
D:\epia-esper\epia-esper\epia\etc\epia.epl Monday, February 15, 2010 9:40 PM

/** ************************************

 * The software in this package is published under the terms of the GPL license *

 * a copy of which has been included with this dist ribution in the license.txt file. *

 ** ************************************/

/**

* "Event Processing In Action" sample application

*

* Some shortcomings of the specification

* All driver will receive bid for delivery request - no matter they are already enrolled in

some delivery

* This could be handled using f.e. revision events on the driver GPSLocation stream and

some additional filtering

* TODO deal on update for DeliveryBidW

*

* @Author Alexandre Vasseur

*/

/**

* Keep last known driver location (for every driver)

*

* We use a named window and feed it from the GPSLoc ation stream

* as named windows can be used accross statements a nd possibly further queried through

* EsperJDBC or external tools.

*

*

http://esper.codehaus.org/esper-3.2.0/doc_20091026/ reference/en/html/epl_clauses.html#named_ov

erview

*/

create window GPSLocationW .std:unique(driver)

as select * from GPSLocation ;

insert into GPSLocationW

select * from GPSLocation ;

/**

* Specification subject to interpretation

* - What if no driver nearby

* -> nothing happens - we'll have an Alert later

* - What if driver join the system and/or gets near by after DeliveryRequest was received

* -> the driver will not be able to join the already started bid

*

* We join incoming DeliveryRequest with known GPSLo cation (from the named window).

* The output stream is enriched with the 'manual' p roperty out of the domain model (store,

manual assignment).

* The minimum ranking is tested out of the domain m odel as well.

* The syntax below is using a Java based domain mod el (see also esper.cfg.xml)

* and shows commented how we would do for an SQL RD BMS based domain model.

*

*

http://esper.codehaus.org/esper-3.2.0/doc_20091026/ reference/en/html/epl_clauses.html#joining_

method

*

http://esper.codehaus.org/esper-3.2.0/doc_20091026/ reference/en/html/epl_clauses.html#histdata

_overview

*

* Note - one could add driver info so as to dispatc h to driver(s) (if this is a transport

-1-

D:\epia-esper\epia-esper\epia\etc\epia.epl Monday, February 15, 2010 9:40 PM

level requirement)

*/

insert into BidRequest (requestId , store , location , pickupTime , deliveryTime , storeManual)

select d.requestId , d.store , d.location , d.pickupTime , d.deliveryTime , s.manual

from

DeliveryRequest d unidirectional ,

GPSLocationW g

//,sql:DomainDB['select ranking from Driver where driver = ${g.driv er} and ranking >

${d.minimumRanking}']

,method :Domain.driverRankLookup (g.driver) r

,method :Domain.isStoreManualLookup (d.store) s

where Geo.distanceKM (g.location , d.location) < 10

and r .ranking >= d.minimumRanking ;

/**

* Keep all DeliveryBid in a named window

* Based upon completion the elements will get updat ed / removed later

*/

create window DeliveryBidW .win :keepall () as select requestId , store , driver , pickupTime , 0 as

ranking , '' as status from DeliveryBid ;

/**

* Feed the DeliveryBid and enrich the DeliveryBid w ith the driver ranking

*/

insert into DeliveryBidW select requestId , store , driver , pickupTime , ranking , 'BID' as status

from

DeliveryBid d unidirectional

//,sql:DomainDB['select ranking from Driver where driver = ${g.driv er}'] r

,method :Domain.driverRankLookup (d.driver) r ;

/**

* Specification subject to interpretation

* - we keep the driver per pickup time and not per ranking, or per a more complex domain

level logic

*

* For an automatic store, 2 minutes after a BidRequ est we assign the driver with the

earliest pickup

*/

on pattern [every b=BidRequest (storeManual =false) -> timer :interval(2 min)]

insert into Assignment

select d.*, b.deliveryTime as deliveryTime

from

DeliveryBidW d

where requestId = b.requestId

order by pickupTime asc limit 1;

/**

* Specification subject to interpretation

* - we keep the top 5 drivers per ranking

*

* For a manual store, 2 minutes after a BidRequest we assign the top 5 drivers per ranking

*/

on pattern [every b=BidRequest (storeManual =true) -> timer :interval(2 min)]

insert into AssignmentManual

select d.* from DeliveryBidW d where requestId =b.requestId order by ranking desc limit 5;

// TODO

-2-

D:\epia-esper\epia-esper\epia\etc\epia.epl Monday, February 15, 2010 9:40 PM

// The AssignmentManual should be dealt with through some kind of store admin so as to

produce one Assignment out of the 5 AssignmentManual of a BidRequest

/**

* Maintain DeliveryBid status for informational pur pose

*/

// TODO- requires Esper 3.3.0 final version

//on PickUpConfirmation pc

//update DeliveryBidW w set status = 'PICKEDUP'

//where w.requestId = pc.requestId

/**

* On completion of delivery we can remove from the DeliveryBid named window.

* This ensures that the DeliveryBid named window is kept around for whatever store admin

manual workflow.

*/

on DeliveryConfirmation dc

delete from DeliveryBidW d where d.requestId = dc.requestId ;

// TODO- we likely need to remove from DeliveryBidW after a while - no matter

DeliveryConfirmation

// This depends on how the system would deal with Alerts and allow a store admin to

escaladate / reassign / re -emit the bid .

// In this version the non completed DeliveryBid will hang around .

/**

* A named window where to keep various alerts

*

* driver can be "" when information not available

*/

create window AlertW .win :keepall () as (requestId int, message String , driver String ,

timestamp long);

/**

* No bid after 2 mins of a request

*/

insert into AlertW (requestId , message, driver , timestamp)

select d.requestId , "no bidder" , "" , current_timestamp()

from pattern [

every d=DeliveryRequest -> (timer :interval(120 sec) and not DeliveryBid (requestId = d.

requestId))

];

/**

* No assignment on a manual store after 1 min of se lected top drivers

*/

insert into AlertW (requestId , message, driver , timestamp)

select a.requestId , "not assigned" , "" , current_timestamp()

from pattern [

every/*-distinct(a.requestId)*/ a=AssignmentManual -> (timer :interval(1 min) and not

Assignment (requestId = a.requestId))

];

/**

* Not picked up after 5 mins (300 secs) of the driv er proposed pickup time

*/

-3-

D:\epia-esper\epia-esper\epia\etc\epia.epl Monday, February 15, 2010 9:40 PM

insert into AlertW (requestId , message, driver , timestamp)

select a.requestId , "not picked up" , a.driver , current_timestamp()

from pattern [

every a=Assignment -> (timer :interval(300 + (a.pickupTime -current_timestamp)/1000) and

not PickUpConfirmation (requestId = a.requestId))

];

/**

* Not picked up after 10 mins (600 secs) of the req uest target delivery time

*/

insert into AlertW (requestId , message, driver , timestamp)

select a.requestId , "not delivered" , a.driver , current_timestamp()

from pattern [

every a=Assignment -> (timer :interval(600 + (a.deliveryTime -current_timestamp)/1000) and

not DeliveryConfirmation (requestId = a.requestId))

];

// TODO

// The specification is unclear on how an assignment gets finalized (success or not).

// We could keep all Assignment in a named window and flush them appropriately

// This would then be a starting point for computing driver statistics

//

// One could also keep driver scores in a classic relational database

// f .e.

// select * from DeliveryConfirmation

// --> attach a listener that does a call to write int o the RDBMS

-4-

