
Dhanji R. Prasanna

Design patterns using Spring and Guice

M A N N I N G

SAMPLE CHAPTER

Dependency Injection

by Dhanji R. Prasanna

Chapter 5

Copyright 2009 Manning Publications

vii

brief contents
1 ■ Dependency injection: what’s all the hype? 1

2 ■ Time for injection 21

3 ■ Investigating DI 54

4 ■ Building modular applications 99

5 ■ Scope: a fresh breath of state 123

6 ■ More use cases in scoping 156

7 ■ From birth to death: object lifecycle 186

8 ■ Managing an object’s behavior 210

9 ■ Best practices in code design 240

10 ■ Integrating with third-party frameworks 266

11 ■ Dependency injection in action! 289

123

Scope:
 a fresh breath of state

“Still this planet’s soil for noble deeds grants scope abounding.”
 —Johann Goethe

In one sentence, scope is a fixed duration of time or method calls in which an object
exists. In other words, a scope is a context under which a given key refers to the same
instance. Another way to look at this is to think of scope as the amount of time an
object’s state persists. When the scope context ends, any objects bound under that
scope are said to be out of scope and cannot be injected again in other instances.

 State is important in any application. It is used to incrementally build up data or
responsibility. State is also often used to track the context of certain processes, for
instance, to track objects in the same database transaction.

 In this chapter we’ll talk about some of the general-purpose scopes: singleton
and no scope. These are scopes that are universally applicable in managing state.

This chapter covers:
■ Understanding what scope means
■ Understanding singleton and no scope
■ Applying practical scopes for the web

124 CHAPTER 5 Scope: a fresh breath of state

We’ll also look at managing state in specific kinds of applications, particularly the web.
Managing user-specific state is a major part of scoping for the web, and this is what the
request, session, flash, and conversation scopes provide. We’ll look at a couple of imple-
mentations of these with regard to Guice and Spring and how they may be applied in
building practical web applications. First, we’ll take a primer on scopes.

5.1 What is scope?
The real power of scope is that it lets you model the state of your objects declara-
tively. By telling the injector that a particular key is bound under a scope, you can
move the construction and wiring of objects to the injector’s purview. This has some
important benefits:

■ It lets the injector manage the latent state of your objects.
■ It ensures that your services get new instances of dependencies as needed.
■ It implicitly separates state by context (for example, two HTTP requests imply

different contexts).
■ It reduces the necessity for state-aware application logic (which makes code

much easier to test and reason about).

Scope properly applied means that code working in a particular context is oblivious to
that context. It is the injector’s responsibility to manage these contexts. This means
not only that you have an added separation between infrastructure and application
logic, but also that the same services can be used for many purposes simply by altering
their scopes. Take this example of a family bathroom and its toothpaste:

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

Looking at this code we can say that the Toothpaste is used by Joanie first, then by
Jackie, and finally by Sachin. We might also guess that each family member receives
the same tube of toothpaste. If the tube were especially small, Sachin might be left
with no toothpaste at all (as per figure 5.1).

 This is an example of context: All three family members use the same bathroom
and therefore have access to the same instance of Toothpaste. It is exactly the same as
the following program, using construction by hand:

Toothpaste toothpaste = new FluorideToothpaste();

family.give("Joanie", toothpaste);
family.give("Jackie", toothpaste);
family.give("Sachin", toothpaste);

Toothpaste Joanie Jackie Sachin

<< empty >> Figure 5.1
The injector distributes
the same instance of
Toothpaste to all
family members.

125The no scope (or default scope)

If this were the whole life of the injector, only one instance of Toothpaste would ever
be created and used. In other words, Toothpaste is bound under singleton scope. If
each family member had his own bathroom (each with its own tube of toothpaste), the
semantics would change considerably (figure 5.2).

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

Nothing has changed in the code, but now a new instance of Toothpaste is available to
each family member. And now there is no danger of Sachin being deprived of tooth-
paste by Joanie or Jackie. In this case, the context under which each object operates is
unique (that is, its own bathroom). You can think of this as the opposite of singleton
scoping. Technically this is like having no scope at all.

5.2 The no scope (or default scope)
In a sense, no scope fulfills the functions of scope, as it

■ Provides new instances transparently
■ Is managed by the injector
■ Associates a service (key) with some context

Or does it? The first two points are indisputable. However, there arises some difficulty
in determining exactly what context it represents. To get a better idea of no scope’s
semantics, let’s dissect the example of the toothpaste from earlier. We saw that it took
no change in the use of objects to alter their scope. The family.give() sequence
looks exactly the same for both singleton and no scope:

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

Toothpaste

Injector

Joanie

Jackie

Sachin

Toothpaste

Toothpaste

<< new >>

<< new >>

<< new >>
Figure 5.2
The injector creates
a new Toothpaste
instance for each
family member.

126 CHAPTER 5 Scope: a fresh breath of state

Or, expanded using construction by hand (modeled in figure 5.3), the same code can
be expressed as follows:

Toothpaste toothpaste = new FluorideToothpaste();
family.give("Joanie", toothpaste);

toothpaste = new FluorideToothpaste();
family.give("Jackie", toothpaste);

toothpaste = new FluorideToothpaste();
family.give("Sachin", toothpaste);

In no scope, every reference to Toothpaste implies a new Toothpaste instance. We
likened this to the family having three bathrooms, one for each member. However,
this is not exactly accurate. For instance, if Sachin brushed his teeth twice,

family.give("Joanie", injector.getInstance(Toothpaste.class));
family.give("Jackie", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));
family.give("Sachin", injector.getInstance(Toothpaste.class));

we would end up with a total of four Toothpaste instances (see figure 5.4).
 In our conceptual model, there were only three bathrooms. But in practice there

were four tubes of toothpaste. This means that no scope cannot be relied on to
adhere to any conceptual context. No scope means that every time an injector looks

Toothpaste

Joanie

Jackie

Sachin

Toothpaste

<< new >>

<< new >>

Toothpaste

<< new >>

Figure 5.3 Each member of the
family receives her own instance
of Toothpaste.

Joanie Jackie Sachin

Toothpaste Toothpaste Toothpaste Toothpaste

Figure 5.4 There are now four
instances of Toothpaste,
one for each use.

http://code.google.com/p/google-guice.com
http://code.google.com/p/google-guice.com

127The no scope (or default scope)

for a given key (one bound under no scope), it will construct and wire a new instance.
Furthermore, let’s say Sachin took Joanie on vacation and only Jackie was left at home.
She would brush her teeth once, as follows:

family.give("Jackie", injector.getInstance(Toothpaste.class));

This would mean only one instance of Tooth-
paste was ever created for the life of the applica-
tion. This was exactly what happened with
singleton scoping, but this time it was purely acci-
dental that it did. Given these two extremes, it is
difficult to lay down any kind of strict rules for
context with no scope. You could say, perhaps,
that no scope is a split-second scope where the
context is entirely tied to referents of a key. This
would be a reasonable supposition. Contrast sin-
gleton and no scope in figure 5.5.

 No scope is a very powerful tool for working
with injector-managed components. This is
partly because it allows a certain amount of flexi-
bility in scaling upward. Dependents that exist for longer times (or in wider scopes)
may safely obtain no-scoped objects as they are required. If you recall the Provider pat-
tern from chapter 4, there is a close similarity. Granny obtained new instances of an
Apple on each use (see listing 5.1, modeled in figure 5.6).

public class Granny {

 private Provider<Apple> appleProvider;

 public void eat() {
 appleProvider.get().consume();
 appleProvider.get().consume();
 }
}

In listing 5.1, the eat() method uses a provider to retrieve new instances, just as we
did for Toothpaste, earlier. Here Apple is no scoped.

