
Ken Finnigan

SAMPLE CHAPTER

M A N N I N G

Enterprise Java Microservices

by Ken Finnigan

Chapter 8

Copyright 2018 Manning Publications

brief contents

PART 1 MICROSERVICES BASICS ..1

1 ■ Enterprise Java microservices 3

2 ■ Developing a simple RESTful microservice 23

3 ■ Just enough Application Server for microservices 36

4 ■ Microservices testing 60

5 ■ Cloud native development 83

PART 2 IMPLEMENTING ENTERPRISE JAVA MICROSERVICES.................99

6 ■ Consuming microservices 101

7 ■ Discovering microservices for consumption 117

8 ■ Strategies for fault tolerance and monitoring 138

9 ■ Securing a microservice 164

10 ■ Architecting a microservice hybrid 188

11 ■ Data streaming with Apache Kafka 211

iii

Strategies for fault
 tolerance and monitoring

This chapter covers
 What is latency?

 Why do microservices need to be fault tolerant?

 How do circuit breakers work?

 What tools can mitigate against distributed

failure?

You’ll use the example from the previous chapters to expand the functionality of
Stripe and Payment to include fault mitigation as you explore the concepts of fault
tolerance and monitoring. Fault tolerance is especially important when your Pay­
ment microservice is communicating over a network to external systems. You need
to expect failures and time-outs when communicating across networks.

8.1 Microservice failures in a distributed architecture
Figure 8.1 revisits what your distributed architecture for microservices looks like.

138

139 Microservice failures in a distributed architecture

User

DataData

Gateway

Microservices environment

Runtime

Runtime

Runtime

Microservice Microservice

Microservice

Figure 8.1 Microservices in a distributed architecture

How is this distributed architecture relevant to failures? By virtue of your
microservices containing smaller chunks of business logic, as opposed to a monolith
that contains everything, you end up with a significantly larger number of services to
maintain. You’re no longer dealing with a UI that might communicate with a
single backend service that handles all its needs. More likely, that same UI is now

140	 CHAPTER 8 Strategies for fault tolerance and monitoring

integrating with dozens of microservices, or more, that need to be just as reliable as
your previous monolith.

 But your microservices won’t fail in production, right? Nothing fails in production!
We’ve all likely made statements similar to that at some point, usually before we’ve
been bitten by a major failure in production! Once bitten, twice fault tolerant!

Why is it that, without previous experiences of production failures, we tend toward
grandiose statements about the reliability of our production systems? Some of it’s
because we can be optimistic in nature, but mostly it’s a lack of experience. If you’ve
never had to deal with fixing production issues for your application, especially in
the middle of the night, it’s hard to appreciate the valid concerns around the reliabil­
ity of systems.

Pager nightmares
I remember in the late ’90s—yes, I was in IT back then—that the most dreaded expe­
rience of the novice was to be handed the pager for on-call duty. There’s no worse
feeling than getting a page around 2 a.m. about failed jobs that need to be fixed, and
then trying to complete them before the staff arrives in the office at 8 a.m.! These
were only nightly batch jobs, but the anxiety over being paged was terrible.

I can only imagine what it’s like to receive a page (if pagers are still around today) for
a production failure on a live application that needs to be resolved because it’s affect­
ing the 24/7 running of the business!

Here are some of the statements you might falsely believe regarding production sys­
tems, and distributed architectures in particular:

 The network of computing devices is reliable. Without taking into account the possi­
bility of network failures, it’s possible for an application to stall while waiting for
a response that won’t arrive. Worse, the application would be unable to retry
any failed operations when the network is available again.

 There’s no delay in making a request and having it acted upon (known as zero latency).
Ignoring network latency, and associated network packet loss, can result in
wasted bandwidth and an increase in dropped network packets as the amount
of traffic on the network grows without limitation.

 There’s no limitation to the available bandwidth on the network. If clients are sending
too much data, or too many requests, the available network bandwidth could
shrink to the point that bottlenecks appear and application throughput is
reduced. The impact of latency on network throughput can last for a few sec­
onds or be constantly present.

141 Network failures

 The entire network is secure from possible attack, external or internal. It’s naive to
ignore the possibility that a malicious user, such as a disgruntled employee,
could attempt to cause damage to an application. Likewise, a once-internal
application can be easily exposed to external threats by making it available pub­
licly without proper security vetting. Even an innocuous change in firewall rules
for a port could make it unintentionally accessible externally.

