
M A N N I N G

Phil Wicklund

Phil Wicklund

IN ACTION

SAMPLE CHAPTER

 Chapter 12

Workflows in Action

Phil Wicklund

Copyright 2011 Manning Publications

SharePoint 2010

v

brief contents
PART 1 INTRODUCTION TO SHAREPOINT WORKFLOWS1

1 ■ SharePoint workflows for your business processes 3

2 ■ Your first workflow 35

PART 2 NO-CODE SHAREPOINT WORKFLOWS63

3 ■ Custom Designer workflows 65

4 ■ Task processing in SharePoint Designer workflows 93

5 ■ Advanced SharePoint Designer workflows 112

6 ■ Custom Visio SharePoint workflows 142

7 ■ Custom form fundamentals 157

PART 3 CUSTOM-CODED SHAREPOINT WORKFLOWS183

8 ■ Custom Visual Studio workflows 185

9 ■ Forms in Visual Studio workflows 214

10 ■ Workflows and task processes 252

11 ■ Custom workflow activities and conditions 271

12 ■ A bag of workflow developer tricks 304

304

A bag of
 workflow developer tricks

Everything in the first 11 chapters of this book was fundamental to a SharePoint
workflow developer. We discussed out-of-the-box SharePoint workflows, other non-
developer techniques with SharePoint Designer and Office Visio, workflows with
Visual Studio, and custom forms. With chapter 12, you round out the SharePoint
developers skills with a few key techniques.

 These techniques include how to debug and handle faults in your workflows, ver-
sion workflows, set up event receivers, send and receive external events, and work
with the SharePoint workflow object model. Debugging and exception handling are
an obvious must, but versioning is not well understood. If you don’t properly version
your workflows, idle workflow instances might break when they resume execution.

This chapter covers
■ Handling faults and debugging workflows
■ Versioning workflows
■ Using workflow event receivers
■ Receiving external events with pluggable services
■ Working with the workflow object model

305Fault handling and debugging workflows

 Why study event receivers in a workflow book? Event receivers can save you time if
they fit the business requirements. Event receivers are typically easier and faster to cre-
ate for smaller, one-time processing than their workflow counterparts and a few new
events for workflows.

 Sending and receiving events to and from external sources is often a must for
larger business processes. This is handled through a new feature in SharePoint 2010
called pluggable workflow services. With the use of two activities and a new class called
SPWorkflowDataExchangeService, you can easily communicate with your organiza-
tion’s line of business applications.

 Finally, every developer should take a peek at the workflow object model found
in the Microsoft.SharePoint.Workflow namespace. You never know when you may
need to programmatically start or stop a workflow or perhaps retrieve a workflow’s
tasks or history.

12.1 Fault handling and debugging workflows
If you don’t properly handle exceptions in the workflow and an error occurs, you’ll
get the dreaded Error Occurred string in the workflow status, without a clue as to what
went wrong. You’re left with debugging your workflow and, if you don’t know how to
debug, you’re up a creek.

 Let’s start with what’s easy—debugging. You debug your workflows almost the same
way as any other .NET application you build. Within your workflow’s code view, right-
click on the line of code where you want to start debugging and choose Breakpoint >
Insert Breakpoint (figure 12.1). Also note that you can debug the activities on the
templates. To do this, right-click the activity you want to debug and select Breakpoint
> Insert Breakpoint again.

 The next thing to do is attach the Visual Studio debugger to the w3wp.exe Share-
Point process (figure 12.2). In Visual Studio, click the Debug menu dropdown and
select Attach to Process. Scroll down and select the w3wp process and click Attach. If
there are multiple w3wp processes, select all that show up. If you don’t see the process,
navigate to the SharePoint site to start the process, then go back to the process list and
click the Refresh button. Also ensure that Show processes in all sessions is checked.
After you attach, you can start your workflow, and Visual Studio will automatically step
into the debugger when the line of code or activity hits.

Figure 12.1 You debug a workflow in almost the same way you debug any .NET program. Add
a breakpoint and attach the debugger to the SharePoint process.

306 CHAPTER 12 A bag of workflow developer tricks

Handling exceptions is a bit different than your standard .NET application. When
you’re in a workflow template, there’s no obvious place to add a Try/Catch block.
Many developers never handle exceptions and spend a good deal of time debugging
and trying to figure out where the error occurred. The better approach is to use the
FaultHandler activity at the root of your workflow (green arrow) as well as all your
composite activities (sequence, parallel, IfElse, and so on).

 Within the FaultHandler activity, you can insert activities that handle the error in
an appropriate way. With SharePoint, it’s popular to log the error, location, and
stack trace into the workflow’s history list. This makes determining the error and
location easier.

 At the least, every workflow should have a Fault Handler set up at the root of the
workflow template. To do this, click the dropdown next to the green arrow and select
View Fault Handlers.

 Within the fault handlers section, you can drag and drop one or more Fault-
Handler activities. Each activity has a property called FaultType, and you need to set
this property to the type of exception you want to handle. To handle all exceptions,
set it to System.Exception, which is the most generic exception (figure 12.3). Alterna-
tively, you could set it to a custom exception to handle errors that are specific to your
workflow. This is the best approach; it makes debugging easier because you’ll know
when and why your custom exceptions are being raised.

