

MEAP Edition
Manning Early Access Program

The Programmer’s Guide to Apache Thrift
Version 17

Copyright 2017 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

http://www.manning.com
https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

brief contents
PART 1 - APACHE THRIFT OVERVIEW

1 Introduction to Apache Thrift
2 Apache Thrift Architecture
3 Building, Testing and Debugging

PART 2 – PROGRAMMING APACHE THRIFT
4 Moving Bytes with Transports
5 Serializing Data with Protocols
6 Apache Thrift IDL
7 User Defined Types
8 Implementing Services
9 Handling Exceptions
10 Servers

PART 3 APACHE THRIFT LANGUAGES
11 Building Clients and Servers with C++
12 Building Clients and Servers with Java
13 Building C# Clients and Servers with .Net and Windows
14 Building Node.js Clients and Servers
15 Apache Thrift and JavaScript
16 Scripting Apache Thrift
17 Thrift in the Enterprise

Glossary
Index
Bibliography

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

Part 1
Apache Thrift Overview

Apache Thrift is an open source cross
language serialization and remote
procedure call (RPC) framework. With
support for over 20 programming
languages, Apache Thrift can play an
important role in many distributed
application solutions. As a serialization
platform Apache Thrift enables efficient
cross language storage and retrieval of a
wide range of data structures. As an RPC
framework, Apache Thrift enables rapid
development of complete cross language
services with little more than a few lines
of code.

Part 1 of this book will help you
understand how Apache Thrift fits into
modern cloud based application models
while imparting a high level understanding
of the Apache Thrift framework
architecture. Part 1 also gets you started
with basic Apache Thrift setup and
debugging and a look at building a simple
cross language hello world service.

Device
(file/memory/net/…)

Service
Handler

Server

Apache
Thrift
Class

Libraries

IDL
Compiler

Generated
Code

Client
Program

Transports

Protocol

User Types

Service Stubs

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

1

https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

1
Introduction to Apache Thrift

This chapter covers

• Using Apache Thrift to unify polyglot systems
• Simplifying the creation of high-performance networked services
• Introducing the Apache Thrift modular serialization system
• Creating a simple Apache Thrift cross-language microservice
• Comparing Apache Thrift with other cross-language communications frameworks

Modern software systems live in a networked world. Network communications are critical to
the tiniest embedded systems in the Internet of Things through to the weightiest of relational
databases anchoring traditional multitier applications. As new software systems increasingly
embrace dynamically scheduled, containerized microservices, lightweight, high-performance,
language-agnostic network communications are ever more important.

But how to wire all these things together, the old and the new, the big and the small? How
do you package a message from a service written in one language in such a way that a
program written in any other language can read it? How do you design services that are fast
enough for high-performance, backend cloud systems but accessible by front-end scripting
technologies? How do you keep things lightweight to support efficient containers and
embedded systems? How do you create interfaces that can evolve over time without breaking
existing components? How do you do all of this in an open, vendor-neutral way and, perhaps
most important, how can you do it all precisely once, reusing the same communications
primitives across a broad platform? For companies such as Facebook, Evernote, and Twitter,
the answer is Apache Thrift.

This chapter introduces the Apache Thrift framework and its role in modern distributed
applications. You’ll look at why Apache Thrift was created and how it helps programmers build
high-performance, cross-language services. To begin, you’ll consider the growing need for

2

multi-language integration and examine the role Apache Thrift plays in polyglot application
development. Next, you’ll look at the two key functions of Apache Thrift and walk through the
construction of a simple Apache Thrift service. At the end of the chapter we’ll compare Apache
Thrift to several other tools offering similar features to help you determine when Apache Thrift
might be a good fit.

1.1 Polyglotism, the pleasure and the pain
The number of programming languages in common commercial use has grown considerably

in recent years. In 2003, 80% of the Tiobe Index
(http://www.tiobe.com/index.php/tiobe_index) was attributed to six programming languages:
Java, C, C++, Perl, Visual Basic, and PHP. In 2013, it took nearly twice as many languages to
capture the same 80%, adding Objective-C, C#, Python, JavaScript, and Ruby to the list (see
figure 1.1). In early 2016 the entire Tiobe top 20 didn’t add up to 80% of the mind share. In
Q4 2015, Github reported 19 languages all having more than 10,000 active repositories
(http://githut.info/), adding Swift, Go, Scala, and others to the list.

Figure 1.1 The Tiobe Index uses web search results to track programming language popularity
(http://www.tiobe.com).

Increasingly, developers and architects choose the programming language most suitable
for the task at hand. A developer working on a Big Data project might decide Clojure is the
best language to use; meanwhile, folks down the hall may be doing front-end work in
TypeScript, while programmers in the basement might be using C with embedded systems (no
aversion to sunlight implied). Years ago, this type of diversity would be rare at a single
company; now it can be found within a single team.

Choosing a programming language uniquely suited to solving a particular problem can lead
to productivity gains and better quality software. When the language fits the problem, friction

3

http://www.tiobe.com/index.php/tiobe_index
http://githut.info/
http://www.tiobe.com

is reduced, programming becomes more direct, and code becomes simpler and easier to
maintain. For example, in large-scale data analysis, horizontal scaling is instrumental to
achieving acceptable performance. Functional programming languages such as Haskell, Scala,
and Clojure tend to fit naturally here, allowing analytic systems to scale out without complex
concurrency concerns.

Platforms drive language adoption as well. Objective-C exploded in popularity when Apple
released the iPhone, and Swift is following suit. Go is the language of the booming container
ecosystem, responsible for Docker, Kubernetes, etcd, and other essentials. Those
programming for the browser will have teams competent with JavaScript, TypeScript, and/or
Dart, while the game and GUI world still often codes in C++ for top-performing graphics.
These choices are driven by history as well as compelling technology underpinnings. Even
when such groups are internally monoglots, languages mix and mingle as they collaborate
across business boundaries.

Many organizations who claim monoglotism make use of a range of support languages for
testing and prototyping (figure 1.2). Dynamic programming languages such as Groovy and
Ruby are often used for testing, while Lua, Perl, and Python are popular for prototyping, and
PHP has a long history with the web. Build systems such as the Groovy-based Gradle and the
Ruby-based Rake also provide innovative capabilities.