 Guice and Spring differ in nomenclature with regard to the no scope. Spring calls
it as the prototype scope, the idea being that a key (and binding) is a kind of template

Listing 5.1 An example of no scope using the Provider pattern

Two new Apples
created

Granny

Provider<Apple>

get()
Apple

obtain

Injector

Figure 5.6 Granny obtains
instances of Apple (bound to
no scope) from a provider.

Injector

SingletonS
A

B

B

No scope

Figure 5.5 Timeline of contexts,
contrasting singleton and no scope

http://code.google.com/p/google-guice.com

128 CHAPTER 5 Scope: a fresh breath of state

(or prototype) for creating new objects. Recall chapter 3, in the section on construc-
tor injection and object validity, where no scoping enabled multiple threads to see
independent instances of an object (modeled in figure 5.7):

<beans ...>
 <bean id="slippery" class="Slippery" scope="prototype"/>
 <bean id="shady" class="Shady" scope="prototype"/>

 <bean id="safe" class="UnsafeObject" init-method="init" scope="prototype">
 <property name="slippery" ref="slippery">
 <property name="shady" ref="shady">
 </bean>
</beans>

 This object was actually safe, because
any dependents of key safe were guaran-
teed to see new, independent instances of
UnsafeObject. Like singleton, the name
prototype comes from the Gang of Four
book, Design Patterns. For the rest of this
book I will continue to refer to it as, largely
because it is a more descriptive name.

 Like Guice, PicoContainer also assumes
the no scope if a key is not explicitly bound
to some scope:

MutablePicoContainer injector = new DefaultPicoContainer();
injector.addComponent(Toothpaste.class);

family.give("Joanie", injector.getComponent(Toothpaste.class));
family.give("Jackie", injector.getComponent (Toothpaste.class));
...

There’s almost no difference.

NOTE You will sometimes also hear no scope referred to as the default scope.
This is a less descriptive name and typically connotes either Guice or
PicoContainer (since they default to no scope).

While no scope doesn’t really lend itself to a context, singleton scope does so quite
naturally. Although the design pattern is itself applied in many different ways, we can
establish a context quite easily for a singleton.

5.3 The singleton scope
Very simply, a singleton’s context is the injector
itself. The life of a singleton is tied to the life of
the injector (as in figure 5.8).

 Therefore, only one instance of a singleton
is ever created per injector. It is important to
emphasize this last point, since it is possible for

UnsafeObject Slippery

Shady

<< no scoped >>

<< no scoped >>

<< no scoped >>

Figure 5.7 UnsafeObject and both
its dependencies were no scoped.

Injector

SingletonS

Figure 5.8 Timeline view of an injector
and singleton-scoped object A

129The singleton scope

multiple injectors to exist in the same application. In such a scenario, each injector
will hold a different instance of the singleton-scoped object. This is important to
understand because many people mistakenly believe that a singleton means one
instance for the entire life of an application. In dependency injection, this is not the
case. The distinction is subtle and often confusing. In fact, PicoContainer has
dropped the term singleton and instead refers to it as cache scoping.

 I persist with singleton scope, however, for a few reasons:

■ A singleton-scoped object is different from a singleton-patterned object (more on
this shortly).

■ The term singleton is well known and reasonably well understood, even if its par-
ticular semantics are not.

■ Cache scoping is a different concept altogether (which you will see in the next
chapter).

Identifying which service should be a singleton is quite a divisive issue. It is a design
decision that should impinge on the nature of a service. If a service represents a con-
ceptual nexus for clients, then it is a likely candidate. For instance, a database connec-
tion pool is a central port of call for any service that wants to connect to a database (see
figure 5.9). Thus, connection pools are good candidates for singleton scoping.

 Similarly, services that are stateless (in other words, objects that have no dependen-
cies or whose dependencies are immutable) are good candidates. Since there is no
state to manage, no scoping and singleton scoping are both equally viable options. In
such cases, the singleton scope has advantages over no scope for a number of reasons:

■ Objects can be created at startup (sometimes called eager instantiation), saving
on construction and wiring overhead.

■ There is a single point of reference when stepping through a debugger.
■ Maintaining the lone instance saves on memory (memory complexity is constant

as opposed to linear in the case of no scoping; see figure 5.10).

Business objects are perfect candidates for singleton scoping. They hold no state but typ-
ically require data-access dependencies. These services are sometimes referred to as

Client

ConnectionPool

connections

Client

Client

Data server
Figure 5.9
ConnectionPool is
a nexus through which
data connections are
served to clients.

130 CHAPTER 5 Scope: a fresh breath of state

managers or simply business APIs, as
in PersonnelManager, SalaryManager,
and StockOptionsService in a hypo-
thetical employee payroll system. Any
services-oriented APIs are likewise good
candidates to be stateless singletons.
We’ll talk a bit more about services-
oriented architecture (SOA) in chapter 10.

 Another oft-stated use case for sin-
gletons is when dealing with any object
graphs that are expensive to construct
and assemble. This may be due to any of
the following reasons:

■ The object graph itself being very large
■ Reliance on slow external resources (like network storage)
■ Some difficult computation performed after construction

These aren’t good enough reasons in themselves to warrant singleton scoping. Instead
you should be asking questions about context. If an external resource is designed to
be held open over a long period, then yes, it may warrant singleton scoping, for exam-
ple, the pool of database connections.

 On the other hand, a TCP socket, while potentially expensive to acquire (and
cheap to hold onto) may not warrant singleton scoping. If you were writing a game
that logs in to a server over a TCP connection when playing against others, you cer-
tainly would not want it to be a singleton. If a user happened to log out and back in to
a new server in a different network location, a new context for the network service
would be established and consequently would need a new instance, not the old single-
ton instance.

 Similarly, the size of the object graph should not play a major role in deciding an
object’s scope. Object graphs that have several dependencies, which themselves have
dependencies, and so on, are not necessarily expensive to construct and assemble.
They may have several cheaply buildable parts. So without seeing clear shortcomings
in an object’s performance, don’t be in a rush to optimize it as a singleton. This is a
mantra you can repeat to yourself every time you start to speculate and worry about
performance in any context.

 Computational expense may be a legitimate reason for scoping an object as a sin-
gleton, but here too, there are other prevailing concerns. Is the computation a one-
time activity? Do its values never change throughout the life of the application? And
can you separate the expense of computation from the object itself by, for instance,
storing the resultant value in a memo object? If you can answer these questions, you may
have a singleton on your hands. Remember the singleton litmus test: Should the
object exist for the same duration as the injector? In the coming sections, we’ll look at
how the semantics of the singleton scope affect design in various situations.

Singleton
Injector

(used) (used) (used)

No scope
Injector

(used) (used) (used)

In

Figure 5.10 Memory usage for a singleton is
constant compared to linear for no-scoped instances.

131The singleton scope

5.3.1 Singletons in practice

The important thing to keep in mind about scoping is that a key is bound under a
scope, not an object or class. This is true of any scope, not just the singleton. Take the
following example of a master terminal that can see several security cameras in
a building:

<bean id="terminal" class="MasterTerminal" scope="singleton"/>

<bean id="camera.basement" class="SimpleCamera" scope="prototype">
 <constructor-arg ref="terminal"/>
</bean>

<bean id="camera.penthouse" class="SimpleCamera" scope="prototype">
 <constructor-arg ref="terminal"/>
</bean>

Notice that I explicitly declare terminal as a singleton (by default, Spring beans are
all singletons) and both cameras as no scoped (scope="prototype"). In this configu-
ration, both camera.basement and camera.penthouse share the same instance of
MasterTerminal. Any further keys will also share this instance. Consider this equiva-
lent in Guice, using a module:

Algorithmic (or asymptotic) complexity
Complexity in computing is a measure of the scalability of an algorithm with regard
to resources. These resources may be CPU cycles (time complexity), RAM (memory
complexity), or any other kind of physical resource that the algorithm may demand
(for instance, network bandwidth). Complexity is used to indicate how the algorithm
performs with increasing size of input. The input is typically expressed as a number
n, indicating the total number of input items. For instance, a text-search algorithm
may count the number of characters in a string as its input.

