an extra argument present in our call to the constructor. Let’s stop
and look at the arguments we passed into Ajax.Updater. The first is the name of
the DOM element, in this case images. We’ve passed in a string here, but
Ajax.Updater will also accept a reference to the DOM element itself. Most Proto-
type functions and objects that work with DOM nodes provide this flexibility,
because the $() function makes it so simple to resolve either as a programmatic
reference to the element itself.

 The second argument is the URL to our server-side resource, and the third
argument is the collection of options. Ajax.Updater inherits all of the functionality
of the Ajax.Request class, so it understands all of the options that Ajax.Request
does (see table 3.1), and it operates on the same defaults. It also understands a few
more options of its own, as we saw in table 4.1. For now, all we need to do is pass in
the HTTP method that we’re going to use, and a small function that we’ll execute
when the request completes, to ensure that the close-up DOM element is hidden
from view (otherwise we might not be able to see our refreshed thumbnail view, as
the two share the same portion of the screen).

 So, Ajax.Updater has made life a lot easier for us. The server-side code is no
more complex than before, and the client-side code is markedly simpler. How-
ever, in the case of our application, there is a catch. We’ll look at the problem—
and solutions—in the next section.

Using HTML and Ajax 77

4.2.3 Updating multiple DOM elements

The code we’ve presented so far is admirably simple, but we have a problem.
When we navigate to a new folder, we need to update the breadcrumb trail, the
subfolders list, and the thumbnails. We’ve laid these out as three separate DOM
elements on the page, but so far we’ve only updated one of them. The limitation
of Ajax.Updater without evaluating scripts in the response is that the class updates
only one element in an Ajax request.

Outlining the problem
So what are our options? We could create three Ajax.Updater objects, one for
each element, but this would be extremely inefficient in several ways.

 First, we’d be generating three HTTP requests. HTTP requests contain consid-
erable bandwidth overhead in terms of the headers in the request and response, so
we’d be adding to the bandwidth use of our app (see appendix A for more details
of the HTTP protocol and appendix B for techniques for measuring HTTP traffic).

 Second, on the server side, we’d need to execute our business logic three times,
once for each request. In our case, that’s three hits to the filesystem, and in other
applications it might translate to three hits to the database, to some other network
resource, or three runs of an expensive calculation. Either way, we’re increasing the
server load significantly. We could do the calculations once and store the results in
session, but this would require us to write some tricky synchronization logic to
ensure that the session gets tidied up at the right time. Remember, we’re going
down this route to make our client-side coding simpler. We don’t want to simply
trade it for more complex server-side code.

 Finally, we’d need to account for the fact that the network is unpredictable and
unreliable. We don’t know in what order our requests will be processed or the
responses will be returned. We don’t want to update each element as the response
returns, because it leaves the user interface in an inconsistent state. When we con-
sider that we run the risk of some requests failing while others succeed, we face
the problem of this inconsistency persisting indefinitely.

 So, we’ve persuaded ourselves that we need to update all elements of the user
interface in a single request. We could regenerate the entire page as a single top-
level DOM element, but that would take us back to a full-page refresh. Our UI is
pretty sparse at the moment, but if we had dressed it up a bit more, we’d be back
in the world of flickering pages and clunky stop-start interactions, only with more
code to maintain! Another dead end.

78 CHAPTER 4

Using Prototype’s Advanced Ajax Features

 Fortunately, there is more than one way out for us that conveniently allows us
to introduce some of Prototype’s more advanced Ajax features. We’ll see how it’s
done in the next section.

Attaching scripts to the response
Our first solution continues to use the Ajax.Updater object. Ajax.Updater allows
us to attach script content to the response. Both the subfolder list and the bread-
crumb trail are very simple in terms of the HTML behind their user interfaces,
and if we’re willing to put up with generating those interfaces in the JavaScript, we
can pass the necessary data up with our request.