Figure1.1 Efficient translators are a core asset of any multi-language assembly.

The polyglot story isn’t all wine and song, however. Mastering a programming language is
no small feat, not to mention the tools and libraries that come with it. As this burden is
multiplied with each new language, firms may experience diminishing returns. Introducing
multiple languages into a product initiative can have numerous costs associated with cross-
language integration, developer training, and complexity when building and testing. If
managed improperly, these costs can quickly overshadow the benefits of a multi-language
strategy.

4

 One of the key strengths of Apache Thrift is its ability to simplify, centralize, and
encapsulate the cross-language aspects of a system. Apache Thrift offers broad support, in
tree, for polyglot application development. Every language mentioned previously is supported
by the Apache Thrift project, more than 20 languages in all, and growing (see table 1.1). This
unrivaled direct support for existing languages and the Apache Thrift community’s rapid
addition of support for new languages can help organizations maximize the potential of
polyglotism while minimizing the downsides. The more your programs mirror the dialog on the
floor of the United Nations General Assembly, the more you’ll need professional translators
such as Apache Thrift to streamline communications.

Table 1.1 Languages Supported by Apache Thrift

AS3 C C++ C#

D Dart Delphi Erlang

Go Haskell Haxe Java

JavaScript Lua Node.js Objective-C

OCaml Perl PHP Python

Ruby SRust Smalltalk TypeScript

1.2 Application integration with Apache Thrift
Whether your application uses multiple platforms and languages or not, it’s likely that its

operations span multiple processes over networks and time. At times these processes will
need to communicate, either through a file on disk, through a buffer in memory, or across
networks. Two central concerns are associated with inter-process communications:

• Type serialization
• Service implementation

Let’s consider each in turn.

1.2.1 Type serialization
Serialization is a basic function in any cross-platform/language exchange. For example,

imagine an application for the music industry that uses NATS as a messaging system to move
song data between processes (see figure 1.3). Using NATS, the team can send/receive
messages rapidly between their remote processes written in Java and Python. The question is,
can the programs read the musical messages when sent by another language? Python objects
are represented differently in memory than Java objects. If a Python program sent the raw
memory bits for its music track data to a Java program, fireworks would ensue.

5

Figure 1.3 Apache Thrift can be used to serialize data in cross-platform messaging scenarios.

To solve this problem, you need a data serialization layer on top of the messaging
platform. Why not send everything back and forth in JSON, one might ask? Using a standard
format such as JSON is part of a solution; however, you must still answer questions such as:
how are data fields ordered when sending multi-field messages, what happens when fields are
missing, and what does a language that doesn’t directly support a data type do when receiving
that data type? These and many other questions cannot be answered by a data layout
specification such as JSON, YAML, or XML. Different languages frequently produce different,
though legally formatted, documents for the same dataset.

IDL AND TYPES
Apache Thrift provides a modular serialization framework that addresses these issues. With

Apache Thrift, developers define abstract data types in an Interface Definition Language (IDL).
This IDL can then be compiled into source code for any supported language. The generated
code provides complete serialization and deserialization logic for all of the user’s defined types.
Apache Thrift ensures that types written by any language can be read by any other language.
The following listing shows Apache Thrift IDL type definitions.

Listing 1.1 Apache Thrift IDL type definitions

namespace * music

enum PerfRightsOrg {
 ASCAP = 1
 BMI = 2
 SESAC = 3
 Other = 4
}

typedef double Minutes

struct MusicTrack {
 1: string title
 2: string artist
 3: string publisher
 4: string composer
 5: Minutes duration
 6: PerfRightsOrg pro

6

}

Certain people complain that creating IDL is an extra step, slowing the development
process. I’ve found that it’s the opposite. IDL forces you to carefully consider your interfaces in
isolation, free of noisy implementation code. This may be the most important time you spend
on a system design. IDL is also lightweight, easy to modify and experiment with, and often
useful as a communications tool on the business side as well.

Users may say schemaless systems are more flexible and that IDL is brittle. The truth is,
whether you document your schema or not, you still have a schema if you’re reading and
interpreting data. Implied (undocumented) schemas can be the source of fairly treacherous
application errors and create a burden on developers who need to interact with the data or
extend the system. If you have no definition for the data layout you read and write except the
code that reads and writes it, it will be slow going when you want to extend the system. How
many bits of code throughout the system depend on this implied schema? How do you change
such a thing?

The popularity of NoSQL systems, many of which are schemaless, creates another role for
IDL. You can now document your types in a single place and use those types in service calls,
with messaging systems and in storage systems such as Redis, MongoDB, and others.

Several systems reverse the process and generate their schema from a given coded
solution. Annotation driven systems, such as Java’s JAX-RS, can work this way. This approach
makes it easy to allow implementation details to bias the interface definition, straining
portability and clarity. It’s generally much more work to modify implementation code than it is
to modify IDL. Also, you have no guarantee that another vendor’s code generator will create
compatible code from a foreign schema. This is a problem any time multiple vendors are
involved in a communications solution.

Apache Thrift sidesteps many of these problems by providing a single source of truth, the
IDL. Apache Thrift supplies vendor-independent support for a single IDL across a wide array of
programming languages, and the Apache Thrift cross-language test suit is constantly at work
verifying interoperability as the framework grows.

INTERFACE EVOLUTION

IDL creates a contract that all parties can rely upon and that code generators can use to
create working serialization operations, ensuring the contract is adhered to. Yet IDL schemas
need not be brittle. Apache Thrift IDL supports a range of interface evolution features which,
when used properly, allow fields to be added and removed, types to be changed, and more.

Support for interface evolution greatly simplifies the task of ongoing software maintenance
and extension. Modern engineering sensibilities such as microservices, Continuous Integration
(CI), and Continuous Delivery (CD) require systems to support incremental improvements
without impacting the rest of the platform. Tools that supply no form of interface evolution
tend to “break the world” when changed. In such systems, changing an interface means all the
clients and servers using that interface must be rewritten and/or recompiled, then redeployed
in a big bang.

7

Apache Thrift interface evolution features allow multiple interface versions to coexist
seamlessly in a single operating environment. This makes incremental updates viable,
enabling CI/CD pipelines and empowering individual Agile teams to deliver business value at
their own cadence.