 Location and arrangement of computing devices on a network never changes. When net­
works are altered, and devices moved to different locations, the available band­
width and latency can be diminished.

 There’s a single administrator for everything. With multiple administrators for differ­
ent networks within an enterprise, conflicting security policies could be imple­
mented. In this case, a client who needs to communicate across differently
secured networks needs to be aware of the requirements of both to successfully
communicate.

 Zero transport cost. Though the transport of physical data through a network may
cost zero, it’s a nonzero cost to maintain a network after it’s built.

 The entire network is homogeneous. In a homogeneous network, every device on the
network uses similar configurations and protocols. A nonhomogeneous net­
work can lead to the problems described in the first three points of this list.

All these statements are known as the Fallacies of Distributed Computing (www.rgoar­
chitects.com/Files/fallacies.pdf).

8.2 Network failures
Though there are many ways a network can fail, in this section you’ll focus on network
latency and time-outs. Previously, I mentioned zero latency as being part of the Falla­
cies of Distributed Computing, which equates to no delay in making a request and
having it acted upon.

 Why is latency important for your microservice? It affects almost anything your
microservice might want to do:

 Calling another microservice
 Waiting for an asynchronous message
 Reading from a database
 Writing to a database

Without being mindful of the existence of latency in your network, you’d presume
that all communication of messages and data is near instantaneous, assuming the net­
work devices involved in the communication are sufficiently close.

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf

142 CHAPTER 8 Strategies for fault tolerance and monitoring

 Time-outs are another crucial source of network failure you need to be mindful of
when developing microservices. Time-outs can be linked to high latency; requests
aren’t responded to in a timely manner not only because of network delays, but also
because of issues with the consuming microservice. If the microservice you’re calling
has gone down, is experiencing high load, or failing for any other number of reasons,
you’ll notice problems when you try to consume it, most often in the form of a time­
out. There’s no way to predict when a time-out will occur, so your code needs to be
aware that time-outs happen, and of how you want to handle the situation when you
receive one.

 Do you try again, either immediately or after a short delay? Do you presume a stan­
dard response and proceed anyway?

 It’s these network failures that you want to especially mitigate against. Otherwise,
you leave your microservices, and entire application, open to unexpected network fail­
ure with no means of recovering other than restarting services. Because you can’t
afford to be restarting services every time a network problem occurs, you need to
develop your code to prevent restarting from being your only option.

8.3 Mitigating against failures
In looking at how to mitigate against failure, you could certainly implement the fea­
tures you need yourself. But you might not be an expert in all the best ways to imple­
ment the features you need. Even if you were, accomplishing that implementation
requires more than a short development lifecycle. You’d rather be developing more
applications! Though you might be able to use many different libraries, in this case
you’re going to be using Hystrix from Netflix Open Source Software.

8.3.1 What is Hystrix?

Hystrix is a latency and fault-tolerance library intended to isolate access points with
remote systems, services, and libraries; halt cascading failure; and enable resilience in
distributed systems. Wherever failure is inevitable, as with distributed systems, the Hys­
trix library improves the resiliency of microservices in these environments.

 A lot of things are going on with Hystrix, so how does this library do it? We can’t
cover the entirety of Hystrix within this single chapter; that would require an entire
book in its own right. But this section provides a high-level view of how Hystrix per­
forms its segregation.

 Figure 8.2 shows a view of a microservice handling the load of many user requests.
This microservice needs to communicate with an external service. In this situation, it’s
easy for the microservice you’ve developed to become blocked as it’s waiting for exter­
nal service 2 to respond. Worse, you could overload the external service to the point it
stops functioning completely.

143 Mitigating against failures

This is where Hystrix comes in, to be the middleman and mediate your external com-
munication in order to mitigate against various failures. Figure 8.3 adds Hystrix into
the picture, by wrapping your external service calls inside HystrixCommand instances
that use configuration to define its behavior, such as the number of available threads.

 In figure 8.3, each external service has a different number of threads available to
the respective HystrixCommand. This is an indication that some services might be eas-
ier to overload than others, and you need to restrict the number of concurrent
requests that you send.

Figure 8.2 Microservice processing user requests without Hystrix

External
service 1

External
service 2

Microservice

.

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

External
service 3

144 CHAPTER 8 Strategies for fault tolerance and monitoring

External
service 1

External
service 2

External
service 1
10 threads

External
service 3
6 threads

External
service 2
5 threads

Microservice

HystrixCommands

.