 Here’s how it works. When we add markup to the DOM using innerHTML, any
<script> tags in the HTML text will be ignored by the browser. However,
Ajax.Updater has a mechanism that allows it to extract the content of these script
tags and evaluate them immediately after updating the DOM element. We can use
this to generate calls to update the breadcrumbs and subfolders list, and achieve
our aim of updating all user interface elements with a single request. Let’s see
what we need to do to make it work.

 Our first job is to switch the feature on when we create the Ajax.Updater
object. This is accomplished simply by passing in an extra option to the construc-
tor, as follows (changes from the previous versions of this code, presented in sec-
tion 3.2.3, are in bold):

function load(newPath){
 if (newPath!=null){ currPath=newPath; }
 new Ajax.Updater(
 "images",
 "images.php?path="+currPath,
 {
 method: "GET",
 evalScripts:true,
 onComplete: function(){
 Element.hide(ui.closeup);
 }
 }
);
}

The evalScripts option simply tells the updater to execute any scripts that it
extracts from the response.

 Now that we’ve told it to do that, we need to generate the scripts. Listing 4.2
shows the modified PHP template, which corresponds to images.php in the con-
tentScript directory.

Using HTML and Ajax 79

<?php
require('../config.php');
require('images.inc.php');
$folder_list="";
if (count($subdirs)>0){
 $folder_list='"'.implode('","',$subdirs).'"';
}
?>
<script type='text/javascript'>
 showBreadcrumbs();
 showFolders([<?php echo $folder_list ?>]);
 imgCount=<?php echo count($imgs)?>;
 if (imgCount>0){
 Element.show(ui.images);
 }else{
 Element.hide(ui.images);
 }
</script>

<?php
if (count($imgs)>0){
 foreach ($imgs as $i => $value){
 $full_img=implode('/',array($path,$value));
?>
<div class='img_tile'>
 <img border='0'
 src="<?php echo $img_pre_path.$full_img ?>.thumb.jpg"
 onclick="showCloseup('<?php echo $img_pre_path.$full_img ?>.jpg')"/>

 <?php echo $value ?>

</div>
<?php
 }
}
?>

The script that we’ve generated simply collates the list of subfolders as a string
and calls two JavaScript functions that we’ve defined statically. The showBread-
crumbs() function needs no arguments because the client-side code already knows
the destination folder’s path, having passed it down in the request. The second func-
tion, showFolders(), takes a JavaScript array as an argument, which we populate
with the list of subfolders that we generated earlier. The line

showFolders([<?php echo $folder_list ?>]);

Listing 4.2 images.php with added script tags

Compute folder listB

Generate script tagC

C B

80 CHAPTER 4

Using Prototype’s Advanced Ajax Features

will generate code looking like this:

showFolders(["trees","foliage","flowers"]);

Or, if no subfolders are present, it will simply look like this:

showFolders([]);

We need to support the generated script by providing the functions that it calls in
our static JavaScript. Fortunately, we’ve already written them when we developed
the XML-based version of our Ajax app, so we need only repeat that here. The show-
Breadcrumbs() method can be reused unaltered from listing 3.2. The showFold-
ers() method needs a little bit of tweaking, as shown here (changes in bold, again):

function showFolders(folders){
 if (folders.length==0){
 Element.hide(ui.folders);
 }else{
 var links=folders.collect(
 function(value,index){
 var path=[data.path,value].join("/");
 return "<div onclick='load(\""+path+"\")'>"+value+"</div>";
 }
);
 Element.show(ui.folders);
 ui.folders.innerHTML=links.join("");
 }
}

In the data-centric approach, we assigned the global value data.folders when we
parsed the response, and iterated over that. Here, we’re simply using the locally
scoped variable passed in as an argument.

 The astute reader will have noticed at this point that we’ve slipped from a
purely content-centric approach to a mixture of content-centric and script-
centric. That is, we’re generating a mixture of HTML markup and client-side
code. We noted in our earlier discussion of script-centric Ajax, in section 3.1.1,
that this approach presents a danger of introducing tight coupling between the
client- and server-side code bases. We also noted that the best way to avoid this was
to define a high-level API in the static client code, and simply call that API in the
generated code. This is what we’ve done here.