Figure 12.2 You must attach to the w3wp SharePoint process to debug your SharePoint workflows.

307Fault handling and debugging workflows

After you have specified the exception to be handled, you should add actions to react
to the error appropriately. It’s helpful to use the Log to History List activity to log a
more descriptive error and the stack trace to help with debugging (figure 12.4).

Figure 12.3 When you add a fault handler, you need to specify the exception to be handled.

Figure 12.4 After you specify the exception to be handled, log an informative error description and,
possibly, the stack trace to help with debugging. You can do this by dropping the Log to History List
activity within the fault handler.

308 CHAPTER 12 A bag of workflow developer tricks

12.2 Versioning workflows
You built this compelling Visual Studio workflow and deployed it into production.
But, after a few months, the business requests a small change to the workflow. You go
back into the workflow code, add a few activities to fulfill the request, and redeploy
the workflow into production. To your shock, all the workflows start breaking! You’re
frantic because you’re certain you adequately unit-tested the changes and can’t figure
out what might be going wrong. You didn’t version your workflow.

 Workflow versioning is an important technique. When a workflow goes idle, the
state of the workflow is saved into the database. This saving of a workflow’s state is
called hydration. When the workflow resumes, the state is dehydrated out of the data-
base, and the workflow starts processing again. Versioning is important because, if you
change the assembly while the workflow is hydrated (saved in the database), there’s
no guarantee that, when the workflow is dehydrated, it will match the construct of the
new assembly. If it doesn’t match the construct upon deserialization, the workflow will
break. Changes like adding or removing activities and changing property values may
necessitate a new workflow version. The best practice is to create a new version every
time rather than deploying the assembly and crossing your fingers.

 Think of a new workflow version as a new workflow. The basic technique is to
make your assembly increment the version number with each build (rather than leav-
ing it at 1.0.0.0 forever). Then, for each upgrade, you create a new feature for that
version of the workflow, pointing to the new assembly. You add the new assembly into
the global assembly cache (GAC) alongside the old assembly. Last, you specify that
the old version cannot start new instances of the workflow and then you add the new
workflow onto the list. This way, the old version of the assembly never changes, so
there’s no risk of hydrated workflows breaking when they are dehydrated. You deploy
another version of the assembly and add the new workflow to the list and disable pre-
vious versions. You don’t want to remove the previous versions because that will
orphan those running instances. For the full set of procedures, follow the steps in
table 12.1 to create a new version for an existing workflow.

Table 12.1 Creating a new version for an existing workflow

Action Steps Result

Create version
1.0.0.0 in your
workflow’s ele-
ments file.

1 In the Elements.xml file of your workflow, replace $assem-
blyname$ in CodeBesideAssembly with the following:

[assembly name], Version=1.0.0.0,
Culture=neutral, PublicKeyToken=[token]

Your workflow’s feature
is now specifically refer-
encing the 1.0.0.0 ver-
sion of your assembly.

Old version overwritten
If you don’t create a new version and merely upgrade the solution, all running in-
stances of the workflow will be deleted. The old version of the workflow will be re-
moved, and the new version will be added with zero running instances. Don’t
upgrade without creating a new version unless you’re entirely sure you don’t need
to retain the running instances.

309Versioning workflows

2 Replace [assembly name] with your assembly name.

3 Replace [token] with your public key token. You can do this by find-
ing your assembly in the GAC (c:\windows\assembly) and right-
clicking it, choosing Properties, and copying the token.

4 Change the name of the workflow in the Elements file to reference
the new version.

NOTE: This ensures that the user working with the workflow knows
what version it is. It has no technical implications. For example:

5 Add a copy of version 1.0.0.0 to solution package by double-click-
ing on the Package and, under the Advanced tab, add an existing
assembly and browse to your 1.0.0.0 assembly version:

NOTE: Notice how the Location and Source of the assembly are in a
path under Version 1.0.0.0. When the package is created, the
1.0.0.0 version is put in its own path. It cannot be in the same path
as the current version because they both have the same name.

With version
1.0.0.0 estab-
lished, you can
now simulate the
need to create
version 2.0.0.0.
Change the ver-
sion of the
assembly
to 2.0.0.0.

1 Under the Properties folder in the solution, open the Assembly-
Info.cs file.

2 Scroll to the bottom of the file and change the two versions to
2.0.0.0.

The current version of
the workflow’s assem-
bly is now 2.0.0.0.

Update the work-
flow’s Ele-
ments.xml file to
reference both
the version
1.0.0.0 workflow
and now the new
2.0.0.0 version.

1 Under the workflow, open the Elements.xml file.

2 Copy the Workflow element in its entirety and paste it directly
after the </workflow> tag.

3 Change the name and the version (in the CodeBesideAssembly) of
the second workflow to reference version 2.0.0.0.

4 Change the ID in the 2.0.0.0 version to a new GUID. You can create
a new GUID by using the Create GUID tool under the tools menu.

