%
Implementation of the Flower Delivery Application (use case specification by Dr. Opher Etzion, implementation by the Etalis team)
%%
% Phase 1: Bid Phase

%
% External basic events:
%

Delivery Request event is placed by a store in the system:
%

delivery_request/3

%

delivery_record(+StoreId,+ToCoordinates,+DeliveryTime) where ToCoordinates is of the form: coordinates(+SNHemisphere,+Latitude,+EWHemisphere,+Longitude)
%

GPS location (each van is equiped with a GPS modem which periodically transmits a GPS location event):
%

gps_location/2

%

gps_location(+DriverId,+CurrentCoordinates) where CurrentCoordinates is of the form: coordinates(+SNHemisphere,+Latitude,+EWHemisphere,+Longitude)
%
% Database facts (defined below):
%

Store record:
%

store_record/3

%

store_record(+StoreId,+MinRankAccepted,+AssignmentPreference) where MinRankAccepted is the minimum ranking of the driver that the store is prepared to accept
%

because each store has a different level of tolerance for service quality,
%

AssignmentPreference is either "manual" or "automatic"
%

Driver records:
%

driver_record/2

%

driver_record(+DriverId,+Ranking)
%

Method to transform raw latitude and longitude values into the region of the city the driver is currently in:
%

gps_to_region/5

%

gps_to_region(+Coordinates,-Region) where Coordinates is of the form: coordinates(+SNHemisphere,+Latitude,+EWHemisphere,+Longitude)
% Complex event: Delivery Request enriched with the minimum ranking that the store is prepared to accept and with an DeliveryRequestId

% delivery_request_enriched/5 % Note: Location is of the form: coordinates(+SNHemisphere,+Latitude,+EWHemisphere,+Longitude)
delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,MinRank) :-

delivery_request(StoreId,ToCoordinates,DeliveryTime) where

(store_record(StoreId,MinRank,_AssignmentPreference), incCounter(delivery_request_counter), counter(delivery_request_counter,DeliveryRequestId)).
print_trigger(delivery_request_enriched/5).
% Multiplier: multiply the event "delivery_request_enriched" for each driver

% delivery_request_enriched_multiplied/6

delivery_request_enriched_multiplied(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime,MinRank) :-

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,MinRank) event_multiply driver_record(DriverId,_Ranking). % event_multiply does not consume "delivery_request_enriched"
print_trigger(delivery_request_enriched_multiplied/6).
% Complex event: complex events which indicate in which region of the city the driver is currently in, translated from raw latitude and longitude values

% gps_location_translated/3

gps_location_translated(DriverId,Rank,Region) :-

gps_location(DriverId,coordinates(SNHemisphere,Latitude,EWHemisphere,Longitude)) where

(driver_record(DriverId,Rank), gps_to_region(coordinates(SNHemisphere,Latitude,EWHemisphere,Longitude),Region)).
print_trigger(gps_location_translated/3).
% Complex event: Bid Request event is broadcasted to all drivers that pass the filter for ranking and location.
% bid_request/5

bid_request(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime):-

(delivery_request_enriched_multiplied(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime,MinRank) and

gps_location_translated(DriverId,Rank,Region))

where
('=<'(MinRank,Rank), gps_to_region(ToCoordinates,Region)).
print_trigger(bid_request/5).
%%
% Phase 2: Assignment Phase

% External basic events:
% A driver responds to the Bid Request by sending a Delivery Bid event designating his or her current location and comming pick up time.
% delivery_bid/4

% delivery_bid(+DeliveryRequestId,+DriverId,+CurrentCoordinates,+PossiblePickupTime)
print_trigger(delivery_bid/4).
% Two minutes after the broadcast the system starts the assignment process.
% Note: the waiting time is set by a configurable parameter in the database (start_assignment_time/1). For instance, for streams we set it to 2sec. because the stream is synthetic and we don't have to wait 2min.
% startAssignment/4

exceptionAlarm(startAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime),Time):-

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,_MinRank) where (start_assignment_time(Time)). % exceptionAlarm does not consume "delivery_request_enriched"
print_trigger(startAssignment/4).
% The assignment is either an automatic or a manual process, depending on the store's preference.
% start_automaticAssignment/4

start_automaticAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime):-

startAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) where store_record(StoreId,_MinRank,automatic).
print_trigger(start_automaticAssignment/4).
% start_manualAssignment/4

start_manualAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime):-

startAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) where store_record(StoreId,_MinRank,manual).
print_trigger(start_manualAssignment/4).
% If the process is automatic then the first bidder among the selected drivers wins the bid.
% The pickup time and delivery time are set and the Assignment event is sent to the driver.
% assignment/6

% assignment(+DeliveryRequestId,+StoreId,+ToCoordinates,+DeliveryTime,+DriverId,+ScheduledPickupTime)
consumable_pick_first(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,MinRank):-

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,MinRank) where store_record(StoreId,_MinRank,automatic).
print_trigger(consumable_pick_first/5).
assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,DriverId,ScheduledPickupTime):-

((consumable_pick_first(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,MinRank) seq

delivery_bid(DeliveryRequestId,DriverId,CurrentCoordinates,ScheduledPickupTime)) seq

start_automaticAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime)).

