
1

Installing and Running Tomcat 5.5
The examples for the Ajax chapter of jQuery in Action require the services of server-side resources in
order to operate. In order to address the needs of a variety of readers, the back-end code has been
provided in PHP and in JSP format. If you wish to use the JSP examples, it is necessary to set up an
application server that is Servlets 2.4 and JSP 2.0 capable.

But not to fear! Not only has the downloaded example code for that chapter already been set up so
that it is a ready-to-go web application (there’s no need for you to build anything), the free and easily-
obtained Tomcat 5.5 web server is a snap to set up. No knowledge of Java on your part is required to do
so. This document will walk you through obtaining and setting up your Tomcat server.

This, of course, assumes that you have Java itself installed upon your system. If not, please visit the
Sun site for details on installing Java 1.5 for your operating system. (This is also a not-too-arduous task).

Obtaining and Unpacking the Distribution
You can download the latest version of Tomcat 5.5 from the Apache Tomcat site at:

http://tomcat.apache.org/download-55.cgi

At the time that this document was written, version 5.5.23 was the latest stable build. You should
probably download the most recent stable version if 5.5.23 has been superceded.

For Windows you’ll want to grab the Core .zip file (avoid the Windows Service Installer – it does a
much deeper installation than is needed for simply running the examples). For OS X and other UNIX
systems, download the Core .tar.gz file. See figure 1:

Figure 1: Dowloading the core Tomcat 5.5 distribution

Installing and Running Tomcat 5.5

2

Be sure to avoid the pgp and md5 links – you don’t need encrypted downloads.
Choose a location to unpack the .zip or .tar distribution.
On Windows, you probably want to avoid any folders with spaces in their names, so I usually unpack

the distribution right to C:\.
On OS X, a typical location to place such installations is in the /Library folder. You can also choose

the /Applications folder if you like, but many people like to reserve the /Applications folder for GUI
applications.

On other UNIX systems, the typical location is the /usr/local folder. You could also use this folder
on OS X, but /Library is more typically used on that platform as it makes the files accessible via the
Finder.

Using the appropriate program (WinZip is a popular choice on Windows), unpack the folder to the
desired location. On OS X, you should just be able to double-click on the downloaded .tar file.

This will create a folder hierarchy rooted at a folder named apache-tomcat-5.5.23. We will refer to
this folder as CATALINA_HOME in the remainder of this section, and this is the environment variable name
that Tomcat will use to refer to this location.

In case you were wondering, “Catalina” was the code name for Tomcat 4 and it just sort of stuck.

Setting up JAVA_HOME
In order to let Tomcat know where your Java implementation is located, you need to set up the JAVA_HOME
environment variable. Depending upon how you installed Java previously, this might already be defined.
If so, just skip along to the next section.

On Windows, if you’re using Cygwin as your shell you can set up the environment variable as you
would any other in your .bash_profile script. Otherwise, you’ll need to use the Windows Control Panel
to set up JAVA_HOME as a system-level environment variable (Control Panel -> System -> Advanced ->
Environment Variables).

Set the value of the variable JAVA_HOME (case is important!) to point to the root folder of your Java
installation. On my XP system, that folder is C:\jdk1.5.0_06. On my OS X box, its value is set to /
System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home.

On UNIX systems (to include OS X), set up the environment variable in the startup script for your
particular shell (e.g. .bash_profile for the bash shell).

Setting up the Application Contexts
In J2EE parlance, a context is a self-contained web application. A single application server can load and
service many such contexts, keeping requests to each context separate through the use of a unique prefix
in the URL of each request. This prefix is known as the context path.

When a context is defined to the server (we’ll see how to do that in just a bit), it is assigned a unique
context path and the location on the file system that serves as its “root” or document base.

Let’s say that one context is defined with a context path of /abc (context paths always start with a
slash), and another with /xyz. If each has a file named index.jsp at their root folder (document base),
the respective URLs would be:

http://someserver.com:8080/abc/index.jsp

Installing and Running Tomcat 5.5

http://someserver.com:8080/abc/index.jsp
http://someserver.com:8080/abc/index.jsp

3

http://someserver.com:8080/xyz/index.jsp

Note that the context path prefixes are used to let the server know which web application is to be
accessed. These URLs also assume that the default Tomcat port of 8080 is being used.

 Setting up the contexts is easy. All that you need to do is to create a small XML file that defines the
context and drop it into the appropriate folder in the Tomcat installation.

Let’s assume that you have downloaded and unpacked the code for this book onto your file system at
C:\jqueryinaction. This folder is already set up to be the root (or document base) of a self-contained,
working web application.

We’ll assign the name /jqia (for JQuery in Action) to the application context for the book’s web
application. Note that the screen shots in the book all assume that this is the name of the context path. If
you decide to use another name, you will need to adjust your URLs accordingly.