 In addition to reducing coupling, keeping generated code to a minimum
makes the application easier to maintain. Static JavaScript is easier to debug than
dynamically generated code, and it is also more amenable to testing. We have also
reduced the size of the response by abstracting out the common logic into a static
API that needs be downloaded only once.

Using HTML and Ajax 81

 We’ve now implemented the complete QuickGallery app in a mostly content-
centric way, with a bit of script-centric Ajax thrown in. The Ajax.Updater class
looked at first like it was going to eliminate most of our code, and in a simpler appli-
cation it might have done just that. Our requirement to simultaneously update
more than one DOM element made us dig into some of the more advanced features
of the Ajax.Updater object, but, even so, we’ve managed to simplify our client-side
code base considerably.

 Happily, Ajax.Updater has shown that it is capable of addressing the problem
of updating multiple elements from a single response. Only one element can be
updated as pure content, but we can pass additional instructions in the response
as JavaScript.

 Before we leave this topic of multiple-element refreshes, though, we should
note that there’s a second approach that we can take to solving this problem,
using a different set of features from Prototype’s Ajax support classes. We’ll take a
look at that in the next section.

Responding to custom headers
As an alternative to adding script tags to the response body, we can encode the
additional information in the HTTP headers of the response. Recent builds of
Prototype have added support for this, using the compact JSON syntax that we
saw in the previous chapter. There are two parts to this approach, so let’s take
each in turn.

 First, if a response contains a header called X-JSON, Prototype’s Ajax classes
will try to parse it and pass it to the callback functions as an extra parameter. In
order to generate this header, we need to modify our PHP script, contentJSON/
images.php, as follows (changes shown in bold, again):

<?php
require('../config.php');
require('images.inc.php');
$folder_list="";
if (count($subdirs)>0){
 $folder_list='"'.implode('","',$subdirs).'"';
}
$json='{ folders:['.$folder_list.'], count:'.count($imgs).'}';
header('X-JSON: '.$json);
?>
<?php
if (count($imgs)>0){
 foreach ($imgs as $i => $value){
 $full_img=implode('/',array($path,$value));
?>

82 CHAPTER 4

Using Prototype’s Advanced Ajax Features

<div class='img_tile'>
 <img border='0'
 src="<?php echo $img_pre_path.$full_img ?>.thumb.jpg"
 onclick="showCloseup('<?php echo $img_pre_path.$full_img ?>.jpg')"/>

 <?php echo $value ?>

</div>
<?php
 }
}
?>

When the response comes back, the body will now contain only the HTML for the
main panel, and an additional header looking something like this:

X-JSON: { folders: ["trees","foliage"], count: 6 }

In this case, we’re indicating that the current folder contains six images and has
two subfolders, called “trees” and “foliage”.

 The second part of the solution involves picking this header up on the client
and unpacking the data. Prototype will handle the evaluation of the JSON expres-
sion for us—the first thing we’ll see of it is the parsed object appearing as an argu-
ment to our callback function. We could parse the JSON object within our main
callback handler, but instead we’re going to define a separate responder to han-
dle it, using the Ajax.Responders object. This will give us the option of updating
the subfolders list whenever we make an Ajax call, and not only when we’re
changing directory.

 To set this up, we need to register a responder. The Ajax.Responders object
provides a register() method for us, to which we pass our responder object. The
responder can define any of the callbacks available to the Ajax.Request object.
Here, we’ll simply provide an onComplete() method. Let’s look at the code now.

Ajax.Responders.register(
 {
 onComplete:function(request,transport,json){
 showBreadcrumbs();
 showFolders(json.folders);
 if (json.count!=null){
 if (json.count>0){
 Element.show(ui.images);
 }else{
 Element.hide(ui.images);
 }
 }
 }
 }
);

Using HTML and Ajax 83

The onComplete() callback takes three arguments. The first is the Ajax.Request
object that has received the response, the second is the underlying XHR transport,
and the third is the parsed X-JSON header. This object contains all the informa-
tion we need, so we can then call our existing API to update the breadcrumb trail
and the folders list as before.