%) fnot no_bid_alert(DeliveryRequestId) % this line can be added in the code to specify that no bids are accepted after timeout (it's not addresed in the specification)

 % we do phase 5 separatelly as different events to show the different phase, but it can also be done in this step

%where (ScheduledPickupTime=datime(Y,M,D,_,_,_), incCounter(assignments(DriverId,date(Y,M,D))), counter(assignments(DriverId,date(Y,M,D)),Count), write(Count),nl).
print_trigger(assignment/6).
% If the process is manual, the system collects the Delievery Bid events that match the original Bid Request and sends the five highest-ranked of these to the store.
% manualAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime)
% collect_highest_five_delivery_bids/5

collect_highest_five_delivery_bids(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,[]):- % initialize with empty list

delivery_request_enriched(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,_MinRank) where store_record(StoreId,_MinRank,manual).
collect_highest_five_delivery_bids(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,HighestFive):-

(collect_highest_five_delivery_bids(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,TempHighestFive) seq

delivery_bid(DeliveryRequestId,DriverId,CurrentCoordinates,PossiblePickupTime))

where (driver_record(DriverId,Rank),select_highest_five([driver(DriverId,Rank,PossiblePickupTime)|TempHighestFive],HighestFive)).
print_trigger(collect_highest_five_delivery_bids/5).
% store_transmit_highest_five_delivery_bids/5 - event sent to the store

store_transmit_highest_five_delivery_bids(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,HighestFive):-

(collect_highest_five_delivery_bids(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,HighestFive) seq

start_manualAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime))

where (HighestFive\=[]).
print_trigger(store_transmit_highest_five_delivery_bids/5).
assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,DriverId,ScheduledPickupTime):-

store_transmit_highest_five_delivery_bids(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,HighestFive) seq

store_select_delivery_bid(DeliveryRequestId,DriverId,ScheduledPickupTime). % basic event replied by the store

%) fnot no_bid_alert(DeliveryRequestId)) % these two lines can be added in the code to specify that no bids are accepted after timeout

%) fnot no_choice_alert(DeliveryRequestId).
% Alerts:
% If there are no bidders an alert is sent both to the store and the system manager;
% no_bid_alert/1

no_bid_alert(DeliveryRequestId):-

start_automaticAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) fnot delivery_bid(DeliveryRequestId,_DriverId,_CurrentCoordinates,_PossiblePickupTime).
no_bid_alert(DeliveryRequestId):-

start_manualAssignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) fnot delivery_bid(DeliveryRequestId,_DriverId,_CurrentCoordinates,_PossiblePickupTime).
print_trigger(no_bid_alert/1).
% If the store has not performed its manual assigment within one minute of receiving its Delivery Bid events then both the store and the system manager receive and alert.
% check_manual_assignment/4

exceptionAlarm(check_manual_assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime),Time):-

store_transmit_highest_five_delivery_bids(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,HighestFive) where (check_manual_assignment_time(Time)).
print_trigger(check_manual_assignment/4).
% no_choice_alert/1

no_choice_alert(DeliveryRequestId):-

check_manual_assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime) fnot store_select_delivery_bid(DeliveryRequestId,_DriverId,_PossiblePickupTime).
print_trigger(no_choice_alert/1).
%%
%Phase 3: Delivery Process

% External basic events:
%When the driver arrives to pick up the flowers the store sends a pick_up_confirmation event:
% pick_up_confirmation/3