5 Build and deploy the solution.

The workflow’s feature
now enables two work-
flows. The main differ-
ence is that one is
referencing the 1.0.0.0
assembly, and the
other is referencing the
2.0.0.0 assembly.

Table 12.1 Creating a new version for an existing workflow (continued)

Action Steps Result

310 CHAPTER 12 A bag of workflow developer tricks

12.3 Building workflow event receivers
You can’t have a SharePoint workflow book without a discussion of event receivers. You
might immediately think you need a workflow when, in fact, an event receiver will do.
The main difference between the two is that a workflow is typically long running
whereas an event receiver is immediate. Why would you want an event receiver? What
if all you want to do is execute a piece of code when a document is deleted. For exam-
ple, you want with code to archive that document when a user deletes it. This example
shows how useful an event receiver can be because a deleting event can trigger your cus-
tom code. You could do this with a Visual Studio workflow that has one only activity in
it, but that’s a lot of overhead for something that an event receiver does with much less
effort. Table 12.2 shows more comparisons between workflows and event receivers.

Activate version
2.0.0.0.

1 Within the root site in the site collection, click Site Actions and,
then, click Site Settings.

2 Click Site Collection Features.

3 Deactivate and reactivate your workflow’s feature.

The 2.0.0.0 workflow is
able to associate with
lists or sites.

With version
2.0.0.0 deployed
and activated,
you now need to
prevent any new
instances of ver-
sion 1.0.0.0 from
being created.

1 Navigate to the workflow settings page of the list or site you’re
working on.

2 Click Remove a workflow.

3 Change version 1.0.0.0 to not allow new instances and click OK
(figure 12.5).

The 1.0.0.0 version can
no longer be started,
but running instances
dehydrate without error.

Table 12.2 Comparing event receivers and workflows

Event receivers Workflows

Immediate execution Long running

Lives and dies (no state) Maintains state

Table 12.1 Creating a new version for an existing workflow (continued)

Action Steps Result

Figure 12.5 By deploying a 2.0.0.0 version of the workflow, all running instances of 1.0.0.0 will
dehydrate without error when they resume execution. Users can no longer start new instances of
version 1.0.0.0.

311Building workflow event receivers

You can’t say one is better than the other. It depends entirely on your business
requirements. In addition, when documents are deleted, there are many other events
you can respond to. The events fall into six categories, as shown in table 12.3. Each
category has a few of the more common events shown in the second column, but note
that there are many more events available.

You’ll notice two things in this table. First, there are many events that you can have
custom code respond to, and second most events have a before and after (adding or
added) event associated with it. As shown in figure 12.6, before events happened before
the change is committed to the SharePoint content database. This is helpful when you
want to cancel a change before it is saved. The event receiver for when a site is being
deleted is a good example. Before the site is deleted, you could do some additional
processing such as backing it up.

 To demonstrate how to build an event receiver, you’re going to use the workflow
events as an example. (After all, this is a book about workflows.) Table 12.3 shows that
there are four events under the list workflow events category. You can respond to
when a workflow is starting, started, postponed, and completed. To keep the example
simple, let’s write an event receiver that creates an announcement when a new calen-
dar event is created.

.NET code only .NET or SharePoint Designer

No human interaction Typically involves human interaction

Before or after events Only after events

Executes on sites, features, lists, and list items Executes on sites, items, and content types.

Table 12.3 Event receiver categories

Event category Common events

List events Adding or added a new list, field
Updating or updated a field

List item events Adding or added a new list item or document
Document checking or checked in or out
Adding or added an attachment
Deleting or deleted an item or document

List email events A list received an email

Web events Deleting or deleted a site collection or site
Creating or created a new site collection or site

Feature events Feature activating or activated, deactivating or deactivated

List workflow events A workflow is starting or started, postponed, or completed

Table 12.2 Comparing event receivers and workflows (continued)

Event receivers Workflows

312 CHAPTER 12 A bag of workflow developer tricks

Start by creating a new project in Visual Studio 2010. You’ll notice under the Share-
Point tab that there’s a new project template called Event Receiver (figure 12.7). You
can use this template to create any of the previously mentioned event receivers.

 After you create the project, you’ll get a dialog menu asking you to specify the
URL of the site where you want to deploy and unit-test your event receiver and if you
want to choose a full-trust (farm) or sandboxed solution. Specify the URL and, then,
the farm solution because our code example requires full trust. Click Next and you’ll
be prompted to specify the type of event receiver you want to create (figure 12.8).
The dropdown will contain the event types for each of the six categories except the
feature events category. Feature events are created by right-clicking the feature in
the project after it’s created. For the announcement example, select the List Work-
flow Events category.

Figure 12.6 Events typically have a before and an after event corresponding to when
the event happens in relation to when the source is committed to the database.

Figure 12.7 Visual Studio 2010 now has a new project template you can use to easily create new
event receivers.

313Building workflow event receivers

After you select the event category, spec-
ify the event source. This tells the feature
that you’re going to create events you
want to respond to. Notice in figure 12.9
that you can handle events from
announcements, document libraries,
and many other list and library options.
Select the Calendar source.