 The Ajax.Updater object, then, is capable of combining ease of use with flexi-
bility in handling multiple elements, and it can do so in more than one way. We’ve
now completed implementations of QuickGallery using a variety of different Ajax
techniques. We’ll compare these in section 4.3, but first we’re going to look at the
final Ajax helper object that Prototype provides.

4.2.4 Automatically updating content

We’ve now solved the issue of updating multiple elements within a content-based
approach in two ways, by using <script> tags and JSON-formatted headers. Along
the way, we’ve seen practical use of two of the three advanced Ajax helpers that we
introduced in section 4.1. Before we move on to compare content- and data-
centric Ajax, we’ll briefly take a look at the third of the advanced Ajax helpers, the
PeriodicalUpdater.

 There are a number of use cases in which it is desirable for the server to be
able to notify the browser of updates. HTTP is not built to support this model of
interaction—all interactions must be initiated by the browser. A common
workaround is for the browser to poll the server at regular intervals for updates.
(This is not the only way of implementing a push of data from server to client, but
that’s outside the scope of our discussion here.)

 Let’s suppose that we want the images in the current folder to automatically
update at regular intervals, so that we can see new images posted to the site. Using
plain JavaScript, we’d need to start creating timer objects using setTimeout(), but
Prototype wraps all this up for us in the Ajax.PeriodicalUpdater object.

 To make the QuickGallery poll the server for updates, we only need to alter a
couple of lines of code. Using Ajax.Updater, our load() method read as follows:

function load(newPath){
 if (newPath!=null){ currPath=newPath; }
 new Ajax.Updater(
 "images",
 "images.php?path="+currPath,
 {
 method: "get",
 evalScripts: true,

84 CHAPTER 4

Using Prototype’s Advanced Ajax Features

 onComplete: function(){
 Element.hide(ui.closeup);
 }
 }
);
}

To make our Updater poll the server, we simply need to replace Ajax.Updater
with Ajax.PeriodicalUpdater, as shown here:

function load(newPath){
 if (newPath!=null){ currPath=newPath; }
 if (updater){
 updater.stop();
 }
 updater=new Ajax.PeriodicalUpdater(
 "images",
 "images.php?path="+currPath,
 {
 method: "get",
 evalScripts: true,
 frequency: 10,
 onComplete: function(){
 Element.hide(ui.closeup);
 }
 }
);
}

We also added a frequency value in the options object. This specifies the time
between receiving a response and sending out the next request, in seconds. Here,
we’ve set a ten-second delay. Tuning this parameter is very application-specific,
and it boils down to a trade-off between responsiveness and server load.

 That’s all there is to the Ajax.PeriodicalUpdater object. We don’t have a des-
perate need for automatic updates in our gallery app, so we won’t be carrying this
change forward as we develop the app further, but hopefully we’ve demonstrated
how easy it is to add that functionality if needed. We’ll get back on track now, and
return to the debate between content- and data-centric Ajax.

 We’ve now implemented no less than four Ajax-based versions of the Quick-
Gallery application that we described in chapter 2, each of which reproduces the
functionality of the original application completely. In chapter 3, we developed
two data-centric versions, in which the client-side code parsed raw data sent by the
server, in the form of XML and JSON. In this chapter, we developed two content-
centric implementations of the app, in which the server updated the main panel
by directly generating the HTML, and updated secondary elements by adding
extra <script> tags, or by passing JSON data in the header.

Comparing data- and content-centric Ajax 85

 Before we go on to add any new functionality, which we’ll do in chapter 12, we
have a decision to make: we must decide whether to follow the data-centric or
content-centric approach. We’ll compare the two approaches in the following sec-
tion, with an eye to seeing which will make life easiest for us as we begin to add
new features.

4.3 Comparing data- and content-centric Ajax

We’ve implemented two versions of the application using Ajax, each with two vari-
ations, and now we face a difficult choice. We can easily draw up a long wish-list of
new features for the QuickGallery application, and can envisage several additional
months of development work implementing them all. In order for this develop-
ment to be effective, we need to opt for either a data-centric or a content-centric
approach. How are we going to make this decision?