% pick_up_confirmation(+DeliveryRequestId,+DriverId,+RealPickupTime)
print_trigger(pick_up_confirmation/3).
%When the driver delivers the flowers the person receiving them confirms by signing the driver's mobile device, and this generates a delivery_confirmation event:
% delivery_confirmation/3).
% delivery_confirmation(+DeliveryRequestId,+DriverId,+RealDeliveryTime)
print_trigger(delivery_confirmation/3).
%Both pick_up_confirmation and delivery_confirmation events have time-stamps associated with them, and this allows the system to generate several alert events.
%A pick_up_alert is reported if a pick_up_confirmation has not been reported within 5 minutes of the committed pick up time.
% check_pick_up/4

exceptionAlarmAbsoluteDatime(check_pick_up(DeliveryRequestId,StoreId,DriverId,ScheduledPickupTime),CheckTimePickup):-

assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,DriverId,ScheduledPickupTime)

where (check_pick_up_time(WaitDuration),addSec_Datime(WaitDuration,ScheduledPickupTime,CheckTimePickup)). % the wait time is a configurable paramenter and can be changed in the test database

print_trigger(check_pick_up/4).
% pick_up_alert/4

pick_up_alert(DeliveryRequestId,StoreId,DriverId,ScheduledPickupTime):-

check_pick_up(DeliveryRequestId,StoreId,DriverId,ScheduledPickupTime) fnot pick_up_confirmation(DeliveryRequestId,DriverId,_RealPickupTime).
print_trigger(pick_up_alert/4).
%A delivery_alert is reported if a delivery_confirmation has not been reported within ten minutes of the commited delivery time.
% check_delivery/4

exceptionAlarmAbsoluteDatime(check_delivery(DeliveryRequestId,StoreId,DriverId,DeliveryTime),CheckTimeDelivery):-

assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,DriverId,_ScheduledPickupTime)

where (check_delivery_time(WaitDuration),addSec_Datime(WaitDuration,DeliveryTime,CheckTimeDelivery)). % the wait time is a configurable paramenter and can be changed

print_trigger(check_delivery/4).
% delivery_alert/4

delivery_alert(DeliveryRequestId,StoreId,DriverId,DeliveryTime):-

check_delivery(DeliveryRequestId,StoreId,DriverId,DeliveryTime) fnot delivery_confirmation(DeliveryRequestId,DriverId,_RealDeliveryTime).
print_trigger(delivery_alert/4).
%%
%Phase 4: Ranking evaluation

%The system performas an evaluation of each driver ranking every time that driver completes 20 deliveries.
%If the driver did not have any Delivery Alerts during that period then the system generates a Ranking Increase event indicating that the driver's ranking has increased by one point.
%Conversely if the driver has had more than five delivery alerts during that time then the system generates a Ranking Decrease to reduce the ranking by one point.
% counting_driver_deliveries/2

counting_driver_deliveries(DriverId,NewCount):-

delivery_confirmation(DeliveryRequestId,DriverId,_DeliveryTime) where (ranking_threshold(Max), counter(driver(DriverId),Count), Count<Max, incCounter(driver(DriverId)), counter(driver(DriverId),NewCount)).
%print_trigger(counting_driver_deliveries/2).
%faulted_ranking/2

faulted_ranking(DriverId):-

delivery_alert(_DeliveryRequestId,_StoreId,DriverId,_DeliveryTime) where (incCounter(faulted(DriverId))).
%print_trigger(faulted_ranking/1).
% ranking_decrease/2

%ranking_decrease(DriverId,NewRank):-
%
delivery_confirmation(DeliveryRequestId,DriverId,_DeliveryTime)
%
where (ranking_threshold(Max), counter(driver(DriverId),Count), Count=Max, counter(faulted(DriverId),CountAlarms), CountAlarms>=5, resetCounter(driver(DriverId)),
%
driver_record(DriverId,Rank), NewRank is Rank-1, retract(driver_record(DriverId,Rank)), assert(driver_record(DriverId,NewRank)),
%
resetCounter(faulted(DriverId)), set_flag(precedent_decrease(DriverId),yes)).
print_trigger(ranking_decrease/2).
% ranking_increase/2

%ranking_increase(DriverId,NewRank):-
%
delivery_confirmation(DeliveryRequestId,DriverId,_DeliveryTime)
%
where (ranking_threshold(Max), counter(driver(DriverId),Count), Count=Max, counter(faulted(DriverId),CountAlarms), CountAlarms=0, resetCounter(driver(DriverId)),
%
driver_record(DriverId,Rank), NewRank is Rank+1, retract(driver_record(DriverId,Rank)), assert(driver_record(DriverId,NewRank))).
print_trigger(ranking_increase/2).
%If the generation for a Ranking Increase was for a driver, whose previous evaluation generated a Ranking Decrease in the previous evaluation, then the system generates an Improvement Note.
%improvement_note/1

improvement_note(DriverId):-

ranking_increase(DriverId,_NewRank) where (get_flag(precedent_decrease(DriverId),yes), set_flag(precedent_decrease(DriverId),nil)).
print_trigger(improvement_note/1).
%%
%Phase 4: Ranking evaluation VERSION 2

%The system performas an evaluation of each driver ranking every time that driver completes 20 deliveries.
%If the driver did not have any Delivery Alerts during that period then the system generates a Ranking Increase event indicating that the driver's ranking has increased by one point.
%Conversely if the driver has had more than five delivery alerts during that time then the system generates a Ranking Decrease to reduce the ranking by one point.
% a single event is enough to start the counting for deliveries for all drivers registered in store1

start_ranking_evaluation(DriverId,store1):-

start_ranking_evaluation_for_all_drivers

event_multiply driver_record(DriverId,_Ranking).