Performance is typically expressed in big Oh notation: O(n) or O(n²), and so on. Ev-
erything is relative to n; the idea is to measure how an algorithm scales for very large
values of n. Constant complexity, which is O(1), indicates that the algorithm is inde-
pendent of n, even for huge values of n. This is considered good because it means
the algorithm will only ever consume a fixed amount of resources, regardless of its
input.

Going back to the text-search algorithm, it is easy to see that its time complexity is
dependent on the size of the input (since every character needs to be searched). This
is called linear complexity and is usually written as O(n).

In my example of no scoping, the input items are the number of dependents of the no-
scoped dependency, and the amount of memory allocated scales in proportion to this
number. Therefore, its memory complexity is also linear. If I changed to singleton
scoping, the memory complexity would be constant, since only the one instance is
created and shared by all dependents.

132 CHAPTER 5 Scope: a fresh breath of state

public class BuildingModule extends AbstractModule {

 @Override
 protected void configure() {
bind(Camera.class).annotatedWith(Basement.class).

➥ to(SimpleCamera.class);
bind(Camera.class).annotatedWith(Penthouse.class).

➥ to(SimpleCamera.class);

 bind(MasterTerminal.class).in(Singleton.class);
 }
}

Here we use combinatorial keys (see chapter 2) to identify the basement and pent-
house security cameras. Since Guice binds keys under no scope by default, we need
only scope MasterTerminal:

 bind(MasterTerminal.class).in(Singleton.class);

This has the same semantics as the Spring configuration. All security camera instances
share the same instance of MasterTerminal, as shown in figure 5.11.

 Another option is to directly annotate MasterTerminal as a singleton:

@Singleton
public class MasterTerminal { .. }

public class BuildingModule extends AbstractModule {

 @Override
 protected void configure() {
bind(Camera.class).annotatedWith(Basement.class).

➥ to(SimpleCamera.class);
bind(Camera.class).annotatedWith(Penthouse.class).

➥ to(SimpleCamera.class);
 }
}

This lets you skip an explicit binding (see BuildingModule). Figure 5.12 shows how a
singleton-scoped instance is shared among no-scoped objects.

[Camera.class, Basement.class]

Camera

<< abstract >> << annotation >>

@

Basement

(refers to)

<< no scoped >>

[Camera.class, Penthouse.class]

Camera

<< abstract >> << annotation >>

@

Penthouse

<< no scoped >>

[MasterTerminal.class]

Master
Terminal

<< concrete >>

<< singleton scoped >>

(refers to)

Figure 5.11 Keys are bound under
scopes, rather than classes or objects

133The singleton scope

To further illustrate the difference between no scope and singleton scope, let’s exam-
ine another interesting case. Here is a class BasementFloor, which represents a part of
the building where security cameras may be installed:

public class BasementFloor {
 private final Camera camera1;
 private final Camera camera2;

 @Inject
 public BasementFloor(@Basement Camera camera1,
 @Basement Camera camera2) {

 this.camera1 = camera1;
 this.camera2 = camera2;
 }
}

You might expect that both camera1 and
camera2 refer to the same instance of security
camera, that is, the one identified by key [Cam-
era, Basement]. But this is not what hap-
pens—camera1 and camera2 end up with two
different instances of Camera. This is because
the key [Camera, Basement] is bound to no
scope (see figure 5.13).

 Similarly, any dependents of [Camera,
Penthouse] will end up with new, unrelated
instances of Camera. Consider another class,
Building, which houses more than one kind
of camera:

public class Building {
 private final Camera camera1;
 private final Camera camera2;
 private final Camera camera3;
 private final Camera camera4;

 @Inject
 public Building(@Basement Camera camera1,

No scope #1

No scope #2

No scope #3

Singleton

Figure 5.12 A singleton-scoped instance
injected into many no-scoped instances

Basement
Floor

[Camera, @Basement]

[Camera, @Basement]

Figure 5.13 BasementFloor is wired
with two separate instances of no-scoped
key [Camera, @Basement].

134 CHAPTER 5 Scope: a fresh breath of state

 @Basement Camera camera2,
 @Penthouse Camera camera3,
 @Penthouse Camera camera4) {

 this.camera1 = camera1;
 this.camera2 = camera2;
 this.camera3 = camera3;
 this.camera4 = camera4;
 }
}

Here, all four fields of Building receive different instances of Camera even though
only two keys are present. This is opposed to the following class, ControlRoom, which
has four fields that refer to the same instance of MasterTerminal but via four refer-
ences (modeled in figure 5.14):

public class ControlRoom {
 private final MasterTerminal terminal1;
 private final MasterTerminal terminal2;
 private final MasterTerminal terminal3;
 private final MasterTerminal terminal4;

 @Inject
 public ControlRoom(MasterTerminal terminal1,
 MasterTerminal terminal2,
 MasterTerminal terminal3,
 MasterTerminal terminal4) {

 this.terminal1 = terminal1;
 this.terminal2 = terminal2;
 this.terminal3 = terminal3;
 this.terminal4 = terminal4;
 }
}

If we added a new kind of MasterTerminal,
bound to a different key, then this would
be a different instance. Let’s say I add a
MasterTerminal for the basement only:

public class BuildingModule extends AbstractModule {

 @Override
 protected void configure() {
bind(Camera.class).annotatedWith(Basement.class).

➥ to(SimpleCamera.class);
bind(Camera.class).annotatedWith(Penthouse.class).

➥ to(SimpleCamera.class);

bind(MasterTerminal.class).annotatedWith(Master.class).in(Singleton.class);

 bind(MasterTerminal.class).annotatedWith(Basement.class)
 .to(BasementTerminal.class)
 .in(Singleton.class);

 }
}

ControlRoom
Master

Terminal

<< singleton >><< no scoped >>

Figure 5.14 All four fields of Control-
Room are wired with the same instance of
MasterTerminal.

135The singleton scope

Now any dependents of [MasterTerminal, Master] see the same shared instance, but
any dependents of key [MasterTerminal, Basement] see a different instance. The
modified version of Building in listing 5.2 illustrates this situation.

public class ControlRoom {
 private final MasterTerminal terminal1;
 private final MasterTerminal terminal2;

 private final MasterTerminal terminal3;
 private final MasterTerminal terminal4;

 @Inject
 public ControlRoom(@Master MasterTerminal terminal1,
 @Master MasterTerminal terminal2,
 @Basement MasterTerminal terminal3,
 @Basement MasterTerminal terminal4) {

 this.terminal1 = terminal1;
 this.terminal2 = terminal2;
 this.terminal3 = terminal3;
 this.terminal4 = terminal4;
 }
}

In listing 5.2, terminal1 and terminal2 share the same instance of MasterTerminal.
But terminal3 and terminal4 share a different instance. I belabor this point because
it is very important to distinguish that a key, rather than an object, is bound under a
scope. Singleton scoping allows many instances of the same class to exist and be used
by dependents; it allows only one shared instance of a key. This is quite different from
the conventional understanding of singletons. This idiom implies a more absolute sin-
gle instance per application and is definitely problematic. In the following section I’ll
explain why I go so far as to call it an anti-pattern when compared with the much
more erudite singleton scope.