 Next, you specify which workflow
event you want to handle. Specify the A
workflow has started event. Now, your
code will execute each time a workflow
is started on a calendar (figure 12.10).

 After you create the project, you’ll
be sent to a method named Workflow-
Started. This is where you can add your
code to create the announcement.
Enter the code in listing 12.1 to create
the announcement.

 First, this code block looks at the acti-
vation properties to determine which cal-
endar the event came from B.
Remember that your source was Calen-
dar, which means any calendar on the site
will raise this event when a workflow is
started. If you have more than one calen-
dar on the site, you’ll want to determine
which calendar the event came from.

 Next, you elevate the running user’s
privileges to the service account C.
You’re not sure if the running user has
contribute rights on the announcements
list, so you elevate his permissions to be

Figure 12.8 There are six main
event categories. Five are shown.

Figure 12.9 You’ll need to specify the event
source that will raise the event and call your
event receiver.

Figure 12.10 After you choose the event source,
you need to specify the event you want to respond
to. In this case you want to execute your code
when a workflow has started.

314 CHAPTER 12 A bag of workflow developer tricks

safe. Next, you create the announcement, assign a title value, and commit the announce-
ment to the database D.

if (properties.ActivationProperties.List.Title == "Main Calendar")
{
 string siteurl = properties.ActivationProperties.Site.Url;

 SPSecurity.RunWithElevatedPrivileges(delegate()
 {
 using (SPSite site = new SPSite(siteurl))
 {
 using (SPWeb web = site.RootWeb)
 {
 SPListItem item = web.Lists["Announcements"].Items.Add();
 item["Title"] = "The workflow has started!";
 item.Update();
 }
 }
 });
}

With this code in place, you deploy the solution. Right-click the project name in
Visual Studio, and click Deploy. This will deploy the feature and assembly on your
before. Next, create a new calendar entry and start a workflow on that event. As a result,
a new announcement will show up in the announcements list on that site.

12.4 Pluggable workflow services
Pluggable workflow services is one of the most highly anticipated new workflow fea-
tures for SharePoint 2010. This is because SharePoint 2007 workflows lacked the abil-
ity to communicate with the outside world. The most basic scenario is a workflow that
needs to go idle and wait for a message from a separate system, like a line of business
applications such as customer relationship management (CRM). Another desired
technique was for interworkflow communication, when one workflow needs to send a
message to another workflow. A third scenario would be a long running process. If
you had a calculation or a service call that took thirty minutes to execute, there would
be no sense in keeping the workflow instance in memory. It would be better to
hydrate the instance and dehydrate it when the process is finished.

 All three of those examples were not easily accomplished in SharePoint 2007.
Now, Windows Workflow Foundation on the .NET 3.5 Framework has the ability to
meet these needs through Workflow Communication Services. Since SharePoint
2007 is on the 3.5 Framework, you’d think it wouldn’t have been a problem. Because
SharePoint was the hosting provider, there was no class that was provided to easily
get at workflow instances and raise events into those instances that the workflow was
listening for. This changes in SharePoint 2010, with the introduction of a new class,
SPWorkflowExternalDataExchangeService.

Listing 12.1 Event receiver that creates an announcement

Elevates
permissionsC

B
Confirms the

calendar

Creates
announcementD

315Pluggable workflow services

Just as in Workflow Communication Services, in SharePoint 2010 workflows, you can
create a local service that your workflows can use to communicate with each other.
Using the CallExternalMethod activity and the HandleExternalEvent activity, Share-
Point workflows and .NET applications can send and receive messages to each other
(figure 12.11).

 Before we get into how to set up a local service that uses the SharePoint external data
exchange services, let’s talk briefly about the example. The example you’re going to
build will be a glorified Hello World! example. A workflow is going to say Hello Event
Handler! to an event receiver on an announcements list by creating a new announce-
ment. Then, an event receiver is going to say Hello Workflow! back to the workflow.

 To accomplish this, the workflow will call into a local service. The local service then
creates an announcement in an announcements list. Then, an event receiver
responds to the new announcement by raising an event through the local service that
the workflow is listening for. This example will demonstrate how a SharePoint work-
flow can communicate with a .NET application. Follow the steps in table 12.4 to build
the Hello World! pluggable workflow service.

Table 12.4 Creating a pluggable workflow service

Action Steps Result

Create a new Visual
Studio 2010 project.

1 Open Visual Studio 2010 and create a new sequential work-
flow project titled PluggableWorkflowServices and click OK.

2 Type the URL of the site you’ll use to debug, click Next,
select a Site Workflow, and click Finish.

You have a new
Visual Studio
project with a
Site workflow.

Figure 12.11 Windows Communication Services has become friendly with SharePoint workflows.
Using the SharePoint workflow external data exchange service, your workflows can send and receive
messages from other workflows or .NET applications.