% driverEvaluationCounter/2

driverEvaluationCounter(0,DriverId,StoreId) :- start_ranking_evaluation(DriverId,StoreId).
driverEvaluationCounter(Count,DriverId,StoreId) :- (

driverEvaluationCounter(CountTemp,DriverId,StoreId) seq

delivery_confirmation(DeliveryRequestId,DriverId,_DeliveryTime))

where (Count is CountTemp+1).
print_trigger(driverEvaluationCounter/3).
% Detects a driverEvaluation event every after every X=20 delivery.

driverEvaluation(DriverId,StoreId) :- driverEvaluationCounter(Count,DriverId,StoreId)

where (ranking_threshold(Max), (Count mod Max)=:=0). %Note: startRankingEvaluation will trigger driverEvaluation at the beggining too.
print_trigger(driverEvaluation/2).
ranking_increase(DriverId,NewRank) :-

((driverEvaluation(DriverId,StoreId) seq driverEvaluation(DriverId,StoreId)) cnot

delivery_alert(DeliveryRequestId,StoreId,DriverId,DeliveryTime)) where

(driver_record(DriverId,Rank), NewRank is Rank+1,

retract(driver_record(DriverId,Rank)), assert(driver_record(DriverId,NewRank))).
% counting_delivery_alerts/2

counting_delivery_alerts(0,DriverId,StoreId) :- driverEvaluation(DriverId,StoreId).
counting_delivery_alerts(Count,DriverId,StoreId) :- (

counting_delivery_alerts(CountTemp,DriverId,StoreId) seq

delivery_alert(DeliveryRequestId,StoreId,DriverId,DeliveryTime))

where (Count is CountTemp+1).
print_trigger(counting_delivery_alerts/3).
% Detects when number of delivery_alert events exceeds defined maximum
% (i.e. defined in delivery_alarm_threshold(Max)):

ranking_decrease(DriverId,NewRank) :-

((counting_delivery_alerts(Count,DriverId,StoreId) where (delivery_alarm_threshold(Max), Count >= Max))

seq driverEvaluation(DriverId,StoreId)) where

(driver_record(DriverId,Rank), NewRank is Rank-1,

retract(driver_record(DriverId,Rank)), assert(driver_record(DriverId,NewRank))).
% improvement_note can be, in general, detected with the two following rules:
neutral_note(DriverId):-

(driverEvaluation(DriverId,StoreId) seq driverEvaluation(DriverId,StoreId)) cnot

(ranking_increase(DriverId,Rank) or ranking_decrease(DriverId,Rank)).
print_trigger(neutral_note/1).
improvement_note(DriverId):-

(ranking_decrease(DriverId,Rank1) seq ranking_increase(DriverId,Rank2)) cnot

neutral_note(DriverId).
print_trigger(improvement_note/1).

%%
%Phase 5: Activity Monitoring

%The system generates aggregates assignment and other events and counts the number of assignments per day for each driver for each day on which the driver has been active.
% Once a month the system creates reports on driver's performance, asserting the drivers according to the following criteria:
%- A permanent weak driver is a driver with fewer than five assignments on all the days on which the driver was active.
%- An idle driver is a driver with at least one day of activity which has no assignments.
%- A consistent weak driver is a driver, whose daily assignments are at least two standard deviations lower than the average assignment per driver on each day in question.
%- A consistent strong driver is a driver, whose daily assignments are at least two standard deviations higher than the average assignment per driver on each day in question.
%- An improving driver is a driver whose assignments increase or stay the same day by day.
% All the above are queries, not events, so they are treated in the "flower_specification_static_rules.P" file. They can also be specified here with "db/1" facts.
keep_counter:- % this event can be done in the same step with assignment as showed above, but we exemplify it here as separate events for better understanding

assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,DriverId,ScheduledPickupTime)

where (ScheduledPickupTime=datime(Y,M,D,_,_,_), incCounter(assignments(DriverId,date(Y,M,D))), retractall(work_day(DriverId,date(Y,M,D))), assert(work_day(DriverId,date(Y,M,D)))). % we have to be sure that a work day is kept only once in memory

keep_counter_bids:-

bid_request(DeliveryRequestId,DriverId,StoreId,ToCoordinates,DeliveryTime)

where (DeliveryTime=datime(Y,M,D,_,_,_), incCounter(bids(DriverId,date(Y,M,D))), retractall(work_day(DriverId,date(Y,M,D))), assert(work_day(DriverId,date(Y,M,D)))).
% report_event/1

report_event(report(month(Y,M),L1,L2,L3,L4,L5)):-

end_month(month(Y,M)) where (monthly_report(month(Y,M),L1,L2,L3,L4,L5)).
print_trigger(report_event/1).
%%
%Phase 5: Activity Monitoring VERSION 2