5.3.2 The singleton anti-pattern

You have probably heard a lot of discussion around the web and in technical seminars
about the horrors of the singleton as an anti-pattern. Earlier we drew a distinction
between singleton scope, a feature of DI, and singleton objects (or singleton anti-patterns),
which are the focus of much of this debate. The singleton anti-pattern has several
problems. Compounding these problems is the fact that singletons are very useful and
therefore employed liberally by developers everywhere.

 Its problems however, greatly outweigh its usefulness and should warn you off
them for good (especially when dependency injection can save the day with singleton
scoping). Let’s break this down in code:

public class Console {
 private static Console instance = null;

 public static synchronized Console getInstance() {

Listing 5.2 Object with two different singleton-scoped dependencies

Shared instance of
[MasterTerminal, Master]

Shared instance of
[MasterTerminal, Basement]

136 CHAPTER 5 Scope: a fresh breath of state

 if (null == instance)
 instance = new Console();

 return instance;
 }

 ...
}

I’m sure you have seen or written code like this. I certainly have. Its purpose is quite
simple; it allows only one instance of Console ever to be created for the life of the pro-
gram (representing the one monitor in a computer, for example). If an instance does
not yet exist, it creates one and stores it in a static variable instance:

 if (null == instance)
 instance = new Console();

 return instance;

The static getInstance() method is declared synchronized so that concurrent
threads don’t accidentally attempt to create instances concurrently. In essence, get-
Instance() is a Factory method—but a special type of Factory that produces only one
instance, thereafter returning the stored instance every time. You might say this is the
Factory equivalent of singleton scoping.

 Apart from all the foibles that Factories bring, note that this immediately causes
one major problem. This code is not conducive to testing. If an object relies on Con-
sole.getInstance() to retrieve a Console instance and print something to it, there is
no way for us to write a unit test that verifies this behavior. We cannot pass in a substi-
tute Console in the following code:

public class StockTicker {
 private Console console = Console.getInstance();

 public void tick() {
 //print to console
 ...
 }
}

StockTicker directly retrieves its dependency from the singleton Factory method. In
order to test it with a mock Console, you’d have to rewrite Console to expose a setter
method:

public class Console {
 private static Console instance = null;

 public static synchronized Console getInstance() {
 if (null == instance)
 instance = new Console();

 return instance;
 }

 public static synchronized void setInstance(Console console) {
 instance = console;

137The singleton scope

 }

 ...
}

Patterns that force you to add extra code or infrastructure logic purely for the pur-
poses of testing are poor servants of good design. Nonetheless, now you can test
StockTicker:

public class StockTickerTest {

 @Test
 public final void printToConsole() {
 Console.setInstance(new MockConsole());
 ...
 }
}

But what if there are other tests that need to create their own mocked consoles for dif-
ferent purposes (say, a file listing service)? Leaving the mocked instance in place will
clobber those tests. To fix that, we have to change the test again:

public class StockTickerTest {

 @Test
 public final void printToConsole() {
 Console previous = Console.getInstance();
 try {
 Console.setInstance(new MockConsole());
 ...
 } finally {
 Console.setInstance(previous);
 }
 }
}

I wrapped the entire test in a try/finally block to ensure that any exceptions thrown
by the test do not subvert the Console reset.

TIP Depending on your choice of test framework, there may be other meth-
ods of doing this. I like to use TestNG,1 which allows the declaration of
setup and teardown methods that run before and after each test. See list-
ing 5.3.

public class StockTickerTest {
 private Console previous;

 @BeforeMethod
 void setup() {

1 TestNG is a flexible Java testing framework created by Cedric Beust and others. It takes many of the ideas in
JUnit and improves on them. Find out more about TestNG at http://www.testng.org and read Cedric’s blog
at http://beust.com/weblog.

Listing 5.3 A test written in TestNG with setup and teardown hooks

http://www.testng.org
http://beust.com/weblog

138 CHAPTER 5 Scope: a fresh breath of state

 previous = Console.getInstance();
 }

 @Test
 public final void printToConsole() {
 Console.setInstance(new MockConsole());
 ...
 }

 @AfterMethod
 void teardown() {
 Console.setInstance(previous);
 }
}

This is a lot of boilerplate to write just to get tests working. It gets worse if you have
more than one singleton dependency to mock. Furthermore, if you have many tests
running in parallel (in multiple threads), this code doesn’t work at all because threads
may crisscross and interfere with the singleton. That would make all your tests com-
pletely unreliable. This ought to be a showstopper.

 If you have more than one injector in an
application, the situation grows worse. Singleton
objects are shared even between injectors and can
cause a real headache if you are trying to sepa-
rate modules by walling them off in their own
injectors (see figure 5.15).

 Moreover, any object created and maintained
outside an injector does not benefit from its
other powerful features, particularly lifecycle
and interception—and the Hollywood Principle.
One of the great benefits of DI is that it allows you to quickly bind a key to a different
scope simply by changing a line of configuration. That’s not possible with the single-
ton object (figure 5.16).

 Its class must be rewritten and retested to
introduce scoping semantics. Refactoring
between scopes is also a vital part of software
development and emerging design. Singleton
objects hinder this natural, iterative evolution.

 So to sum up: singleton objects bad, single-
ton scoping good. Singleton objects make test-
ing difficult if not impossible and are
antithetical to good design with dependency
injection. Singleton scoping, on the other
hand, is a purely injector-driven feature and completely removed from the class in
question (figure 5.17).

 Singleton scope is thus flexible and grants the usefulness of the Singleton anti-
pattern without all of its nasty problems. Scopes have a variety of other uses; they

Injector

Singleton anti-patternS

Injector

Figure 5.15 Singleton-patterned
objects are shared even across injectors.

Singleton

Application

Injector

A

Injector

Figure 5.16 Singleton anti-pattern
objects sit outside dependency injectors.

139Domain-specific scopes: the web

needn’t only be applied in the singleton and no scope idioms. In web applications,
scopes are extremely useful as unintrusive techniques in maintaining user-specific
state. These web-specific scopes are explored in the following section.

5.4 Domain-specific scopes: the web
So far we’ve seen that scopes are a context in which objects live. When a scope ends,
objects bound to it go out of scope. And when it begins again, new objects (of the
same keys) come “into scope.” Scopes can also be thought of as a period in the objec-
tive life of a program where the state of objects is persistent; that is, it retains its values
for that period. We also examined two of these scopes: the singleton and the no scope.
They’re rather unique: One sticks around forever, the other a split second. In a sense,
these two scopes are universal. Any application has a use for no-scoped objects. And
most applications will probably need access to some long-lived service that the single-
ton context provides.

 But there is a whole class of uses that are very specific to a particular problem
domain. These are domain-specific scopes. They are contexts defined according to the
particular behavioral requirements of an application. For example, a movie theater
has a specific context for each movie as it is being shown. In a multiplex, several movies
may be showing simultaneously, and each of these is a unique context. We can model
these contexts as scopes in an injector. A moviegoer watching a showing of the movie
The Princess Bride is different from one who is watching Godzilla in another theater.

 An important corollary to this model is that the moviegoer exists for the entire
duration of the movie (that is, scope). So if you looked in on the Godzilla show, you
would expect to see the same members of the audience each time.

 The movie scopes are specific to the domain of movie theaters and intimately tied
with their semantics. If a moviegoer exits one show just as it is ending and enters
another show as it is starting (I used to do this in high school to save money), does it
mean the moviegoer is carried across two contexts? Or should its state be lost and a
new instance created? We can’t answer these questions without getting deeper into

Injector Singleton

Application

Injector Singleton

Injector Singleton

Figure 5.17 Singleton-scoped
objects are well-behaved and live
inside the injector.

140 CHAPTER 5 Scope: a fresh breath of state

the movie theater analogy. More important, the answers to the questions can’t be
reused in any other problem domain.