316 CHAPTER 12 A bag of workflow developer tricks

A local service is composed of two components, a service interface and a service class.
The service interface lets the sending and receiving parties know what type of data to
send to each other. This is done by declaring a method the sender calls and an event
the receiver listens for. To tap into the external data exchange services, the interface
must be declared with an ExternalDataExchange attribute.

public event EventHandler<HelloWorldEventArgs> HelloWorkflow;
public void HelloHost(string message)
{
 SPWeb web = this.CurrentWorkflow.ParentWeb;
 SPList list = web.Lists["Announcements"];
 SPListItem item = list.Items.Add();
 item["Title"] = message;
 item["Instance"] = WorkflowEnvironment.WorkflowInstanceId.ToString();
 item.Update();
}

Table 12.4 Creating a pluggable workflow service (continued)

Action Steps Result

Create a new
class to use for
our local ser-
vice and add
our interface.

1 Create a new class titled HelloWorldService.cs.

2 Add the following using statements to the class file:

using System.Workflow.Activities;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Workflow;
using System.Workflow.Runtime;

3 Above the HelloWorldService class, add the following
interface:

[ExternalDataExchange]
public interface IHelloWorldService
{
 event EventHandler<HelloWorldEventArgs>
 HelloWorkflow;
 void HelloHost(string message);

}

The HelloHost method is called by the workflow via the CallEx-
ternalMethod activity, in the example, which creates the
announcement. The event receiver then executes and invokes the
HelloWorkflow event that the workflow is listening for through the
HandleExternalEvent activity.

A new file named
HelloWorldSer-
vice.cs that con-
tains your local
service interface
is created.

Extend the Hel-
loWorldService
class, and add
the HelloHost
method and
the event
defined in the
interface.

1 Make the HelloWorldService class extend Microsoft.
SharePoint.Workflow.SPWorkflowExternalDataExchangeService.

2 Make the HelloWorldService class implement the IHel-
loWorldService interface.

3 Add listing 12.2 into the HelloWorldService class.

The HelloWorld-
Service class is
extended and
implements the
interface you
built in the previ-
ous step.

Listing 12.2 HelloHost local service method

Declares
the eventB

Defines the
methodC

Adds a new announcementD

317Pluggable workflow services

In the HelloHost method you want to create two things, the event handler B and the
method C that is defined in the interface. Within the method, you’re creating the
new announcement D and passing the workflow’s instance ID into the Instance col-
umn within the announcement. This is how the event receiver will know to which
workflow to send a message.

 After you add listing 12.1 and the code found in the second and third actions, you
may notice that the compiler cannot find the class for HelloWorldEventArgs. This
class you have yet to define, but it will allow your event receiver to send a custom mes-
sage to your workflow.

Notice that your custom arguments take two values, a GUID that will store the work-
flow instance ID and the Answer, which is the message the event receiver will pass to
the workflow. This message will eventually be logged into the workflow’s History List.

 There’s one more thing you must do before your local service is complete and you
can build the workflow and the event receiver. You need to add three more methods
to satisfy interface requirements in SPExternalDataExchangeService.

public override void CallEventHandler(Type type, string eventName,
 object[] parameters, SPWorkflow workflow, string identity,
 System.Workflow.Runtime.IPendingWork handler, object item)
{
 switch (eventName)
 {
 case "HelloWorkflow":
 var args = new HelloWorldEventArgs(workflow.InstanceId);

Table 12.4 Creating a pluggable workflow service (continued)

Action Steps Result

Add the code that
will allow passing
a custom set of
event arguments.

Add the following code below the HelloWorldService class:

[Serializable]
public class HelloWorldEventArgs :
ExternalDataEventArgs
{
 public HelloWorldEventArgs(Guid id) :
base(id) { }
 public string Answer;
}

Your local service
will now be set up to
pass a custom set of
event arguments.

Table 12.4 Creating a pluggable workflow service (continued)

Action Steps Result

Add listing 12.3 within the HelloWorldService class. The HelloWorldService class now
satisfies all interface requirements.

Listing 12.3 SPExternalExchangeService interface methods

Switches event typeB Creates
args with

instance ID

C

318 CHAPTER 12 A bag of workflow developer tricks

 args.Answer = parameters[0].ToString();
 this.HelloWorkflow(null, args);
 break;
 }
}

public override void CreateSubscription(
 MessageEventSubscription subscription)
{ throw new NotImplementedException(); }

public override void DeleteSubscription(Guid subscriptionId)
{ throw new NotImplementedException(); }

The CallEventHandler method is called each time an event is requested in the local
service. First, you check to see which event is being requested B. If it’s your Hel-
loWorkflow event, you create a new HelloWorldEventArgs instance and pass in the
workflow’s instance ID C. This will let the event know which workflow to invoke the
event with. Next, you pass in the message string D from the event receiver and, last,
invoke the event E.

 With the local service now complete, you can start building the workflow and the
event receiver that interfaces with this service. Continue the steps in table 12.4 to
build the workflow and the event receiver.

Table 12.4 Creating a pluggable workflow service (continued)

Action Steps Result

Configure the
CallExternal-
Method activity.

1 Within Workflow1, add the CallExternalMethod activity.

2 In the properties of the activity, click the ellipsis next to
the InterfaceType property, specify the IHelloWorldSer-
vice interface, and click OK:

3 Change the MethodName property to HelloHost.

4 Change the message property to Hello Event Handler!

The CallExternal-
Method activity is
configured to call
the HelloHost
method through
the local service.