To define the context, create a file named after the context, jqia.xml, and within it place a single line
(case counts):

<Context path="/jqia" docBase="c:\jqueryinaction"/>

The value of the docBase attribute is set as appropriate for wherever the expanded folders ended up
on your file system. The above example assumes a Windows installation, of course.

Drop this XML file into the $CATALINA_HOME/conf/Catalina/localhost folder and you’re good to
go!

Starting Tomcat
Start the Tomcat server by executing a script that you will find in the $CATALINA_HOME/bin folder. For
Windows use the startup.bat script, and for UNIX (including OS X) use startup.sh. When it comes
time to shut down, you’ll find the corresponding shutdown scripts in this same folder.

To make sure that Tomcat is up and running (after giving it a few seconds to get on its feet, of
course), open a browser and enter the URL:

 http://localhost:8080/

You should see a display as shown in figure 2.
If you do not see this page, go back and check your work. Unless you made a typo in the context files,

or failed to set up the JAVA_HOME environment variable correctly, there’s really no reason that Tomcat
should not be up and running at this point.

Installing and Running Tomcat 5.5

http://localhost:8080/
http://localhost:8080/

4

Figure 2: The Tomcat Welcome Page – success!

Once Tomcat is running, the URL to the book’s web application will be:

http://localhost:8080/jqia/

The :8080 in the URL specifies the port that Tomcat is running upon. It must be specified in the URL
as shown otherwise the default of port 80 is used. You can change the port that Tomcat runs on if you’d
like in the $CATALINA_HOME/conf/server.xml file, but it is recommended that you leave it at 8080 to
avoid any conflicts with other servers (such as Apache) unless you have a really good reason to change it.
Just remember to include the :8080 in your URLs when using Tomcat to serve your files.

If all you want to do is run the example applications, that’s all there is to it. If you plan on making
changes to the example applications, or just want to know more about managing Tomcat, read on to the
next section.

Managing Tomcat Contexts
If you are planning to make changes to the web applications supplied as examples to this book’s Ajax
chapter, especially if adding servlets, you may need to stop and restart contexts after making certain types
of changes.

First, it is recommended that you do not change the applications as they have been provided. Rather,
make a copy of the chapter code in another location on your file system and create another context for it.
That way, you can make changes to your heart’s content in the copy, but still have the original code to
look back upon as a reference.

Installing and Running Tomcat 5.5

http://localhost:8080/sq.chap.6/
http://localhost:8080/sq.chap.6/

5

In the copy, if you make changes to the HTML files or JSP pages, you do not need to restart anything.
Tomcat will detect any such changes and automatically handle serving up the new HTML files, or re-
translating the JSP pages on your behalf.

However, if you make a change to the deployment descriptors (web.xml), or add, change and re-
compile servlets, the web application context needs to be restarted to pick up those changes. The specific
mechanics of compiling Java classes is beyond the scope of this document, but be sure to place the
resulting class files in the proper location under the WEB-INF/classes folder for the context you are
making changes within.

Note that you do not need to stop and restart Tomcat itself. Tomcat provides a built-in context
management application that you can use to stop and start individual contexts without affecting the other
contexts.

To access this “manager application”, use your browser to hit the following URL:

 http://localhost:8080/manager/html/

Oops! It wants you to log in as shown in figure 3:

Figure 3: Not just anyone can use the Manager Application

While it may seem a nuisance at the moment, this level of security is quite necessary. After all, you
don’t want just anyone to access the manager application, giving them the ability to stop and start your
web applications, do you?

In order to gain access to the manager application, you will need to set up a privileged Tomcat user
whose credentials you will use to log into the app.

It’s actually quite simple: open the file $CATALINA_HOME/conf/tomcat-users.xml in any text editor.
You will see the contents of the file as shown in listing 1:

Installing and Running Tomcat 5.5

6

Listing 1: The initial tomcat-users.xml file

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="tomcat"/>
 <role rolename="role1"/>
 <user username="tomcat" password="tomcat" roles="tomcat"/>
 <user username="both" password="tomcat" roles="tomcat,role1"/>
 <user username="role1" password="tomcat" roles="role1"/>
</tomcat-users>

To this file, add the line:

 <role rolename="manager"/>

to the end of the role elements, and add the following line to the end of the user elements, substituting a
username and password of your choosing.

 <user username="wallace" password="gromit" roles="manager"/>

Save the file.
Shutdown and restart Tomcat, and when it’s back up and running, hit the manager URL again. Enter

the username and password you specified in the users file when prompted. After logging in, you will see
the manager application as shown in figure 4.

With this application, you can easily and quickly stop and start individual application contexts (via
the Stop and Start links for each) whenever you make a change requiring a restart.

Note the entry for the application context that we set up for the jqia application. You will see one of
these entries for any application contexts that you set up in this manner.

Now we’re ready to dig into those examples!

Installing and Running Tomcat 5.5

7

Figure 4: The Tomcat Context Manager Application

Installing and Running Tomcat 5.5