 One of the most important sets of domain-specific scopes is those around building
web applications. Web applications have different contexts that emerge from interaction
with users. Essentially, web applications are elaborate document retrieval and transmis-
sion systems. These are typically HTML documents, which I am sure you are infinitely
familiar with. With the evolution of the web, highly interactive web applications have
also arisen—to the point where they now closely resemble desktop applications.

 However, the basic protocol for transmission of data between a browser and server
has remained fairly unchanged. The contexts for a web application have their seman-
tics in this protocol. Unlike a desktop application, a web application will generally
have many users simultaneously accessing it. And these users may enter and leave a
chain of communications with the web application at will. For example, when check-
ing email via the popular Gmail service from Google, I sign in first (translated as a
request for the inbox document), then open a few unread messages (translated as
requests for HTML documents), and finally sign out. All this happens with Gmail run-
ning constantly on Google’s servers. Contrast this with a desktop client like Mozilla
Thunderbird, where I perform the same three steps, but they result in the program
starting up from scratch and terminating when I’ve finished (entirely on my desktop).
Furthermore, Google’s servers host thousands (if not millions) of users doing very
similar things simultaneously. Any service that would normally be singleton scoped,
for example, my user credentials in Thunderbird, can no longer be a singleton in
Gmail.2 Otherwise, all users would share the same credentials, and we would be able
to read each other’s mail.

 On the other hand, you can’t make everything no scoped either. If you do, classes
of the Gmail application would be forced to keep passing around user credentials in
order to maintain state in a given request, and that would rewind all the benefits orig-
inally reaped from scoping. It would also perform rather poorly. Here’s where web-
specific scopes really help.

 All interaction between a user (via a web browser) and a web application occurs
inside an HTTP request (figure 5.18).

 A request is—no surprise—a request for a document or, more generally, a resource.
To provide this resource, an application
might go to a database or a file or perform
some dynamic computation. All this hap-
pens synchronously, that is, while the user
is waiting. This entire transaction forms
one HTTP request. Objects that live and
operate within this context belong to the
request scope.

2 Interesting fact: Gmail’s frontend servers use Guice heavily for dependency injection concerns.

request

Web serverUser

Figure 5.18 Interaction between a web server
and a user happens in an HTTP request.

141Domain-specific scopes: the web

5.4.1 HTTP request scope

The request scope is interesting because it isn’t strictly a segment in the life of an
injector. Since requests can be concurrent, request scopes are also concurrent (but
disparate from one another). Let’s take the example of an online comic book store.
Sandman is one of my favorite books, so I do a search for Sandman by typing in "sand-
man" at the appropriate page. To the comics store, this is a request for a document
containing a list of Sandman titles. Let’s call the service that generates this document
ComicSearch. ComicSearch must

■ Read my search criteria from the incoming request
■ Query a database
■ Render a list of results

Let’s make another service that accesses the database and call this ComicAccess.
ComicAccess will in turn depend on database-specific services like connections and
statements in order to deliver results. Listing 5.4 describes the code for the comic
store so far.

public class ComicSearch {
 private final ComicAccess comicAccess;

 @Inject
 public ComicSearch(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public HTML searchForComics(String criteria) {
 ...
 }
}

Now it makes sense for the ComicAccess object to be a singleton—it has no state, con-
nects to a database as needed, and will probably be shared by several clients (other
web pages needing to access the comic store). The searchForComics() method takes
search criteria (typed in by a user) and returns an HTML object.

NOTE Of course, this is a hypothetical class and the exact form of search-
ForComics() may be different depending on the web framework you
choose. But its semantics remain the same—it takes in search criteria and
converts them to an HTML page displaying a list of matches.

ComicSearch is itself stateless (since its only dependency, ComicAccess, is immutable),
so we could bind it as a singleton. Given this case, it actually works quite well. Since
there is no request-specific context, binding ComicSearch either as a singleton or no
scope is viable.

 Let’s expand this example. Let’s say we add a requirement that the store shows me
items of interest based on my prior purchases. It’s not important how it determines
my interests, just that it does. Another service, UserContext, will handle this work:

Listing 5.4 Comic store’s search and data access components

142 CHAPTER 5 Scope: a fresh breath of state

public class UserContext {
 private String username;

 private final ComicAccess comicAccess;

 @Inject
 public UserContext(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public List<Comic> getItemsOfInterest() {
 ...
 }

 public void signIn(String username) {
 this.username = username;
 }
}

The method getItemsOfInterest()scans old purchases using ComicAccess and
builds a list of suggestions. The interesting part about UserContext is its field user-
name and method signIn():

 public void signIn(String username) {
 this.username = username;
 }

When called with an argument, signIn() stores the current user. You’ll notice that
signIn() is more or less a setter method. But I’ve deliberately avoided calling it
setUsername() to distinguish it from a dependency setter. signIn() will be called
from ComicSearch, which itself is triggered by user interaction. Here’s the modified
code from listing 5.4, reflecting the change:

public class ComicSearch {
 private final ComicAccess comicAccess;
 private final UserContext user;

 @Inject
 public ComicSearch(ComicAccess comicAccess, UserContext user) {
 this.comicAccess = comicAccess;
 this.user = user;
 }

 public HTML searchForComics(String criteria, String username) {
 user.signIn(username);

 List<Comic> suggestions = user.getItemsOfInterest();
 ...
 }
}

ComicSearch is triggered on a request from a user, and method searchForComics() is
provided with an additional argument, username, also extracted from the HTTP
request. The UserContext object is configured with this username. Now any results it
returns will be specific to the current user.

 Let’s put the UserContext to work and expand this another step. We’ll add a
requirement that the list of results should not show any comics that a user has already

143Domain-specific scopes: the web

purchased. One way to do this is with two queries, one with the entire set of results
and the second with a history of purchases, displaying only the difference. That
sequence would be:

1 Query all matches for criteria from database.
2 Query history of purchases for current user.
3 Iterate every item in step 1, comparing them to every item in step 2, and

remove any matches.
4 Display the remainder.

This works, but it seems awfully complex. It is a lot of code to write and a bit superflu-
ous. Furthermore, if these sets are reasonably large and contain a lot of overlap, it
could mean doing a large amount of work to bring up results that are simply thrown
away. Worse, two queries are two trips to the database, which is expensive and unnec-
essary in a high-traffic environment.

 Another solution is to create a special finder method on ComicAccess that accepts the
username and builds a database query sensitive to this problem. This is much better,
because only the relevant results come back and the impact to ComicSearch is very small:

 public HTML searchForComics(String criteria, String username) {
 user.signIn(username);

 List<Comic> suggestions = user.getItemsOfInterest();

 List<Comic> results = comicAccess.searchNoPriorPurchases(criteria,

➥ username);
 ...
 }

But we can do one better. By moving this work off to UserContext, it avoids Comic-
Search having to know the requisite details for querying comics:

public class UserContext {
 private String username;

 private final ComicAccess comicAccess;

 @Inject
 public UserContext(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public List<Comic> getItemsOfInterest() {
 ...
 }

 public List<Comic> searchComics(String criteria) {
 return comicAccess.searchNoPriorPurchases(criteria, username);
 }

 public void signIn(String username) {
 this.username = username;
 }
}

144 CHAPTER 5 Scope: a fresh breath of state

Now ComicSearch is a lot simpler:

 public HTML searchForComics(String criteria, String username) {
 user.signIn(username);

 List<Comic> suggestions = user.getItemsOfInterest();

 List<Comic> results = user.searchComics(criteria);
 ...
 }

The real saving comes with request scoping. We already need to bind ComicSearch
and UserContext in the request scope (because their state is tied to a single user’s
request). Now let’s say that instead of signing in a user in the searchForComics()
method, we’re able to do it at the beginning of a request before the ComicSearch page
(say, in a servlet filter). This is important because it means that authentication logic is
separated from business logic. Furthermore, it means code to sign in the user need be
written only once and won’t have to litter every page:

public class ComicSearch {
 private final UserContext user;

 @Inject
 public ComicSearch(UserContext user) {
 this.user = user;
 }

 public HTML searchForComics(String criteria) {
 List<Comic> suggestions = user.getItemsOfInterest();
 List<Comic> results = user.searchComics(criteria);

 ...
 }
}

Notice that it is much leaner now and focused on its core purpose. But where has the
code for signing in a user gone? Here’s one possible way it may have disappeared.
REQUEST SCOPING IN GUICE WITH GUICE-SERVLET

Listing 5.5 shows one implementation using a Java servlet filter and the guice-servlet
extension library for Guice.