Configure the
HandleExternal-
Event activity.

1 Add the HandleExternalMethod activity below the CallEx-
ternalEvent activity.

2 Within the properties of the activity, click the ellipsis next
to the InterfaceType property, specify the IHelloWorldSer-
vice interface, and click OK.

3 Change the EventName property to be HelloWorkflow.

NOTE: This is the only event the workflow will listen for. The
event receiver must invoke this event to communicate with
the workflow.

4 Bind the e property to a new field handleArgs by clicking
the ellipses and choosing Field in the Bind to New Mem-
ber tab and clicking OK.

The HandleExternal-
Event activity is now
set up to listen and
wait for the Hel-
loWorkflow event.

Pulls
answer our of
parametersD

Invokes
eventE

319Pluggable workflow services

if (properties.ListTitle == "Announcements")
{
 Guid instance = new Guid(properties.ListItem["Instance"].ToString());
 string answer = "Hello Workflow!";

5 Go to the code view of the workflow and take the = new …
off the end of the handleArgs property so it looks like this:

1 public HelloWorldEventArgs handleArgs;

Configure a Log
to History List
activity.

1 Below the HandleExternalEvent activity, add a LogToHis-
toryList activity.

2 Right-click the LogToHistoryList activity and choose Gen-
erate Handlers.

3 Within the activity’s MethodInvoking method, add the fol-
lowing line of code to write the event receiver’s message
to the history:

logToHistoryListActivity1.
HistoryDescription =
 handleArgs.Answer;

After the HelloWork-
flow event is raised,
the workflow is config-
ured to log the mes-
sage sent from the
event receiver to the
workflow history list.

Add an Instance
column to an
announcements
list.

1 Find or create the announcements list on the site on
which you’re unit-testing and, under List Settings, click
Create Column.

2 Type a name of Instance, choose a Single Line of Text
column type, and click OK.

The HelloHost method
saves a GUID into the
Instance column in
the announcements
list, which is config-
ured with that column.

Add a new Event
Receiver to the
project.

1 Right-click the project, choose Add > New Item, and
select the Event Receiver item.

2 Give the receiver the name of AnnouncementsReceiver
and click Add.

3 Choose List Item Events, Announcements, An item was
added and click Finish:

4 Add listing 12.4 in the ItemAdded method of the
receiver.

The event receiver
is configured to fire
when an announce-
ment is created
and to invoke the
HelloWorkflow event
on the workflow
instance found in the
Instance column.

Listing 12.4 ItemAdded event receiver method

Table 12.4 Creating a pluggable workflow service (continued)

Action Steps Result

Grabs workflow instance ID B

320 CHAPTER 12 A bag of workflow developer tricks

 SPWorkflowExternalDataExchangeService.RaiseEvent(
 properties.Web, instance, typeof(IHelloWorldService),
 "HelloWorkflow", new object[] { answer });
}

This listing first grabs the workflow’s instance ID out of the Instance column and sets it
to a GUID B. This GUID is passed as a parameter into the RaiseEvent method C,
which is how the RaiseEvent method knows to which workflow to send the message.
Other parameters of interest are the SharePoint site where the workflow is running,
the event to invoke (HelloWorld event), and your message to the workflow, Hello
Workflow! That last parameter is an object array so you can load that up with any seri-
alizeable object you think the workflow needs.

 Before you test, register your local service with the SharePoint workflow runtime.
You do that by adding an entry into the web.config. Follow this last step to register
your service.

You’re finally ready to test. Build and deploy your project. Navigate to your SharePoint
site and, under View Site Content, click Site Workflows. Start your pluggable workflow.
(It should be named PluggableWorkflowServices-Workflow1.) Navigate to the
Announcements list and you should see a new announcement titled Hello Event Han-
dler!, as shown in figure 12.12.

 Go back to Site Workflow and click the Completed status of the workflow titled
PluggableWorkflowServices-Workflow1. You should see the event receiver’s response
Hello Workflow! (figure 12.13).

Table 12.4 Creating a pluggable workflow service (continued)

Action Steps Result

Register the
HelloWorldService
with the SharePoint
workflow runtime.

1 Open your web application’s web.config under c:\
inetpub\wwwroot\wss\virtual directories\ (plus the
appropriate web application’s unique folder name)

2 Find the <WorkflowServices> element.

3 Add the following WorkflowService in the Work-
flowServices element (all on one line and note that
you’ll need to change the PublicKeyToken to your
assembly’s token):

<WorkflowService
Assembly="PluggableWorkflowServices,
Version=1.0.0.0, Culture=neutral,
PublicKeyToken=c1c16502a94a0846"
Class="PluggableWorkflowServices.
HelloWorldService">
</WorkflowService>

NOTE: If you find yourself getting an error “The workflow
failed to start due to an internal error” when you try to
start a workflow, you probably didn’t perform the last
correctly or the DLL isn’t found in the GAC.

The local service is reg-
istered with the Share-
Point workflow runtime.