 There are several criteria that we can take into consideration, such as ease of
development, support for the approach by our toolset, the efficiency and perfor-
mance of the application, and how future-proof each solution is as our require-
ments expand. Breaking down our assessment in this way won’t get us off the hook
entirely—we’ll still have a difficult decision to make at the end of the day, but at
least it will be an informed decision. So let’s consider each of our criteria in turn.

4.3.1 Considering ease of development

Ease of development cannot be measured in a hard and fast way, as it is ultimately
subjective. Let’s begin with the assumption that all code is difficult to write, and
therefore the less code written, the easier the project is. It isn’t as simple as that in
reality, of course, and we’ll unpack some of the nuances shortly, but this approach
allows us to put forward some numbers to start the discussion.

 Table 4.3 lists the total size of the files of each type in our three solutions in
bytes, as reported by the Unix ls command. Numbers in parentheses indicate files
reused without modification by an Ajax project from the non-Ajax project. The
total for JavaScript files excludes the size of the Prototype libraries, as it took us
negligible effort to download them and start using them.

 The first thing we can see from these numbers is that all three Ajax projects
required more code to be written than their non-Ajax counterpart. While the
server-side code became simpler, we added a lot of client-side JavaScript. Of the
two Ajax projects, the data-centric one required almost twice as much code as the
content-centric one.

86 CHAPTER 4

Using Prototype’s Advanced Ajax Features

As we already noted, not all code is equally difficult to write, either. Simply by vir-
tue of using two programming languages instead of one, we’ve presumably
ramped up the difficulty level by introducing Ajax. We haven’t had to write very
much additional PHP, and what we did write was simple template stuff, but look-
ing forward we still have to maintain our existing business logic code. So the main
extra burden comes from the JavaScript.

 But we knew that already. Our immediate concern is the difference between
content-centric and data-centric Ajax. The content-centric Ajax required less code.
When we look at the extra code required by the data-centric approach, we see a lot
of involved user interface generation, and unpleasant DOM manipulation routines
in the XML case too. If we accept that not all JavaScript code is equally difficult to
write, the content-centric approach is even more of a clear winner here.

 Let’s note another point in the content-centric solution’s favor. If we compare
the two PHP templates that we had to write, the one for the content-centric solu-
tion is largely a direct cut and paste of PHP from the non-Ajax code. It isn’t ele-
gant reuse, but it is easier to write than the XML- or JSON-based templates, both of
which required us to figure out a new data format.

 Is the content-centric solution always the clear winner, then? There is one final
point that we ought to consider. Our PHP template for the content-centric
approach benefited from the fact that our legacy app was HTML-based. In another
situation, we might have inherited an XML document format, in which case the
data-centric Ajax solution might require very little work on the server. Reuse is
king as far as ease of development is concerned, and reuse is highly context-
dependent. If we’re “Ajaxifying” a straightforward HTML-based web application,
we’ll find more scope for reuse in the content-centric option. In an enterprise set-
ting, the XML data-centric solution might hold its own.

 However, all in all, the content-centric approach seems to have won this round.
Let’s move on to our next criterion.

Table 4.3 Size of the QuickGallery projects by file type (in bytes)

Solution PHP HTML JavaScript Total

non-Ajax 4175 0 0 4175

content-centric Ajax 3841 (3122) 421 1659 5936

data-centric Ajax (XML) 3599 (3122) 433 3218 7250

data-centric Ajax (JSON) 3451 (3122) 421 2738 6610

Comparing data- and content-centric Ajax 87

4.3.2 Fitting the tools

Ease of development in itself is a good thing. When considering which style of pro-
gramming to use in a project, though, it’s also useful to look at any supporting
libraries that we’re making use of, and ask ourselves which styles they favor. This ties
in closely to ease of use, but it also gives an indication of how the library might
develop in the future. If we’re having to fight against the library to achieve our ends,
and work around the recommended usage of that library or use undocumented fea-
tures, future versions of the library might break those workarounds. Being left to
rely on an old, unsupported version of a library is not a comfortable situation.