Continuous Integration (CI) and Continuous Delivery (CD)
Continuous integration is an approach to software development wherein changes to a system are merged into the

central code base frequently. These changes are continuously built and tested, usually by automated systems, providing
developers with rapid feedback when patches create conflicts or fail tests. Continuous Delivery takes CI one step
further, migrating successfully merged code to evaluation/staging systems and ultimately into production, many times
per day. The goal of continuous systems is to take many small risks and provide immediate feedback rather than
taking large risks and delaying feedback over long release cycles. The longer integration is delayed, the more patches
are involved, making it more difficult to identify and repair conflicts and bugs.

MODULAR SERIALIZATION
Apache Thrift provides pluggable serializers, known as protocols, allowing you to use any

one of several serialization formats for data exchange, including binary for speed, compact for
size, and JSON for readability. The same contract (IDL) can remain in place even as you
change serialization protocols. This modular approach allows custom serialization protocols to
be added as well. Because Apache Thrift is community managed and open source, you can
easily change or enhance functionality and push it upstream when needed (patches are always
welcome at the Apache Thrift project).

1.2.2 Service implementation
Services are modular application components that provide interfaces accessible over a

network. Apache Thrift IDL allows you to define services in addition to types (see listing 1.2).
Like types, IDL services can be compiled to generate stub code. Service stubs are used to
connect clients and servers in a wide range of languages.

Listing 1.2 /ThriftBook/part1/hello/sail_stats.thrift

service SailStats {
 double get_sailor_rating(1: string sailor_name)
 double get_team_rating(1: string team_name)
 double get_boat_rating(1: i64 boat_serial_number)
 list<string> get_sailors_on_team(1: string team_name)
 list<string> get_sailors_rated_between(1: double min_rating,
 2: double max_rating)
 string get_team_captain(1: string team_name)
}

Imagine you have a module that tracks and computes sailing team statistics and that this
module is built into a Windows C++ GUI application designed to visualize wind flow dynamics.
As it happens, your company’s web dev team wants to use the sail stats module to enhance a

8

client-facing, Node.js-based web application on Linux. Faced with multiple languages and
platforms and the “laziness” axiom (wanting to write as little code as possible), Apache Thrift
could be a good solution (see figure 1.4).

Figure 1.4 The Apache Thrift RPC framework enables cross-platform services.

With Apache Thrift you could repackage the sail stats functions as a microservice and
provide the Node.js programmers with access to the service through an easy-to-use Node.js
client stub. To create the sail stats microservice you need only define the service interface in
IDL, compile the IDL to create client and server stubs for the service, select one of the prebuilt
Apache Thrift servers to host the service, and then assemble the parts.

PREBUILT SERVER SHELLS
It’s important to note that, unlike standalone serialization solutions, Apache Thrift comes

with a complete set of server shells, ready to use, in almost all the supported languages. This
sidesteps the difficult and repetitive process of building custom network servers. The prebuilt
Apache Thrift servers are also small and focused, providing only the functionality necessary to
host Apache Thrift services. A typical Apache Thrift server will consume an order of magnitude
less memory than an equivalent Tomcat deployment. This makes Apache Thrift servers a good
choice for containerized microservices and embedded systems that don’t have the resources
necessary to run full-blown web or application servers.

Microservices and Service Oriented Architecture (SOA)
The microservice and SOA approaches to distributed application design break applications down into services, which

are remotely accessible, autonomous modules composed of a set of closely related functions. Such systems provide
their features over language-agnostic interfaces, allowing clients to be constructed in the most appropriate language
and on the most appropriate platform, independent of the service implementation. These services are typically (and in
the best case) stateless and loosely coupled, communicating with clients through a formal interface contract. Services

9

may be internal to an organization or support clients across business boundaries. The distinction between SOA services
and microservices is subtle, but most agree that microservices are a subset of SOA services in which the services are
more atomic and independently deployable.

MODULAR TRANSPORTS

Apache Thrift also offers a pluggable transport system. Apache Thrift clients and servers
communicate over transports that adapt Apache Thrift data flows to the outside world. For
example, the TSocket transport allows Apache Thrift applications to communicate over TCP/IP
sockets. You can use prebuilt transports for other communications schemes, such as named
pipes and UNIX domain sockets. Custom transports are easy to craft as well. Apache Thrift
also supports offline transports that allow data to be serialized to disk, memory, and other
devices.

A particularly elegant aspect of the Apache Thrift transport model is support for layered
transports. Protocols serialize application data into a bit stream. Transports read and write the
bytes, making any type of manipulation possible. For example, the TZLibTransport is available
in many Apache Thrift language libraries and can be layered on top of any other transport to
achieve high-ratio data compression. You can branch data to loggers, fork requests to parallel
servers, encrypt, and perform any other manner of manipulation with custom-layered
transports.

1.3 Building a simple service
To get a better understanding of the practical aspects of Apache Thrift, you’ll build a simple

microservice. Your service will be designed to supply various parts of your enterprise with a
daily greeting. The service will expose a single “hello_func” function that takes no parameters
and returns a greeting string. To see how Apache Thrift works across languages you’ll build
clients in C++, Python, and Java.

1.3.1 The Hello IDL
Most projects involving Apache Thrift begin with careful consideration of the interface

components involved. Apache Thrift IDL is similar to C in its notation and makes it easy to
define types and services shared across systems. Apache Thrift IDL is plain text saved in files
with a “.thrift” extension (see the following listing).

Listing 1.3 /ThriftBook/part1/hello/hello.thrift

service HelloSvc { #1
 string hello_func() #2
}

Your hello.thrift IDL file declares a single service interface called HelloSvc (#1) with a
single function, hello_func() (#2). The function accepts no parameters and returns a string.
To use this interface you can compile it with the Apache Thrift IDL compiler. The IDL compiler

10

binary is named “thrift” on UNIX-like systems and “thrift.exe” on Windows. The compiler
expects two command line arguments, an IDL file to compile and one (or more) target
languages to generate code for. Here’s an example session that generates Python stubs for
your HelloSvc:

/ThriftBook/part1/hello$ ls -l
-rw-r--r-- 1 root root 88 Feb 16 17:01 hello.thrift
/ThriftBook/part1/hello$ thrift --gen py hello.thrift #1
/ThriftBook/part1/hello$ ls -l
drwxr-xr-x 4 root root 4096 Feb 17 00:16 gen-py #2
-rw-r--r-- 1 root root 88 Feb 16 17:01 hello.thrift

In the previous session the IDL Compiler is invoked with the --gen py switch (#1), which
causes the compiler to create a gen-py directory (#2) to house the emitted Python code for
your hello.thrift IDL. The directory contains client/server stubs for all the services defined and
serialization code for all the user-defined types.