Invokes
HelloWorkflow
eventC

321SharePoint workflow object model

12.5 SharePoint workflow object model
The SharePoint workflow object model falls within the Microsoft.SharePoint.Work-
flow namespace. You can leverage this object model to programmatically work with
your workflows. You can start and stop a workflow, check a workflow’s status or history,
or retrieve a list of tasks associated with a workflow. This section will provide an intro-
duction into the workflow object model and some common uses. Reference the com-
plete SDK on www.msdn.microsoft.com. The namespace has many classes, but the
following are the top two:

■ SPWorkflow—This class represents a workflow instance on an item or site. It can
be used to see who started the workflow (Author property) and get the state of
the workflow (InternalState property).

Figure 12.12 The workflow wrote to an announcements list, and an event receiver on that will respond
by calling back into the hydrated workflow instance.

Figure 12.13 The event receiver has called back into the hydrated workflow instance, and the
workflow logged the string message received from the event receiver.

www.msdn.microsoft.com

322 CHAPTER 12 A bag of workflow developer tricks

■ SPWorkflowManager—This is the class with many helper methods that you can
use with workflows. The most useful methods include the following:
– GetItemActiveWorkflows
– GetItemWorkflows
– GetWorkflowTasks
– RemoveWorkflowFromListItem
– StartWorkflow

Although these classes are most useful, they work in concert with a host of other classes
in the same namespace. Table 12.5 shows a list of classes and their SKD descriptions.

Table 12.5 Microsoft.SharePoint.Workflow main classes and SDK definitions

Main classes SDK Definitions

SPWorkflow A workflow instance that has run or is currently running on an item
or site.

SPWorkflowActivationProperties Represents the initial properties of the workflow instance as it
starts, such as the user who added the workflow and the list and
item to which the workflow was added.

SPWorkflowAssociation Represents the association of a workflow template with a specific
list, content type, or site that contains members that return custom
information about that workflow’s association with the specific list
or content type.

SPWorkflowAssociationCollection Represents the workflow associations on a SharePoint list or site.

SPWorkflowCollection A collection of the workflow instances that have run or are currently
running on a list item or site.

SPWorkflowFilter Represents the filter criteria to apply to a workflow or workflow task
collections, such as to whom the workflow is assigned and the
workflow state.

SPWorkflowManager Contains members that enable you to centrally control the workflow
templates and instances across a site collection.

SPWorkflowModification Represents a workflow modification.

SPWorkflowModificationCollection Represents the collection of workflow modifications that are cur-
rently in scope for the workflow instance.

SPWorkflowTask Represents a single workflow task for a given workflow instance.

SPWorkflowTaskCollection Represents a collection of the workflow tasks for a workflow
instance.

SPWorkflowTaskProperties Represents the properties of a workflow task.

SPWorkflowTemplate Represents a workflow template currently deployed on the Share-
Point site and contains members you can use to get or set informa-
tion about the template, such as the instantiation data and the
history and task lists for the template.

SPWorklowTemplateCollection The collection of workflow templates currently deployed on a site.

323SharePoint workflow object model

Now that you have a high level understanding of classes, let’s take a look at a few com-
mon uses of the workflow object model. The following code snippets are five common
examples.

 The first snippet shows starting a workflow programmatically:

foreach (SPWorkflowAssociation association in
 splistitem.ParentList.WorkflowAssociations)
{
 if (association.AllowManual)
 {
 splistitem.Web.Site.WorkflowManager.StartWorkflow(
 splistitem, association, association.AssociationData, true);
 }
}

The code in this snippet first gets all the workflows associated with the list. This could
easily be a content type or a site for site workflows. The SPWorkflowAssociation object
contains properties such as the workflow’s start options. Next, the statement checks if
manual starts are allowed through the UI. If so, it starts the workflow through the
workflow manager’s StartWorkflow method.

 The second snippet shows how to stop a workflow programmatically:

SPWorkflow workflow = splistitem.Workflows[1];
web.Site.WorkflowManager.RemoveWorkflowFromListItem(workflow);

Stopping a workflow is simple. Use the workflow manager and call the RemoveWork-
flowFromListItem method and pass the workflow you want to terminate. The work-
flow manager is again useful to retrieve the list of active workflows on an item, as seen
in the following snippet:

SPWorkflowCollection runningWFs =
 web.Site.WorkflowManager.GetItemActiveWorkflows(splistitem);

Console.WriteLine("Names of Running Workflows:");

foreach (SPWorkflow workflow in runningWFs)
{
 Console.WriteLine(workflow.ParentAssociation.Name);
}

The workflow manager’s GetItemActiveWorkflows method retrieves a collection of
workflows representing all the running workflows on that item. The workflow collec-
tion on the item would contain all the workflows, regardless of whether they are cur-
rently running or not. Some may have completed or faulted. You can optionally use
GetItemWorkflows and pass in an SPWorkflowFilter parameter that specifies an
SPWorkflowState object. By using the filter and the state, you could retrieve only
orphaned workflows, for example.