 The main library we’ve used so far is Prototype.js. Prototype is very much geared
toward doing things in a content-centric way. The specialist Ajax helper classes that
we saw in this chapter are all geared toward the content-centric approach. Further,
so is the entire Ruby on Rails development movement, both in the design of the
framework and in the opinions expressed by leading Rails developers. We don’t
need to be using Rails for this to be a consideration. Prototype’s main author, Sam
Stephenson, is a core Rails committer, and its a fair bet that Prototype will continue
to evolve to support the content-centric way of doing Ajax. Recent developments in
Prototype (and in Ruby on Rails) are exploring script- and data-centric approaches,
but only as complements to the core content-centric approach.

 So, round two goes to the content-centric approach too. The next criterion that
we put up for consideration was the performance of the app, so let’s look at that.

4.3.3 Comparing performance

While it is important to work in a style that makes development easy, it’s also
important that our methodology produces code that runs efficiently. After all,
we’d rather pay the price of difficult development once than the price of poor
performance continually.

 There has been a lot of debate about whether Ajax increases or decreases the
efficiency of an application. Tuning in to this debate, we’ve heard good things
about the reduction in traffic that comes from not continually sending boilerplate
markup over the wire, and concerns expressed about the increased network traf-
fic resulting from too many little messages being exchanged between the client
and the server. Being cautious types, we aren’t going to believe either argument
until we’ve seen some hard numbers, and fortunately, there are a number of tools
out there that can help us get those numbers.

 We’ve defined a simple methodology for analyzing live HTTP traffic from any
web application running in any web browser. We describe all the technical details

88 CHAPTER 4

Using Prototype’s Advanced Ajax Features

in appendix B, but as this is the first time we’ve used our analysis toolkit, let’s run
through the procedure right now, before we look at the numbers.

 The bandwidth that an application consumes is unlikely to be regular. All the
time that the user is interacting with the app, there will be traffic between the
browser and the server. Because we’re interested in the overall impact on the net-
work of our app, we’re going to have to define a test script to represent a typical
session with the server. Our test script for working with the QuickGallery applica-
tion is quite straightforward and is outlined in table 4.4. In order to write the test
script, we created a sample set of images to be viewed by the QuickGallery, taken
from Dave’s copious collection of photos that sit on his computer doing nothing.
(I knew they’d come in useful one day!)

Because our three versions of the Ajax app have identical functionality at this
point, we can apply the same script to all our tests. The test will be executed man-
ually, so we kept it fairly short and made sure to flush the browser’s cache in
between runs. While running the test script, we recorded all the traffic, in this
case using the LiveHttpHeaders plug-in for Mozilla. We then saved the HTTP ses-
sion data as a text file and ran it through our script to generate a data file that
could be read by a spreadsheet. We then used the spreadsheet to analyze the traf-
fic and create a few pretty graphs. The nitty-gritty on how to achieve all these steps
is given in appendix B.

 Here and now, we want to see what the different flavors of Ajax have done for the
performance of our application, so let’s have a look at the results. Figure 4.1 com-

Table 4.4 Script used for monitoring the performance of QuickGallery

 Step Description

1 Browser starts on the home page

2 User navigates into the "animals" folder, which contains 8 images

3 User clicks on the first thumbnail to view close-up

4 User returns to the home folder by the breadcrumb trail

5 User navigates to the "plants" folder, which contains 38 images

6 User navigates into the "foliage" subfolder (only 2 images)

7 User returns to the "plants" folder

8 User navigates into the "trees" subfolder, which holds 7 images

9 User clicks the first thumbnail in "trees" to view close-up

Comparing data- and content-centric Ajax 89

pares the total HTTP traffic generated by three of the QuickGallery applications,
namely the non-Ajax version from chapter 2, the XML version from chapter 3, and
the content-centric version from this chapter.