1.3.2 The Hello server
Now that you have your support code generated, you can implement your service and use

a prebuilt Apache Thrift server to house it. The following listing provides a sample server
coded in Python.

Listing 1.4 /ThriftBook/part1/hello/hello_server.py

import sys #1
sys.path.append("gen-py") #1
from hello import HelloSvc #1

from thrift.transport import TSocket #2
from thrift.transport import TTransport #2
from thrift.protocol import TBinaryProtocol #2
from thrift.server import TServer #2

class HelloHandler: #3
 def hello_func(self):
 print("[Server] Handling client request")
 return "Hello from the python server"

handler = HelloHandler() #4
proc = HelloSvc.Processor(handler) #4

trans_svr = TSocket.TServerSocket(port=9090) #5
trans_fac = TTransport.TBufferedTransportFactory() #6
proto_fac = TBinaryProtocol.TBinaryProtocolFactory() #7
server = TServer.TSimpleServer(proc, trans_svr, trans_fac, proto_fac) #8
server.serve() #9

At the top of your server listing you use the built-in Python sys module to add the gen-py
directory to the Python Path. This allows you to import the generated service stubs for your
HelloSvc service (#1).

Your next step is to import several Apache Thrift library packages. TSocket provides an
endpoint for your clients to connect to, TTransport provides a buffering layer, TBinaryProtocol

11

will handle data serialization, and TServer will give you access to the prebuilt Python server
classes (#2).

The next block of code implements the HelloSvc service itself through the HelloHandler
class. This class is called a handler in Apache Thrift because is handles all the calls made to
the service. All the service methods must be represented in the Handler class; in your case
this is the hello_func() method (#3). In real projects, almost all your time and effort is
spent here, implementing your services. Apache Thrift takes care of all of the wiring and
boilerplate code.

Next you create an instance of your handler and use it to initialize a processor for your
service. The processor is the server side stub generated by the IDL compiler that turns
network service requests into calls to the appropriate handler function (#4).

The Apache Thrift library offers endpoint transports for use with files, memory, and various
network types. The example here creates a TCP server socket endpoint to accept client
connections on TCP port 9090 (#5). The buffering layer ensures that you make efficient use of
the underlying network, transmitting bits only when an entire message has been serialized
(#6). The binary serialization protocol transmits your data in a fast binary format with little
overhead (#7).

Apache Thrift provides a range of servers to choose from, each with unique features. The
server used here is an instance of the TSimpleServer class, which, as its name implies,
provides the most basic server functionality (#8). Once constructed, you run the server by
calling the serve() method (#9).

The following example session runs your Python server:

/ThriftBook/part1/hello$ ls -l
drwxr-xr-x 4 randy randy 4096 Jan 27 02:34 gen-py
-rw-r--r-- 1 randy randy 732 Jan 27 03:44 hello_server.py
-rw-r--r-- 1 randy randy 99 Jan 27 02:24 hello.thrift
/ThriftBook/part1/hello$ python hello_server.py

The Python server took approximately seven lines of code, excluding imports and the
service implementation. The story is similar in C++, Java, and most other languages. This is a
basic server but the example should help you see how much leverage Apache Thrift gives you
when it comes to quickly creating cross-language microservices.

1.3.3 A Python client
Now that you have your server running, let’s create a simple Python client to test it, as

shown in the following listing.

Listing 1.5 /ThriftBook/part1/hello/hello_client.py

import sys
sys.path.append("gen-py")
from hello import HelloSvc #1

from thrift.transport import TSocket #2
from thrift.transport import TTransport #3
from thrift.protocol import TBinaryProtocol #4

12

trans = TSocket.TSocket("localhost", 9090) #5
trans = TTransport.TBufferedTransport(trans) #6
proto = TBinaryProtocol.TBinaryProtocol(trans) #7
client = HelloSvc.Client(proto) #8

trans.open() #9
msg = client.hello_func() #10
print("[Client] received: %s" % msg) #11
trans.close() #12

The Python client begins by importing the same HelloSvc module used by the server, but
the client will use the client-side stubs for the hello service (#1). You’ll also import three
modules from the Apache Thrift Python library. The first is TSocket, which is used on the client
side to make a TCP connection to the server socket (#2), because you might guess the client
must use a client side transport compatible with the server transport. The next import pulls in
TTransport which will provide a network buffer (#3), and the TBinaryProtocol import allows
you to serialize messages to the server (#4). Again, this must match the server
implementation.

Your next block of code initializes the TSocket with the host and port to connect to (#5).
You’ll wrap the socket transport in a buffer (#6) and finally wrap the entire transport stack in
the TBinaryProtocol (#7), creating an I/O stack that can serialize data to and from the server.

The I/O stack is used by the client stub, which acts as a proxy for the remote service (#8).
Opening the transport causes the client to connect to the server (#9). Invoking the
hello_func() method on the Client object serializes your call request with the binary protocol
and transmits it over the socket to the server, then deserializes the returned result (#10). The
program prints out the result (#11) and then closes the connection using the transport
close() method (#12).

Here’s a sample session running the above client (the Python server must be running in
another shell to respond).

/ThriftBook/part1/hello$ ls -l
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift
/ThriftBook/part1/hello$ python hello_client.py
[Client] received: Hello from the python server

While it takes more work than your run of the mill “hello world” program, a few lines of IDL
and a few lines of Python code have allowed you to create a language-agnostic, OS-agnostic,
and platform-agnostic service API with a working client and server. Not bad.

1.3.4 A C++ client
To broaden your perspective and demonstrate the cross-language aspects of Apache Thrift,

let's build two more clients for the hello server, one in C++ and one in Java. You’ll start with
the C++ client.