Guice Servlet and Guice
Guice servlet is an extension to Guice that provides a lot of web-specific functional-
ity, including web-domain scopes (request, session). Guice servlet is registered in
web.xml as a filter itself and then later configured using a Guice module. It allows
you to manage and intercept servlets or filters via Guice’s injector (which is not oth-
erwise possible).

Find out more about guice-servlet at http://code.google.com/p/google-guice.

http://code.google.com/p/google-guice

145Domain-specific scopes: the web

import javax.servlet.Filter;

@Singleton
public class UserFilter implements Filter {
 private final Provider<UserContext> currentUser;

 @Inject
 public UserFilter(Provider<UserContext> currentUser) {
 this.currentUser = currentUser;
 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

 currentUser.get().signIn(...);

 chain.doFilter(request, response);
 }

 ...
}

There are some interesting things to say about listing 5.5:

■ UserFilter is a servlet filter applied at the head of every incoming request.
■ It is declared under singleton scope (note the @Singleton annotation).
■ It is injected with a Provider<UserContext> so that a request-scoped UserContext

may be obtained each time.
■ User credentials are extracted from the request and set on the current User-

Context.

I use a Provider<UserContext> instead of directly injecting a UserContext because
UserFilter is a singleton, and once a singleton is wired with any object, that object
gets held onto despite its scope. This is known as scope-widening injection and is a prob-
lem that I discuss in some detail in the next chapter.

 Interestingly enough, in listing 5.4 I was able to use constructor injection to get
hold of the UserContext provider:

 @Inject
 public UserFilter(Provider<UserContext> currentUser) {
 this.currentUser = currentUser;
 }

Ordinarily, this wouldn’t be possible for a filter registered in web.xml according to the
Java Servlet Specification. However, guice-servlet gets around this by sitting between
Java servlets and the Guice injector. Listing 5.6 shows how this is done, with a web.xml
that is configured to use guice-servlet.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"

Listing 5.5 An injector-managed servlet filter using guice-servlet (using Guice)

Listing 5.6 web.xml configured with guice-servlet and Guice

Set up current user

Continue processing
request

web.xml namespace
boilerplate

146 CHAPTER 5 Scope: a fresh breath of state

 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" >

 <listener>
 <listener-class>example.MyGuiceCreator</listener-class
 </listener>

 <filter>
 <filter-name>guiceFilter</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>guiceFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

</web-app>

Guice-servlet’s architecture is depicted in figure 5.19.
 Notice that in listing 5.6 a servlet context listener named MyGuiceCreator is regis-

tered. This is a simple class that you create to handle the job of bootstrapping the
injector. It is where you tell guice-servlet what filters and servlets you want the Guice
injector to manage. Here’s what a MyGuiceCreator would look like if it were config-
ured to filter all incoming requests with UserFilter (to do our authentication work):

public class MyGuiceCreator extends GuiceServletContextListener {

 @Override
 protected Injector getInjector() {
 return Guice.createInjector(new ServletModule() {
@Override
 protected void configureServlets() {
 filter("/*").through(UserFilter.class)

 }
 });
 }
}

web.xml
namespace
boilerplate

Listener creates injector
on web app deploy

Filter all URLs
through guice-servlet

reroute

Injector

guice-servlet

Incoming
request Filter Filter Servlet

Figure 5.19 Incoming requests are rerouted by guice-servlet to injector-managed
filters or servlets.

147Domain-specific scopes: the web

This code is self-explanatory, but let’s go through it anyway. Remember, MyGuice-
Creator is a class you provide to bootstrap and configure the injector (it must extend
GuiceServletContextListener). The factory method Guice.createInjector()

takes instances of Guice’s Module as argument. You configure filters in guice-servlet via
a programmatic API (rather than web.xml):

 filter("/*").through(UserFilter.class)

You could continue adding filters and servlets. Each servlet and filter must be anno-
tated @Singleton.

 Let’s get back to request scoping. By moving code out to the UserContext object,
every request receives its own instance of ComicSearch and UserContext. We were
able to achieve this transition without any impact to ComicAccess and minimal
impact to ComicSearch. Declarative scoping of objects is thus a very powerful and
unintrusive technique.

 This is all very well. But how do we actually bind these scopes in Spring, Guice, and
others? Let’s take a look:

import com.google.inject.servlet.RequestScoped;

public class ComicStoreModule extends AbstractModule {

 @Override
 protected void configure() {

 bindComicAccess.class).to(ComicAccessImpl.class).in(Singleton.class);

 bind(UserContext.class).in(RequestScoped.class);
 bind(ComicSearch.class).in(RequestScoped.class);
 ...
 }
}

In the example code, I’ve bound both UserContext and ComicSearch in @Request-
Scoped. This is a scope made available by guice-servlet and represents the HTTP
request scope in the world of Guice.3 ComicAccess is a simple singleton, and so it is a
straightforward binding (to its implementation, ComicAccessImpl):

 bind(ComicAccess.class).to(ComicAccessImpl.class).in(Singleton.class);

This same effect can be achieved in Spring with its own set of web-specific scoping util-
ities. The following section explores the techniques involved there.
REQUEST SCOPING IN SPRING

In Spring’s XML configuration mode, these bindings are slightly different (see list-
ing 5.7).

<beans ...>
 <bean id="data.comics" class="ComicAccessImpl" scope="singleton">

3 Don’t forget that you need to register guice-servlet’s GuiceFilter in web.xml, as shown previously.

Listing 5.7 Spring XML configuration for the online comic store’s components

148 CHAPTER 5 Scope: a fresh breath of state

 ...
 </bean>

 <bean id="web.user" class="UserContext" scope="request">
 <constructor-arg ref="data.comics"/>
 </bean>

 <bean id="web.comicSearch" class="ComicSearch" scope="request">
 <constructor-arg ref="data.comics"/>
 <constructor-arg ref="web.user"/>
 </bean>
</beans>

The only new thing in listing 5.7 is the attribute scope="request" on bindings
web.user and web.comicSearch. Of course, none of the three classes need change at
all. Like Guice and guice-servlet, Spring requires additional configuration in web.xml.
First off, you need to bootstrap a Spring injector when the web application is
deployed. In Guice we used a ServletContextListener (recall MyGuiceCreator, the
subclass of GuiceServletContextListener). You do this in Spring too:

<web-app ...>
 ...
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/comic-store.xml</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 ...
</web-app>

This web.xml is similar to the one we saw earlier with guice-servlet. Notice that we
needed to set a context parameter with the name of the XML configuration file. You
can think of it as the web equivalent of the following:

BeanFactory injector = new FileSystemXmlApplicationContext("WEB-INF/comic-

➥ store.xml");

Now we’ve bootstrapped the injector and told it where to find its configuration. But
that’s not all; as guice-servlet did for Guice, there’s still an integration layer that needs
to be configured to get request scopes going:

<web-app ...>
 ...
 <listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>
 ...
</web-app>

149Domain-specific scopes: the web

This listener must appear in addition to the ContextLoaderListener shown previ-
ously. Now you’re set up to shop comics with Spring.