 The first thing to notice is that viewing the close-up images takes by far the big-
gest toll on the network. The images weigh roughly 700 KB each. They dominate
the traffic so much, in fact, that we’ve modified the scale of the vertical axis, in
order to be able to see what’s going on in the other steps of the script.

 One reason often cited for not adopting Ajax—and Ajax frameworks in partic-
ular—is the weight of the additional code. As we can see in figure 4.1, the initial
loading of the home page is far greater for the two Ajax apps, largely because
we’re loading roughly 40 KB of Prototype.js. (This data was recorded against Pro-
totype version 1.4. Version 1.5 has grown to a little over 50 KB.) However, viewed
against the traffic as a whole, it isn’t making much of a difference.

 In subsequent steps of the test script, we can see that the Ajax apps are making
a small positive difference, with the data-centric approach typically consuming a
little less bandwidth than the content-centric version. The most notable difference
is in step 7, in which the non-Ajax app consumes over 100 KB, whereas the Ajax apps

Figure 4.1 HTTP traffic generated at each step of the test script, for non-Ajax, content-
centric, and data-centric Ajax versions of the QuickGallery app

90 CHAPTER 4

Using Prototype’s Advanced Ajax Features

consume practically nothing. Looking at the details of the logs, we can see that this
is due to not having to refetch the thumbnail images for the “plants” folder.

 In order to get a clearer picture of the contributions to overall traffic levels
from the various types of data being sent, we’ve also plotted the traffic breakdown
by MIME type in figure 4.2.

 The pie charts in the lower half of the figure show the contribution from all
media types, excepting the two large close-up images, which we’ve omitted again
in order to make the other details show up. Even so, 90 percent or more of the
total traffic comes from images. It’s instructive to note how small the program-

Figure 4.2 Breakdown of HTTP traffic by MIME type

Comparing data- and content-centric Ajax 91

matic elements of the Ajax app are in the face of broadband-sized media such as
high-resolution images, videos, and audio.

 The bar chart in the top half of figure 4.2 shows the relative makeup of the
three apps’ traffic, once we’ve taken the images out of the equation. It’s interest-
ing to note that our content-centric Ajax application generates almost as much
HTML as the non-Ajax app, although we might expect a larger difference if the
design of the application weren’t so spartan. Certainly, comparing the HTML gen-
erated by the content-centric app against the XML generated by the data-centric
app, we can see that the data-centric app is making more efficient use of the net-
work when transmitting the navigational information. In order to do so, it
requires roughly twice as much JavaScript code as the content-centric app.

 So, in terms of overall impact on the network, how do the three solutions stack
up? Figure 4.3 plots the cumulative HTTP traffic for each application.
The clear take-home message from this picture is that Ajax is good for the net-
work. Our simple nine-step test script equates to only a minute or so of use of the

Figure 4.3 Cumulative use of bandwidth by the Ajax and non-Ajax QuickGallery
applications

92 CHAPTER 4

Using Prototype’s Advanced Ajax Features

QuickGallery application, and we’ve already made a significant net saving in
bandwidth by step 7. Remember, at that point, the non-Ajax application reloaded
all the thumbnail images, whereas the Ajax apps didn’t. If we’ve been looking for
a clear signal to adopt Ajax as we take our development forward, this is it.

 As we said earlier, there is plenty of folklore about Ajax network performance
floating around on the Internet. Looking at the numbers for ourselves, we’ve
established that Ajax is good for bandwidth in our particular application. We’ve
also confirmed the story that data-centric solutions make more efficient use of the
network than content-centric solutions (see figure 4.2). However, we can also see
from figure 4.3 that in the overall picture, these savings aren’t worth a great deal.
This also sheds some light on the often-quoted adage that XML is a nasty, bloated
data format. We aren’t saying that it isn’t bloated, but the bloat doesn’t figure
much in the overall scheme of things.
So, do we have a clear winner in terms of bandwidth performance? It seems not—
we have to call this round a tie, or a very narrow victory for the data-centric ver-
sion of QuickGallery at the best.