13

First you need to compile the service definition again, this time generating C++ stubs:

/ThriftBook/part1/hello$ thrift --gen cpp hello.thrift #1
/ThriftBook/part1/hello$ ls -l
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift

Running the IDL Compiler with the “--gen cpp” switch (#1) causes it to emit C++ files in
the gen-cpp directory, roughly equivalent to those generated for Python, producing C++
headers (.h) and source files (.cpp). The gen-cpp/HelloSvc.h header (#1) contains the
declarations for your service, and the gen-cpp/HelloSvc.cpp source file contains the
implementation of the service stub components.

The code for a HelloSvc C++ client with the same functionality as the Python client appears
in the following listing.

Listing 1.6 /ThriftBook/part1/hello/hello_client.cpp

#include "gen-cpp/HelloSvc.h"
#include <thrift/transport/TSocket.h>
#include <thrift/transport/TBufferTransports.h>
#include <thrift/protocol/TBinaryProtocol.h>
#include <boost/make_shared.hpp>
#include <iostream>
#include <string>

using namespace apache::thrift::transport; #1
using namespace apache::thrift::protocol; #1
using boost::make_shared; #2

int main() {
 auto trans_ep = make_shared<TSocket>("localhost", 9090);
 auto trans_buf = make_shared<TBufferedTransport>(trans_ep);
 auto proto = make_shared<TBinaryProtocol>(trans_buf);
 HelloSvcClient client(proto);

 trans_ep->open();
 std::string msg;
 client.hello_func(msg); #3
 std::cout << "[Client] received: " << msg << std::endl;
 trans_ep->close();
}

Your C++ client code is structurally identical to the Python client code. With few
exceptions, the Apache Thrift meta-model is consistent from language to language, making it
easy for developers to work across languages.

The C++ main() function corresponds line for line with the Python code with one
exception; hello_func() doesn’t return a string conventionally, rather it returns the string
through an out parameter reference (#3).

14

The Apache Thrift language libraries are generally wrapped in namespaces to avoid
conflicts in the global namespace. In C++ all of the Apache Thrift library code is located within
the “apache::thrift” namespace. The using statements here provide implicit access to the
necessary Apache Thrift library code (#1).

Apache Thrift strives to maintain as few dependencies as possible to keep the development
environment simple and portable; however, exceptions do exist. For example, the Apache
Thrift C++ library relies on the open source Boost library. In this example, several objects are
wrapped in boost::shared_ptr (#2). Apache Thrift uses shared_ptr to manage the lifetimes of
almost all of the key objects involved in C++ service operations.

Those familiar with C++ will know that shared_ptr has been part of the standard library
since C++11. While the sample code is written in C++11, Apache Thrift supports C++98 as
well, requiring the use of the Boost version of shared_ptr (C++98 support will likely be
dropped in the future, moving all Boost namespace elements to the std namespace).

The following listing shows a Bash session that builds and runs the C++ client.

Listing 1.7 Bash session running C++ client

$ ls -l
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 641 Mar 26 22:36 hello_client.cpp
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift
$ g++ --std=c++11 hello_client.cpp gen-cpp/HelloSvc.cpp -lthrift #1
$ ls -l
-rwxr-xr-x 1 randy randy 136508 Mar 26 22:38 a.out
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 641 Mar 26 22:36 hello_client.cpp
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift
$./a.out #2
[Client] received: Hello thrift, from the python server

Here you use the Gnu C++ compiler to build the hello_client.cpp file into an executable
program (#1). Clang, Visual C++, and other compilers are also commonly used to build
Apache Thrift C++ applications.

For the C++ build you must compile the generated client stubs found in the HelloSvc.cpp
source file. During the link phase the “–lthrift” switch tells the linker to scan the standard
Apache Thrift C++ library to resolve the TSocket and TBinaryProtocol library dependencies
(this switch must follow the list of .cpp files when using g++ or it will be ignored, causing link
errors).

Assuming the Python Hello server is still up, you can run your executable C++ client and
make a cross-language RPC call. The C++ compiler builds your source into an a.out file that
produces the same result as the Python client when executed (#2).

15

1.3.5 A Java client
As a final example let’s put together a Java client for the service. Your first step is to

generate Java stubs for the service, as shown in the following listing.

Listing 1.8 Generating Java stubs

/ThriftBook/part1/hello$ thrift --gen java hello.thrift #1
/ThriftBook/part1/hello$ ls -l
-rwxr-xr-x 1 randy randy 136508 Mar 26 23:07 a.out
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 2 randy randy 4096 Mar 26 23:23 gen-java
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 641 Mar 26 22:36 hello_client.cpp
-rw-r--r-- 1 randy randy 386 Mar 26 21:59 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift

The “–-gen java” switch causes the IDL Compiler to emit Java code for your interface in the
gen-java directory (#1), creating a HelloSvc class with nested client and server stub classes.
The following listing provides the source for a Java client that parallels the prior Python and
C++ clients.

Listing 1.9 /ThriftBook/part1/hello/HelloClient.java

import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.transport.TSocket;
import org.apache.thrift.TException;

public class HelloClient {
 public static void main(String[] args) throws TException {
 TSocket trans = new TSocket("localhost", 9090);
 TBinaryProtocol protocol = new TBinaryProtocol(trans);
 HelloSvc.Client client = new HelloSvc.Client(protocol);

 trans.open();
 String str = client.hello_func();
 System.out.println("[Client] received: " + str);
 trans.close();
 }
}

In typical Java form, the main() method lives inside a class with the same name as the
containing file and the rest of the code is a rehash of the previous clients. The one noticeable
difference is that the Java client has no buffering layer above the endpoint transport because
the socket implementation in Java is based on a stream class that buffers internally, so no
additional buffering is required.

The following listing shows a build and run session for the Java client.