 With an active workflow, you may want to get the workflow’s tasks. The following
snippet shows how to do this:

SPWorkflow workflow = splistitem.Workflows[1];

Console.WriteLine("Titles of Workflow's Tasks:");
foreach (SPWorkflowTask task in workflow.Tasks)

324 CHAPTER 12 A bag of workflow developer tricks

{
 Console.WriteLine(task["Title"].ToString());
}

Every workflow’s Tasks property is an SPWorkflowTaskCollection object. You can iter-
ate through each workflow task to retrieve all the tasks that the workflow has created.
This can optionally be done through the workflow manager’s GetWorkflowTasks
method, and you can also pass in an SPWorkflowFilter parameter again to filter the
tasks. The counterpart of tasks is the workflow’s history.

 The following snippet shows how to retrieve a workflow’s history programmatically:

SPWorkflow workflow = splistitem.Workflows[1];

SPList historyList = workflow.HistoryList;

SPQuery query = new SPQuery();
query.Query =
 "<OrderBy><FieldRef Name=\"ID\"/></OrderBy>" +
 "<Where><Eq><FieldRef Name=\"WorkflowInstance\"/>" +
 "<Value Type=\"Text\">{"+ workflow.InstanceId.ToString() +"}</Value>" +
 "</Eq></Where>";

SPListItemCollection historyItems = historyList.GetItems(query);
foreach (SPListItem historyItem in historyItems)
{
 Console.WriteLine(historyItem["Description"].ToString());

}

Every workflow has a HistoryList property that points to the SPList object in which the
workflow’s history is stored. That list can be queried to get the history items. The que-
rying is done using the SPQuery object (as shown previously) or LINQ to SharePoint.
Enter the CAML query and pass the workflow’s instance ID to get only that workflow’s
history items. The history is stored in the Description column of each SPListItem that
is returned.

12.6 Summary
Any programmer will tell you that exception handling and debugging code is impor-
tant. This is no exception with Visual Studio SharePoint workflows. Fortunately, your
workflows can use the HandleFault activity and can be debugged like any other .NET
application, so the learning curve should be minimal. Versioning workflows is some-
times new to developers. When a workflow is persisted to disk (hydrated), subsequent
changes to the workflow’s assembly can cause problems. If you change the assembly
while the workflow is hydrated (saved in the database), there’s no guarantee that, when
the workflow dehydrated, it will match the construct of the new assembly. If it doesn’t,
the workflow will break. Instead, a new version of the workflow must be published.

 SharePoint 2010 offers new event capabilities to developers. They include new
workflow event receivers and an easier ability to send and receive events with applica-
tions external to the workflow. External communication is handled through the new
pluggable workflow services feature.

325Summary

 Under all these excellent SharePoint workflow features resides a workflow object
model that a developer may sometimes want to use. Using the SPWorkflowManager
object, for example, you can programmatically start and stop a workflow. You can also
do other tasks such as retrieve the running workflows on a document or, perhaps, look
up the tasks and history associated with a workflow instance.

 This chapter isn’t the end of what you can read on workflows. As mentioned in
chapter 1, SharePoint workflows are built on Windows Workflow Foundation. This
book discusses the most critical areas for SharePoint workflow developers, but there’s
a whole world underneath the SharePoint surface. In that sense, this book is only
the beginning.

Phil Wicklund

Y
ou can use SharePoint 2010 workfl ows to transform a set
of business processes into working SharePoint applications.
For that task, a power user gets prepackaged workfl ows,

wizards, and design tools, and a programmer benefi ts from
Visual Studio to handle advanced workfl ow requirements.

SharePoint 2010 Workflows in Action is a hands-on guide for
workfl ow application development in SharePoint. Power users
are introduced to the simplicity of building and integrating
workfl ows using SharePoint Designer, Visio, InfoPath, and
Offi ce. Developers will learn to build custom processes and
use external data sources. Th ey will learn about state machine
workfl ows, ASP.NET forms, event handlers, and much more.
Th is book requires no previous experience with workfl ow
app development.

What’s Inside
Out-of-the-box and custom workfl ows
How to integrate external data
Advanced forms with InfoPath and ASP.NET

External events with pluggable workfl ow services
Custom workfl ow actions and conditions
Model your business process in Visio

As a SharePoint consultant and trainer for RBA Consulting,
Phil Wicklund has implemented countless workfl ows. He is
a frequent speaker at SharePoint conferences and he blogs at
www.philwicklund.com.

For online access to the author and a free ebook for owners
of this book, go to manning.com/SharePoint2010WorkflowsinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

SharePoint 2010 Workflows IN ACTION

MICROSOFT SHAREPOINT

“Covers all aspects of
 SharePoint workfl ows.”
 —Wayne Ewington, Microsoft

“Great for learning or
 reference.”
 —Raymond Mitchell
 Inetium, Inc

“A must-have.”
 —Justin Kobel
 KiZAN Technologies

“Th e go-to resource.”
 —Andrew Grothe
 Triware Technologies Inc.

“Every SharePoint dev needs
 this book!”
 —Nikander & Margriet
 Bruggeman
 Lois & Clark IT Services

M A N N I N G

SEE INSERT