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

External
service 3

Figure 8.3 Microservice processing user requests with Hystrix

145 Mitigating against failures

By wrapping external service 2 into a HystrixCommand, you’re limiting the number of
requests that call it from your microservice concurrently. Though you’ve added mitiga­
tion for interacting with that particular external service, you’ve just increased the like­
lihood of requests failing in your microservice because you’re rejecting additional
requests out to the external service! Such a situation may be fine, or it may not; the out­
come depends on the speed with which the external request can process your requests.

 This does raise an important point. Adding failure mitigation to a single micro­
service within an entire ecosystem isn’t that beneficial. Making your microservice a
better citizen within the distributed network is great, but if everyone else in the net­
work doesn’t have the same mitigation for interacting with your microservice, you’ve
simply moved where the bottleneck and failure point reside. For this reason, it’s criti­
cal that failure mitigation is an enterprise-wide concern, or at least within a grouping
of microservices that all communicate with each other.

 Another advantage to Hystrix that you can see in figure 8.3 is the isolation it provides
between external services. If calls to external service 2 weren’t limited, there’s a good
chance it could consume all available threads within the JVM, preventing your micro­
service from handling requests that don’t need to interact with external service 2!

 For the remainder of the chapter, our approach will be to outline the theory
behind a mitigation strategy for failures, and then show how that strategy is imple­
mented within Hystrix. You know you need to mitigate against network failures in
your code, so what strategies do you have at your disposal?

8.3.2 Circuit breakers

If you’re in any way familiar with the way fuses work in your home’s electrical panel, you’ll
understand the principles of a circuit breaker. Figure 8.4 shows that electricity flows
through a fuse unhindered unless it’s tripped open, causing the flow to be interrupted.

Open circuit

Closed circuit

Figure 8.4 Electrical circuit-breaker states

146 CHAPTER 8 Strategies for fault tolerance and monitoring

The one difference between an electrical
panel and software is that a software circuit
breaker will automatically close itself with­
out manual intervention, based on thresh­
olds that have been defined to indicate the
level at which it becomes unhealthy.

 Figure 8.5 shows the initial part of a
larger flow to mitigate against failures Closed

when calling external services. As you
progress through this chapter, additional
parts will be added to the flow, providing
additional functionality to assist with miti- Open
gation. This first part focuses on providing
a circuit breaker.

 When the circuit breaker is Closed, all Figure 8.5 Failure mitigation flow with basic
requests continue through the flow. When circuit

the circuit breaker is Open, the requests
exit the flow early. You can see in figure 8.5 that your circuit breaker requires Circuit
Health Data, which is used in determining whether the circuit should be open or
closed. In addition to the states in figure 8.5, a circuit breaker can be in a Half Open
state. See figure 8.6.

1–OK 3–Fail fast

Circuit
breaker

Circuit
health
data

2–Failure threshold
Closed Open

Half open

5b–
Retry OK

5a–Retry
fail

4–Retry

Figure 8.6 Circuit-breaker states

Here are the transitions between states of a circuit breaker:

1 All requests pass through unhindered, as the circuit is Closed.
2 When a failure threshold is reached, the circuit becomes Open.
3 While the circuit is Open, all requests are rejected, failing fast.

147 Mitigating against failures

4 The circuit’s Open time-out expires. The circuit moves to Half Open to allow a
single request to pass.

5 The request fails or succeeds:
a The single request fails, returning the circuit to Open.
b The single request succeeds, returning the circuit to Closed.

In the Half Open state, the circuit breaker is officially still Closed. But after a sleep
time-out is reached, a single request will be allowed to pass through. The success or
failure of this single request then determines whether the state shifts back to Closed (a
single request was successful), or whether it remains Open until making another
attempt when the next time-out interval is reached.

 A circuit breaker is only a way to allow or prevent requests from passing through.
The key piece to it behaving the way you want is the Circuit Health Data. Without cap­
turing any Circuit Health Data, the circuit breaker would always remain Closed,
regardless of how many requests might fail or for what reasons.

 Hystrix provides sensible defaults for a circuit breaker to handle time-outs, net­
work congestion, and latency with any request you make. Let’s take a look at a simple
Hystrix circuit breaker.