Listing 1.10 Build and run session for the Java client

/ThriftBook/part1/hello$ javac -cp /usr/local/lib/libthrift-1.0.0.jar:\ #1
 /usr/share/java/slf4j-api.jar:\ #2
 /usr/share/java/slf4j-nop.jar \ #3

16

 HelloClient.java gen-java/HelloSvc.java #4
/ThriftBook/part1/hello$ ls -l
-rwxr-xr-x 1 randy randy 136508 Mar 26 23:07 a.out
drwxr-xr-x 2 randy randy 4096 Mar 26 22:25 gen-cpp
drwxr-xr-x 2 randy randy 4096 Mar 26 23:34 gen-java
drwxr-xr-x 3 randy randy 4096 Mar 26 21:45 gen-py
-rw-r--r-- 1 randy randy 1080 Mar 30 00:04 HelloClient.class
-rw-r--r-- 1 randy randy 607 Mar 29 23:48 hello_client.cpp
-rw-r--r-- 1 randy randy 657 Mar 30 00:04 HelloClient.java
-rw-r--r-- 1 randy randy 384 Mar 29 23:48 hello_client.py
-rw-r--r-- 1 randy randy 535 Mar 26 16:50 hello_server.py
-rw-r--r-- 1 randy randy 95 Mar 26 16:28 hello.thrift
/ThriftBook/part1/hello$ java -cp /usr/local/lib/libthrift-1.0.0.jar:\
 /usr/share/java/slf4j-api.jar:\
 /usr/share/java/slf4j-nop.jar:\
 ./gen-java:\ #5
 . \ #5
 HelloClient
[Client] received: Hello thrift, from the python server

The Java compile includes three dependencies; the first is the Apache Thrift Java library jar
(#1). The IDL generated code for your service also depends on SLF4J, a popular Java logging
façade. The slf4j-api jar (#2) is the façade and the slf4j-nop jar (#3) is the nonoperational
logger that discards logging output. The Java files generate byte code in .class files for your
HelloClient class as well as the HelloSvc class (#4).

To run your Java HelloClient class under the JVM you must modify the Java class path as
you did in the compilation step, adding the current directory and the gen-java directory, where
the HelloClient class and HelloSvr class files will be found (#5). Running the client produces
the same result you saw with Python and C++.

 Beyond running standard build tools in our respective languages, it didn’t take much effort
to produce your Apache Thrift server and the three clients. In short order, you’ve built a
microservice that can handle requests from clients created in a wide range of languages. Now
that you’ve seen how basic Apache Thrift programs are created, let’s look at how Apache Thrift
fits into the overall application integration landscape.

The Apache Thrift Tutorial
In addition to the code examples included with this text, the Apache Thrift source tree provides a tutorial. The tutorial

is based on a central tutorial IDL file defining a calculator service from which client and server samples in each
language are built. This tutorial is simple but demonstrates many of the capabilities of Apache Thrift in every supported
language. The tutorials can be found under the tutorial directory below the root of the Apache Thrift source tree. Each
language-specific tutorial is found in a subdirectory named for the language. A Makefile is provided to build the tutorial
examples in languages that require compilation. The source tree also provides many tests throughout the tree, all of
which provide useful examples.
/thrift/tutorial$ ls
as3 c_glib cpp csharp d
dart delphi erl gen-html go
haxe hs java js netcore
nodejs ocaml perl php py.tornado

17

py.twisted py rb rs shared.thrift
tutorial.thrift

1.4 The communications toolkit landscape
SOAP, REST, Protocol Buffers, and Apache Avro are perhaps the technologies most often

considered as alternatives to Apache Thrift, though many others exist. Each technology is
unique and each has its place. The following sections provide a brief overview of the key
players in the software communications landscape, followed by a summary of the features
fielded by Apache Thrift and a discussion of where Apache Thrift fits in the milieu.

1.4.1 SOAP
Simple Object Access Protocol (SOAP) is a W3C recommendation

(https://www.w3.org/TR/2007/REC-soap12-part1-20070427/) specifying a Service Oriented
Architecture (SOA) style remote procedure call (RPC) system over HTTP. SOAP relies on XML
for carrying its payload between the client and server and is typically deployed over HTTP,
though other transports can also be used. Optimizations are available that attempt to reduce
the burden of transmitting XML, and SOAP has versions that use JSON, among other offshoots.
Related technologies, such as XML-RPC, operate on similar principles. Unlike RESTful services,
which directly use HTTP headers, verbs, and status codes, SOAP and XML-RPC systems tunnel
function calls through HTTP POST operations, missing out on most of the caching and system
layering benefits found in RESTful services.

The key benefit of HTTP-friendly technologies is their broad interoperability. By
transmitting standards-based text documents (XML, JSON, and others) over the ubiquitous
HTTP protocol, almost any application or language can be engaged. Human-readable
XML/JSON payloads also greatly simplify prototyping, testing, and debugging. On the
downside, each language, vendor and, often, each company, provides their own scheme for
generating stubs. You have no guarantees that code generated by different SOAP WSDL (Web
Service Description Language) tools will collaborate.

SOAP was one of the principle technologies used during the evolution of Service Orientation
and is still widely used in older systems. SOAP offers a number of WS-* standards established
by the Oasis standards body, addressing authentication, transactions, and other concerns
(https://www.oasis-open.org/standards). Few new SOAP services appear to be coming online,
and most considering SOAP today find REST simpler, faster at scale, and more compelling as a
public API solution.

1.4.2 REST
REST is an acronym for REpresentational State Transfer, a term coined by Dr. Roy Fielding

in his 2000 dissertation
(https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm). REST is the typical
means for web browsers to retrieve content from web servers. RESTful web services use the

18

https://www.w3.org/TR/2007/REC-soap12-part1-20070427/
https://www.oasis-open.org/standards
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

REST architectural style to leverage the infrastructure of the web. The well-understood and
widely supported HTTP protocol gives REST-based services broad reach. REST-based services
typically use the JSON format for payload transmission, making client/server requests human-
readable and easy to work with.

RESTful services are unique in that their interfaces are based on resources accessed
through URIs and manipulated through HTTP verbs, such as GET, PUT, POST, and DELETE.
When done well, this is referred to as a Resource Oriented Architecture (ROA). ROAs produce
significant benefits when scaling over the web. For example, standard web-based caching
systems can cache resources acquired using the GET verb, firewalls can make more intelligent
decisions about HTTP delivered traffic, and applications can leverage the wealth of technology
associated with existing web server infrastructure. HTTP headers can negotiate payload
formats, cache expirations, security features, and more. In-browser clients can leverage the
native features of the browser, and the list goes on.