% We implement the Activity Monitoring phase using system events that are triggered periodically, i.e.
% month(date(Y,M)) is triggered at the beginning of each month; and day(date(D)) is triggered at
% the end of each working day.
% Further on, the Activity Monitoring is implemented only for one driver. There should be similar rules
% created for each registered driver, and multiplication used to multiply events.
% Multiplier: multiply the event "driver_activity_monitoring" for each driver

%
driver_activity_monitoring(DriverId,_Ranking) :- day event_multiply driver_record(DriverId,_Ranking).
%

print_trigger(driver_activity_monitoring/2).
% A driver, whenever starting a new working day, is expected to send an activeDriver(DriverID,StoreId,date(Y,M,D))
% event. The event contains a driver ID, a store ID and a date stamp.
% assignmentCounter/2 counts no. of assignments per each driver (and store) per day:
assignmentCounter(0,driver2,StoreId,date(Y,M,D)) :- activeDriver(driver2,StoreId,date(Y,M,D)).
assignmentCounter(Count,driver2,StoreId,date(Y,M,D)) :- (

assignmentCounter(CountTemp,driver2,StoreId,date(Y,M,D)) seq

assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,driver2,ScheduledPickupTime))

where (Count is CountTemp+1).
print_trigger(assignmentCounter/4).
highActivity(driver2,date(Y,M,D)) :- assignmentCounter(Count,driver2,StoreId,date(Y,M,D)) seq day(date(D))

where Count>=5.
print_trigger(highActivity/2).
permanentWeakDriver(driver2,date(Y,M)) :-

(month(date(Y,M)) seq month(date(Y,M1))) cnot highActivity(driver2,date(_,_,_)).
print_trigger(permanentWeakDriver/2).
zeroActivity(driver2,date(D)) :- (day(date(D)) seq day(date(D1))) cnot

assignment(DeliveryRequestId,StoreId,ToCoordinates,DeliveryTime,driver2,ScheduledPickupTime).
print_trigger(zeroActivity/2).
idleDriver(driver2,date(Y,M)) :- (month(date(Y,M)) seq zeroActivity(driver2,date(_)) seq month(date(Y,M1))).
print_trigger(idleDriver/2).
strongActivity(driver2,date(Y,M,D)) :- assignmentCounter(Count,driver2,StoreId,date(Y,M,D)) seq day(date(D))

where (average_driver_assignment(Avg), Count > Avg).

% instead of Count > Avg, we should calculate 2 standard deviations lower than Avg
print_trigger(strongActivity/2).
consistentWeakDriver(driver2,date(Y,M)) :-

(month(date(Y,M)) seq month(date(Y,M1))) cnot strongActivity(driver2,date(_,_,_)).
print_trigger(consistentWeakDriver/2).
weakActivity(driver2,date(Y,M,D)) :- assignmentCounter(Count,driver2,StoreId,date(Y,M,D)) seq day(date(D))

where (average_driver_assignment(Avg), Count < Avg).

% instead of Count > Avg, we should calculate 2 standard deviations higher than Avg

print_trigger(weakActivity/2).
consistentStrongDriver(driver2,date(Y,M)) :-

(month(date(Y,M)) seq month(date(Y,M1))) cnot weakActivity(driver2,date(_,_,_)).
print_trigger(consistentStrongDriver/2).
activity(driver2,date(Y,M,D),Count) :- assignmentCounter(Count,driver2,StoreId,date(Y,M,D)) seq day(date(D)).
print_trigger(activity/3).
decreasingActivity(driver2,date(Y,M)) :-

activity(driver2,date(Y,M,D1),Count1) seq activity(driver2,date(Y,M,D2),Count2)

where Count1 > Count2.
print_trigger(decreasingActivity/2).
improvingDriver(driver2,date(Y,M)) :-

(month(date(Y,M)) seq month(date(Y,M1))) cnot decreasingActivity(driver2,date(_,_)).
print_trigger(improvingDriver/2).