 Before we move on, we ought to stress that this is a verdict about the QuickGal-
lery application, not about data- and content-centric Ajax in general. We don’t
wish to add to the folklore that’s out there, and we urge you to measure your own
application’s performance using the tools that we describe in appendix B and
take things from there. Now let’s move on to the final criterion for comparing the
different styles of Ajax, so that we can arrive at a decision as to which one we’ll use
when we develop extra functionality into the QuickGallery app.

4.3.4 Looking for future-proof solutions

We’ve seen how our current content-centric and data-centric Ajax apps stack up
against the non-Ajax app, and against each other, but we have to bear in mind that
these are little more than prototypes of the all-singing, all-dancing QuickGallery
that we want to go on to create. We have big plans for our app, and a to-do list as
long as your arm, so we need to consider whether the two types of Ajax will be
able to grow with us.

 Our requirements are somewhat vague at the moment, but we do know that we
want to be able to attach metadata to our images and sort the folder contents
using this metadata. We also want to loosen the mapping between the navigation
of the images and the underlying filesystem, so that we can display “virtual folder”
contents based on search criteria. We also might want to be able to show more
than one folder’s contents side by side. Storing the metadata and running the
searches are mostly server-side issues, but we want to be able to edit the metadata

Summary 93

and rearrange folder contents in the browser. To satisfy these requirements, we
can see that it would be useful to have some sort of model of the folder tree held
in the JavaScript layer. The data-centric approach lends itself more readily to
maintaining such a model, so we find ourselves leaning in that direction when we
consider this issue.

 This sort of discussion can be very open-ended, and it can be hard to determine
how easy or difficult the unimplemented features will be, based on choices that we
might make. We can, however, look at our experience in getting this far. The
content-centric application was certainly easier to write, but we already ran into
issues with wanting to update multiple DOM elements from a single Ajax request.
While we found a workaround by updating the sidebar and breadcrumb trail using
scripts, this was something of a kludge, and it only worked because the content of
the secondary DOM elements was so simple. If we implement the ability to view mul-
tiple folders at once, we might want to update several thumbnail windows at once.
Prototype’s Ajax helpers solve the multiple update problem in simple cases, but
only by falling back on script- or data-centric Ajax for the secondary updates.

 All other considerations—ease of use, fit to the Prototype.js library, and perfor-
mance of the network traffic—have either pointed us toward the content-centric
model or come out neutral. This is the only major obstacle to adopting a content-
centric approach as we go forward, so can we see a way of getting around these
problems? One possibility is to extend Ajax.Updater to support refreshing multi-
ple DOM elements from a single response. While this will entail some extra devel-
opment work, Prototype.js provides a very good mechanism for extending
existing objects, so the overhead shouldn’t be too large.

 So we have a decision. For this project, we’re adopting the content-centric
approach. The decision was fairly close, and our aim here is not to promote
content-centric Ajax as the only solution for all problems. Rather, we hope we’ve
shown the process by which we’ve made the decision, and the range of factors that
we’ve taken into account.

4.4 Summary

In this chapter, we looked at Prototype’s advanced Ajax classes and their support
for the content-centric style of Ajax. We also explored some of the features that
provide secondary script- and data-centric support. We applied these classes to
our QuickGallery application and noticed a significant improvement in developer
productivity over the data-centric approach that we used in chapter 3.

94 CHAPTER 4

Using Prototype’s Advanced Ajax Features

 In deciding which approach to use as our application development goes for-
ward, we looked at a range of criteria. By analyzing the HTTP traffic, we were able
to see significant improvements over the non-Ajax application. The data-centric
approach came first in only one category: performance of HTTP traffic. However,
although the data-centric application made better use of the network than the
content-centric one, the overall impact for our application was insignificantly
small, leaving the content-centric approach as the clear way forward.

 It’s important to stress again that we reached this decision for this specific
application. Rather than remembering the conclusion that we came to, we urge
you to remember our decision-making process, and follow it in order to reach
your own conclusions.

 This concludes our review of Prototype.js’s Ajax helper classes. In the next sec-
tion of the book, we’re going to look at the Scriptaculous library, and the ways in
which it can enhance the usability of our application.