One concern with ROA is that monolithic applications are composed of modules that expose
functions or methods internally. Module operations don’t typically map naturally to resource
based interfaces. This can make decomposing a monolith into RESTful microservices more
work than decomposing the same code into RPC-based microservices.

When developers refer to APIs or services today, they’re usually talking about REST
APIs/services. The RESTful approach has become nearly ubiquitous when it comes to
implementing public interfaces. The ecosystem is vast and the developer skills are widespread.
REST, however, does have its drawbacks.

It’s important to keep in mind that REST is an architectural style, not a standard or a
technology framework. Two different teams might build the same REST service in different and
incompatible ways. While this might be said of any solution, it’s particularly true of REST due
to the broad set of perspectives on how REST should be done and the several toolkits, schema
mechanisms, and documentation systems in use. For example, the RESTful world offers at
least three competing platforms for service definition and code generation: RAML, Swagger,
and API Blueprint, though the more recent Swagger-based Open API Initiative (OAI) appears
like it may unify the space.

Several communications models are not addressed by REST. REST is, by definition, a
client/server architecture and, in practice, it’s implemented over HTTP, a request/response-
based protocol. REST doesn’t address serialization concerns or support messaging or data
streaming.

One of the most important issues with RESTful interfaces is their overhead in backend
systems. The advent of HTTP/2 (https://http2.github.io/) does much to address the overhead
associated with HTTP header and JSON text transmission; however, no amount of external
optimization is likely to allow a REST service to perform at the level of a purpose-built binary
solution such as Apache Thrift. In fact, Protocol Buffers and Thrift were created by Google and
Facebook respectively to alleviate the performance issues associated with RESTful services in
high-load server systems.

19

https://http2.github.io/

1.4.3 Protocol Buffers
Google Protocol Buffers (PB) (https://developers.google.com/protocol-buffers/) and Apache

Thrift are similar in function, performance, and from a serialization and IDL standpoint. They
were built by different companies (but by several of the same people) to do the same thing.
Official Google Protocol Buffer language support is limited to Java, Python, Objective-C, C++,
Go, Ruby, and C#. This is a moving target and support for new languages is added over time.
Protocol Buffers are used by a large community of developers.

Google Protocol Buffers focuses on providing a monolithic integrated message serialization
system through the main project. Several RPC style systems for Protocol Buffers are available
in other projects, in particular, the HTTP/2-based gRPC (grpc.io). The gRPC system trades web
platform integration through HTTP/2 for speed; Apache Thrift and Protocol Buffer TCP-based
services typically run 4-6 times faster. Many developers feel the modular serialization and
transport features of the Apache Thrift framework and the in tree language and server support
provide an advantage. Others prefer the simple integrated serialization scheme offered by PB.

Another difference between the platforms is support for transmission of collections. Apache
Thrift supports transmission of three common container types: lists, sets, and maps. Protocol
Buffers supplies a repeating field feature rather than support for containers, producing similar
capabilities through a lower-level construct. Newer versions of PB add map simulation with
several restrictions. Protocol Buffers supports signed and unsigned integers, while Apache
Thrift supports only signed integers. Apache Thrift, however, supports unions and other minor
IDL features not found in Protocol Buffers.

Protocol Buffers are robust, well-documented, and backed by a large corporation, which
contrasts with the community driven nature of Apache Thrift. This is evident most clearly in
the quality of the documentation for the two projects, Google’s being noticeably superior (and
I’m being kind).

1.4.4 Apache Avro
Apache Avro (https://avro.apache.org/) is a serialization framework designed to package

the serialization schema with the data serialized. This contrasts with Apache Thrift and
Protocol Buffers, both of which describe the schema (data types and service interfaces) in IDL.
Apache Avro interprets the schema on the fly while most other systems generate code to
interpret the schema at compile time. In general, combining the schema with the data works
well for long-lived objects serialized to disk. However, such a model can add complexity and
overhead to real-time RPC style communications. Arguments and optimizations can be made
to turn these observations on their head, but most practical use of Apache Avro has been
focused on serializing objects to disk; Avro isn’t used for RPC in the wild.

Apache Thrift versions
The Thrift framework was open sourced by Facebook in 2007 and became an Apache Software Foundation

incubator project in 2008.
0.2.0 released 2009-12-12

20

https://developers.google.com/protocol-buffers/
https://avro.apache.org/

0.3.0 released 2010-08-05
0.4.0 released 2010-08-23
0.5.0 released 2010-10-07
Project moved to top-level status in 2010
0.6.0 released 2011-02-08
0.6.1 released 2011-04-25
0.7.0 released 2011-08-13
0.8.0 released 2011-11-29
0.9.0 released 2012-10-15
0.9.1 released 2013-07-16
0.9.2 released 2014-11-16
0.9.3 released 2015-10-11
0.10.0 released 2017-01-06

1.4.5 Strengths of Apache Thrift
The strength of the Apache Thrift platform lies in the completeness of its package, its

performance and flexibility, as well as the expressiveness of its IDL. Apache Thrift was created
to provide cross-language capabilities comparable to REST but with dramatically improved
performance and a significantly smaller footprint.

PERFORMANCE
To get a sense for the relative performance of several of the communications approaches

described here, look at the test results in figure 1.5 (these tests are created and covered in
detail in chapter 17). The chart displays the time required to make one million API calls to a
single service implemented with several communications technologies. All of the servers were
coded in Java and the same client, also coded in Java, was used in all cases, though the
necessary bindings are used to call the service backend under test. Each bar shows the
number of seconds the requests took to complete against a different implementation running
on the same machine. The tests were performed in isolation over the local loopback on a
system with no other activity. Multiple runs of each test were completed and no outliers were
discovered. The sole service function accepts a string and returns a small struct. The service
implementation is identical in all cases, performs no logic, and returns a static struct to
highlight the service and serialization overhead.

21

Figure 1.5 Time to complete 1 million service requests for various Java servers

The first bar shows the elapsed time for the service when implemented with SOAP. A
standard Java SOAP service coded in JAX-WS, deployed on Tomcat 7, was used for the test.
The serialization overhead associated with XML and the load incurred by Tomcat and HTTP
make this the worst performer in the group, at more than 350 seconds.