TIP We haven’t quite looked at how to configure filters with Spring’s injector.
Guice-servlet handled this for us via its GuiceFilter. Spring does not
have this support out of the box. But a sister project, Spring Security (for-
merly Acegi Security4) does. Spring Security’s FilterToBeanProxy does a
similar job.

Apart from these practical aspects, there are things to keep in mind about request
scoping:

■ A thread is typically dedicated to a request for the request’s entire span. This
means that request-scoped objects are not multithreaded.

■ It also means that they are generally not thread-safe.
■ Integration layers that provide request scoping often cache scoped objects in

thread-locals.
■ In rare cases, web servers may use multiple threads to service a request (for

instance, while processing long-running asynchronous requests). If you
are designing a request-scoping library in such a scenario, be aware of thread-
local assumptions.

Most of these are pretty low-level and specific to the architecture in question. In the
Java servlet world, threads and requests are almost always the same thing (though
once completed, a thread may clear its context and proceed to service other
requests). So you should be careful to clean up at the end of a request. If you are
designing request scopes, you should carefully research these potential hazards. Per-
haps even more useful than the request scope is the HTTP session scope. This tech-
nique allows you to keep objects around between requests in a semantic user session.
Using dependency injection, a lot of the glue code to make this happen goes away.
Session scoping is thus a powerful tool in the dependency injector’s toolbox.

5.4.2 HTTP session scope

An HTTP session scope is the next step up from a request scope. HTTP sessions are an
abstraction invented to make up for the fact that the HTTP protocol is stateless. This
means that it does not easily allow for long-running interactions with a user to be main-
tained on the server side. To get around this, developers use clever techniques and
string together a series of requests from the same user and call it a session (figure 5.20).
An HTTP session has important characteristics:

■ A session represents a single, unique user’s interaction with a web application.
■ A session is composed of one or more requests from the same user.
■ Not all requests are necessarily part of a session.
■ A session is a kind of store that preserves state between requests.
■ The two logical end points of a session are user login and logout.

4 Find out about Acegi Security at http://www.acegisecurity.org.

http://www.acegisecurity.org

150 CHAPTER 5 Scope: a fresh breath of state

You can visualize a session as made up of multiple
independent requests from the same user (as in
figure 5.20). In figure 5.21, each instance of a
request-scoped object is unique to that request (R1
to R3). But a session-scoped instance is shared across
all those requests.

 Sessions are extremely useful for tracking state
relative to a specific user, since a session always
exists around one user. These uses include:

■ Tracking a user’s credentials for security
purposes

■ Tracking a user’s recent activity for quick
navigation (for example, breadcrumbs)

■ Tracking preferences, to personalize a user’s
experience

■ Caching user-specific information for quick access
■ Caching general, constant data for quick access

All these use cases involve storing state temporarily, generally to improve a user’s
experience through the site. Whether that is about presentation or under the covers,
it’s about performance. And that’s essentially what sessions do. Objects scoped under
a session retain their state across requests, essentially continuing from where the last
request left off.

 Typically, sessions start and end when a user logs in and logs out. This behavior
may be customized as necessary. Some requests (for static content, for example) do
not participate in a user session and are considered stateless. These requests are inde-
pendent of sessions, and, generally speaking, services participating in them shouldn’t
have any user-specific functionality.

 Like requests, sessions may also be concurrent. For instance, multiple users who
log in at once are said to be in different, unique sessions. While session-scoped
instances are shared across requests inside a session, they are independent between
sessions. Figure 5.22 shows how this might look in an injector’s timeline.

request

Web server
User

request

request

HTTP session

Figure 5.20 A series of related requests
from the same user forms an HTTP session.

Injector

Session

(request)

(request)

(request)

(request)

R1

(request)

R2

(request)

R3

Figure 5.21 A session is composed
of independent requests from a user.

151Domain-specific scopes: the web

 In this figure, U1 is an object that exists in
the first user’s session, and U2 is a different
instance of the same key that exists in the sec-
ond user’s session (it also is an aging Irish rock
band). U1 and U2 are completely independent
of one another. But within the first user’s ses-
sion, all requests share the same instance
(U1)—likewise with the second user and U2.
Another interesting point is that the second
user’s session does not start for a while into the
application’s life. So there is a time when U2 is
out of scope while U1 is in scope, even though
both are instances of the same key (let’s call it
U) bound under session scope.

 Another interesting thing about figure 5.22
is that the second user actually logs out and
logs back in (at the point marked re-login). This means that there are two instances of
U2 for the second user because she started two sessions. The state of U2 prior to the
second login is totally independent from the state after the second login. Contrast this
with singleton scoping, where instance state would have been shared for the entire life
of the injector, regardless of the number of sessions (or users) involved.

 Let’s go back to the comic store example. We had three important components:

■ ComicSearch—A request-scoped service that searched the comic catalog
according to given criteria.

■ ComicAccess—A singleton-scoped data-access service that acted as a bridge
between ComicSearch and a database.

■ UserContext—A request-scoped service that was specific to a user; it con-
structed personalized and filtered search results around a user’s behavior.

There was also a filter that set up the UserContext each time, by extracting a user-
name from incoming requests. Can you see any room for improvement? Let’s revisit
class UserContext to see if it provides any inspiration:

public class UserContext {
 private String username;

 private final ComicAccess comicAccess;

 @Inject
 public UserContext(ComicAccess comicAccess) {
 this.comicAccess = comicAccess;
 }

 public List<Comic> getItemsOfInterest() {
 ...
 }

 public List<Comic> searchComics(String criteria) {
 return comicAccess.searchNoPriorPurchases(criteria, username);

Injector

Sessionn
U1

login logout

Sessionn
U2login re-login

U2

Figure 5.22 Multiple user sessions in
the life of an injector

152 CHAPTER 5 Scope: a fresh breath of state

 }

 public void signIn(String username) {
 this.username = username;
 }
}

Straight away there is a clear benefit from making this object session scoped. We
wouldn’t have to sign in the user on every request! It would be enough to do it once,
at the start of the session (logical, since this would be where a user logged in) and sim-
ply let it be shared across any further requests from the same user. This would be par-
ticularly useful if the application loaded user-specific information (such as a user’s full
name and date of birth) on sign in, since it would save several unnecessary trips to the
database on subsequent requests.

 Another saving comes from the use case around caching user-specific information
for quick access. If we assume that items of interest for a user are unlikely to change
within a single session, there is no need to search and collate them on every request. It
can be done once and stored in a memo field for further requests. Here’s how you
might modify getItemsOfInterest() to do just that:

public class UserContext {
 private List<Comic> itemsOfInterest;

 public List<Comic> getItemsOfInterest() {
 if (null == itemsOfInterest) {
 ...
 }

 return itemsOfInterest;
 }

 ...
}

By storing computed suggestions in the itemsOfInterest memo field, I save a lot of
unnecessary computation so long as subsequent requests come from the same user.
Each user has her own memo, in their session-scoped UserContext.