The second bar shows the results of the same test but against a REST service created with
Java and JAX-RS. Though the comparison normalizes as many variables as possible, REST-
based services are defined with HTTP verbs and IRIs, not functions. The implementation here
is a simple GET request (no caching), passing the input string as a query parameter and
receiving the resultant struct in a JSON payload. This is noticeably faster than the SOAP
example at about 300 seconds, largely due to the lack of a caller payload, improved
serialization performance of JSON over XML, and the significantly smaller JSON reply payload.

The last three bars are Apache Thrift server cases. The first is as close to an apples-to-
apples comparison with the REST example as can be had with Apache Thrift. An Apache Thrift
server was created with the same one method service, packaged as a servlet, deployed on
Tomcat, and configured to use the JSON protocol over an HTTP transport. The result is a
significant improvement in performance. This is attributable to the serialization benefits
produced by the purpose-built Apache Thrift client/server stubs, among other efficiencies.

22

Figure 1.6 Apache Thrift balances performance with reach and flexibility.

The real performance gains arrive when Tomcat and HTTP are left behind. The final two
bars show the performance of compiled Apache Thrift servers running over TCP with JSON and
Compact protocols respectively. Both are an order of magnitude faster and an order of
magnitude smaller in memory.

While your mileage will vary with different languages, different levels of concurrency,
different server shells, different services, and different frameworks, the previous example case
provides a frame of reference and explains why many firms have moved large-scale backend
services away from REST/SOAP and/or JSON serialization when under pressure for
performance. Migrating to Apache Thrift from REST or SOAP could enable the same hardware
to support 10 times the traffic.

Certain developers contemplate REST with payloads serialized using Protocol Buffers or
Apache Thrift, however this doubles the toolkit burden and complexity, misses out on the
significant benefits to be had by eliminating HTTP, and gives up the endearing “human
readable payload” property typically associated with REST. It’s an altogether unsatisfying
combination.

When it comes to performance, Apache Thrift offers a complete package with near REST-
class interoperability, significantly improved performance, and the widest range of protocol
and transport choices. See Figure 1.6.

REACH

Apache Thrift offers support in tree for a comprehensive set of programming languages but
also an impressive range of platforms. Apache Thrift can be a good fit for embedded systems,
offering support for Java’s Compact Profile and small footprint servers for C++ and other
languages.

Apache Thrift is a natural fit for typical enterprise development environments, with support
for Java/JVM and C#/CLR/.Net Core on Windows, Linux, and OSX. Apache Thrift is also a
perfect fit for cloud-native systems, offering small footprint servers in many languages perfect
for container packaging. See Figure 1.7.

23

Figure 1.7 Apache Thrift is an effective solution in embedded, enterprise, and web technology environments.

Apache Thrift integrates well with the world of the web also, including native support for
languages such as JavaScript and Dart. Apache Thrift also offers HTTP, TLS, WebSocket, and
JSON support in backend systems written in Node.js, C++, Java, C#, and more. Mobile
solutions on IOS and Android are also easy to build and have support for Objective-C and
Java.

1.4.6 Take away
You have many viable communications schemes to choose from today and they all have

their place. As a default API option and particularly if you want broad accessibility over the
public internet, REST may be your best choice. If speed is your priority, you can write your
own native binary protocol or use something edgy like Cap'n Proto (https://capnproto.org). If
you are principally serializing to disk, look at Apache Avro. If you want a solid, name-brand,
high-speed serialization system, consider FlatBuffers (https://google.github.io/flatbuffers), or
if you need RPC services as well, perhaps Protocol Buffers and GRPC will fit the bill.

However, if you want...

• Servers and Serialization—A complete serialization and service solution in tree
• Modularity—Pluggable serialization protocols and transports with a range of provided

implementations
• Performance—Lightweight, scalable servers with fast and efficient serialization
• Reach—Support for an impressive range of languages, protocols, and platforms
• Rich IDL—Language-independent support for expressive type and service abstractions
• Flexibility—Integrated type and service evolution features
• Community Driven Open Source—Apache Software Foundation hosted and community

managed

. . . in one package, then Apache Thrift belongs at the top of your consideration list. In the
next chapter we’ll look at the architecture of Apache Thrift and examine transports, protocols,
and servers in more detail.

1.5 Summary
Here are the most important points to take away from this chapter:

24

https://capnproto.org
https://google.github.io/flatbuffers

• Apache Thrift is a cross-language serialization and service implementation framework.
• Apache Thrift supports a wide array of languages and platforms.
• Apache Thrift makes it easy to build high performance services.
• Apache Thrift is a good fit for service-oriented and microservice architectures.
• Apache Thrift is an Interface Definition Language (IDL)-based framework.
• IDLs allow you to describe interfaces and generate code to support the interfaces

automatically.
• IDLs allow you to describe types used in messaging, long-term storage, and service

calls.
• Apache Thrift includes a modular serialization system, providing several built-in

serialization protocols and support for custom serialization solutions.
• Apache Thrift includes a modular transport system, providing built-in memory and disk

and network transports, yet makes it easy to add additional transports.
• Apache Thrift supports interface evolution empowering CI/CD environments and Agile

teams.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

25

https://forums.manning.com/forums/the-programmers-guide-to-apache-thrift

	The Programmer’s Guide to Apache Thrift MEAP v17

	Copyright

	Table of Contents
	Part 1: Apache Thrift Overview

	Chapter 1: Introduction to Apache Thrift

	1.1 Polyglotism, the pleasure and the pain
	1.2 Application integration with Apache Thrift
	1.2.1 Type serialization
	1.2.2 Service implementation

	1.3 Building a simple service
	1.3.1 The Hello IDL
	1.3.2 The Hello server
	1.3.3 A Python client
	1.3.4 A C++ client
	1.3.5 A Java client

	1.4 The communications toolkit landscape
	1.4.1 SOAP
	1.4.2 REST
	1.4.3 Protocol Buffers
	1.4.4 Apache Avro
	1.4.5 Strengths of Apache Thrift
	1.4.6 Take away

	1.5 Summary