 Binding UserContext to session scope is also laughably simple. As far as the injec-
tor is concerned, all you need to do is change its binding (we’ll do this in Guice and
guice-servlet first):

import com.google.inject.servlet.RequestScoped;
import com.google.inject.servlet.SessionScoped;

public class ComicStoreModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(ComicAccess.class).to(ComicAccessImpl.class).in(Singleton.class);

 bind(UserContext.class).in(SessionScoped.class);
 bind(ComicSearch.class).in(RequestScoped.class);
 ...
 }
}

Memo field

Compute once
and memorize

153Domain-specific scopes: the web

Earlier we also saw a shortcut notation, where the class was itself annotated. This is
possible with session scope too, but first it requires that you to set up a scoping annota-
tion. This must be done manually because the web scopes aren’t part of the core Guice
distribution. It’s fairly easy to do:

public class ComicStoreModule extends AbstractModule {

 @Override
 protected void configure() {

 install(new ServletModule());

 bind(ComicAccess.class).to(CommicAccessImpl.class).in(Singleton.class);
 bind(ComicSearch.class).in(ServletScopes.REQUEST_SCOPE);
 ...
 }
}

Notice that I’ve removed any explicit binding of UserContext. I can now simply anno-
tate the class, and Guice will correctly bind it to the session scope:

@SessionScoped
public class UserContext {
...
}

You could do the same with request scopes and guice-servlet’s @RequestScoped
annotation.

 The Spring equivalent for binding UserContext under session scope is also
straightforward (once you have the context listeners set up):

<beans ...>
 <bean id="data.comics" class="ComicAccessImpl" scope="singleton">
 ...
 </bean>

 <bean id="web.user" class="UserContext" scope="session">
 <constructor-arg ref="data.comics"/>
 </bean>

 <bean id="web.comicSearch" class="ComicSearch" scope="request">
 <constructor-arg ref="data.comics"/>
 <constructor-arg ref="web.user"/>
 </bean>
</beans>

No additional configuration of the web server (or servlet container) is required. Cool!
Finally, there are a couple of things to keep in mind when working with objects in the
session scope:

■ Multiple concurrent requests (from the same user) may belong to the same
session.

■ This means two threads may hit session-scoped objects at once.
■ A session-scoped instance, if wired into a singleton, will stick around even when

the user has logged out and the session has ended (scope-widening injection).
Take care that this does not happen. We’ll look at remedies in chapter 6.

154 CHAPTER 5 Scope: a fresh breath of state

5.5 Summary
Scope is about managing the state of objects. Service implementations are bound to
keys, which are realized as object instances in an application. Without scoping, keys
requested from the injector return new instances each time (and each time they are
wired as dependencies). This is known as the no scope. Since there is no way of speci-
fying a duration for the time, state may be preserved in these instances. Singleton-
scoped keys, on the other hand, are keys that the injector only wires or returns one
instance for. In other words, singletons have one instance per key, per injector. This is
different from singleton-patterned objects, which enforce one instance per entire
application. I decry this flavor of singleton as an anti-pattern because it is nigh on
impossible to test with mock substitution and is tricky in concurrently run tests and
environments. Such anti-patterned singletons are also shared between multiple injec-
tors in the same application, which may even violate the configuration of the injector.
Always choose singleton scoping over singleton patterning.

So how does a session get scoped?
This is a rather tricky question. I said earlier that HTTP sessions are a hack for the
fact that the HTTP protocol is stateless. This is more or less accurate—the common
way of maintaining a user session is to use a browser cookie. A cookie is a small file
with unique information that a web application can send to a browser as its identity.
So, the next time that web browser hits the same URL, it will send back its cookies.
When the web application sees this cookie, it “remembers” who is calling and cor-
rectly identifies the user—much like an ATM card reminds the bank of who you are.
Cookies are specific to a website and URL, so there is no danger of cookies getting
crossed between applications.

Not all browsers support cookies, and since some users consider them a risk, even
browsers that do may not have them enabled. In these cases we need an alternative
way of tracking sessions. One popular alternative is URL rewriting. URL rewriting is
quite simple. When a browser requests a document, it does so via a URL. Usually
this happens when you click a hyperlink on a previous page. Now, instead of the nor-
mal URL, the web application rewrites all the hyperlinks sent to a particular user by
adding an identifier to it. Then when you (or any user) click the link, your browser re-
quests the rewritten URL. Incoming requests of this nature are filtered and stripped
of the extra bit identifying you as a unique user. This information is used to restore
your session, and everything continues as normal.

Most web technologies can be configured to use either URL rewriting or cookies as
their session continuation strategy. Some, like the Java Servlet Framework, automati-
cally detect browser capability and choose the appropriate strategy. The Java Servlet
Framework also provides abstractions for HTTP requestsand sessions to make them
easy to work with. Guice-servlet and the SpringFramework both provide integration
layers that sit over the servlet APIs and enable transparent web scoping with depen-
dency injection.

155Summary

 Thus, scope may be thought of as the choice of instance each time a key is sought
from it—whether new, or old, or shared. The singleton and the no scope are universal
and have uses in most applications using dependency injection.

 However, there is a whole class of scopes that are specific to particular kinds of
applications. These scopes are closely tied to contexts specific to a particular problem
domain. One such example is the web. Web-specific scopes are popular with many
web frameworks and ship out of the box with many DI libraries. The HTTP request
scope is the first and simplest of the web scopes. Keys requested from an injector
within the same request always return the same instance. When the request com-
pletes, these request-scoped objects are discarded, and subsequent requests force the
creation of new instances. Request scoping is interesting since the context that a
request purports may be concurrent with several other requests. These requests are all
walled off in their own unique scopes and keys, and when sought from the injector
they are different across these requests.

 HTTP session scope is a step up from request scope and is a natural extension of it.
An HTTP session is an artificial construct above a string of requests from the same
user. Session scope is thus persistent across all these requests (so long as they are from
the same user). Sessions are useful for storing user-specific information temporarily,
but they are often abused to store data that is relevant only to specific workflows
within the user’s session. Try to restrict your use of session scope to keeping around
user-relevant information only. Good examples are credentials, preferences, and (rel-
atively) constant biographical data.

ISBN 13: 978-1-933988-55-9
ISBN 10: 1-933988-55-X

9 7 8 1 9 3 3 9 8 8 5 5 9

99945

I
n object-oriented programming, a central program nor-
mally controls other objects in a module, library, or
framework. With dependency injection, this pattern is

inverted—a reference to a service is placed directly into the
object which eases testing and modularity. Spring or Google
Guice use dependency injection so you can focus on your
core application and let the framework handle infrastructural
concerns.

Dependency Injection explores the DI idiom in fi ne detail,
with numerous practical examples that show you the payoff s.
You’ll apply key techniques in Spring and Guice and learn
important pitfalls, corner-cases, and design patterns. Readers
need a working knowledge of Java but no prior experience
with DI is assumed.

What’s Inside
How to apply it (Understand it fi rst!)
Design patterns and nuances
Spring, Google Guice, PicoContainer ...
How to integrate DI with Java frameworks

Dhanji R. Prasanna is a Google soft ware engineer who works
on Google Wave and represents Google on several Java expert
groups. He contributes to Guice, MVEL, and other open
source projects.

For online access to the author, code samples, and a free ebook for
owners of this book, go to manning.com/DependencyInjection

$49.99 / Can $62.99 [INCLUDING eBOOK]

Dependency Injection DESIGN PATTERNS USING SPRING AND GUICE

JAVA/SOFTWARE ENGINEERING

Dhanji R. Prasanna

“ Th e most comprehensive
 coverage of DI that I have
 seen.”
 —Frank Wang, Chief Soft ware
 Architect, DigitalVelocity LLC

“A handy manual for writing
 better programs with less code.”
 —Jesse Wilson
 Guice 2.0 Lead, Google Inc.

“Dependency injection is not
 just for gurus—this book
 explains all.”
 —Paul King, Director, ASERT

“A fantastic book ...
 makes writing great
 soft ware much easier.”
 —Rick Wagner, Enterprise Architect
 Acxiom Data Products

“I am recommending this book
 to my staff .”
 —Robert Hanson, Manager
 Applications Development
 Quality Technology

M A N N I N G

123

SEE INSERT