Listing 8.1 StockCommand

public class StockCommand extends HystrixCommand<String> {
 private final String stockCode;

Specify String as the
HystrixCommand Type.

 public StockCommand(String stockCode) {
super(HystrixCommandGroupKey.Factory.asKey("StockGroup"));

this.stockCode = stockCode;

Unique key for grouping data
}
 in the Hystrix dashboard

 @Override

 protected String run() throws Exception {
 Execution of

// Execute HTTP request to retrieve current stock price
 call to external
}
 service

}

You can then call this command synchronously with code such as the following:

String result = new StockCommand("AAPL").execute();

If you prefer asynchronous execution, you use this:

Future<String> fr = new StockCommand("AAPL").queue();

String result = fr.get();

In each of the examples, you’re expecting only a single result from executing the
request, whether you’re calling it synchronously or asynchronously. For that reason,
you choose to extend HystrixCommand, which caters to single-response executions.

148 CHAPTER 8 Strategies for fault tolerance and monitoring

 What happens if you expect multiple responses instead of one? Stock prices change
extremely frequently, so wouldn’t it be nice to not continually execute another call every
time you want it updated?

 You need to modify your circuit breaker to support a command that returns an
Observable that can emit multiple responses. You’ll subscribe to this Observable to
handle each response as it’s received. Handling each response as it’s returned identi­
fies the execution as being reactive.

DEFINITION Reactive is an adjective meaning acting in response to a situation
rather than creating or controlling it. When you’re using an Observable and lis­
tening to results that are emitted from it, you’re acting in response to each emit­
ted result. An advantage with this approach is that you don’t block while
waiting for each result to be emitted.

Let’s modify your command to provide an Observable.

Listing 8.2 StockObservableCommand

public class StockObservableCommand extends HystrixObservableCommand<String> {

 private final String stockCode;

Specify String as the
HystrixObservableCommand type.

 public StockObservableCommand(String stockCode) {

super(HystrixCommandGroupKey.Factory.asKey("StockGroup"));

this.stockCode = stockCode;
 Unique key for grouping data

}
 in the Hystrix dashboard

 @Override

 protected Observable<String> construct() { Return an

// Return an Observable that executes an HTTP Request Observable that
} executes a call to

} an external service.

If you want the command to be executed as soon as an Observable is created, you
request a hot Observable:

Observable<String> stockObservable =

➥ new StockObservableCommand(stockCode).observe();

Normally, a hot Observable will emit responses whether or not there are subscribers,
which makes it possible for responses to be lost completely if no one is subscribed. But
Hystrix uses ReplaySubject to capture those responses for you, allowing them to be
replayed to your own listener when you subscribe to the Observable.

 You could also use a cold Observable instead:

Observable<String> stockObservable =

➥ new StockObservableCommand(stockCode).toObservable();

149 Mitigating against failures

With a cold Observable, the execution isn’t triggered until a listener has subscribed to
it. This guarantees that any subscriber will receive all notifications that the Observ­
able has produced.

Which type of Observable to use depends on your situation. If a listener can afford
to miss some initial data, especially if they’re not the first subscriber to an Observable,
then hot is appropriate. If, however, you want a listener to receive all data, then cold is
the better choice.

NOTE Though HystrixCommand supports returning an Observable from its
nonreactive methods, execute() and queue(), they’ll always emit only a single
value.

8.3.3 Bulkheads

Bulkheads in software offer a similar strategy to those in ships, by isolating different
parts to prevent a failure in one from impacting others. For ships, a failure in a single
watertight compartment doesn’t spread to others because they’re separated by
bulkheads.

 How does a software bulkhead achieve the same result? By shedding the load that a
microservice is experiencing or is about to experience. A bulkhead allows you to limit the
number of concurrent calls to a component or service, to prevent the network from
becoming saturated with requests, which would then increase latency across all requests
in the system. Figure 8.7 adds the bulkhead strategy as the next step in your flow.

Circuit
breaker Bulkhead

Closed OK

Open Reject

Circuit
health
data

Figure 8.7 Failure mitigation flow with bulkhead

150 CHAPTER 8 Strategies for fault tolerance and monitoring

You add a bulkhead after any circuit breaker. There’s no need to check the bulkhead
if the circuit breaker is Open, because you’re in an error state. When you’re in a
Closed state, the bulkhead prevents too many requests from being executed that
could create a network bottleneck.

 You may need to call a database service to perform a computation that’s extremely
intensive and time-consuming, for instance. If you know that the external service can
take 10 seconds to respond, you don’t want to be sending more than six requests a
minute to that service. If you send more than six, your requests are queued for later
processing, which causes your microservice to hold up client requests to itself from
being released. It’s a vicious cycle that can be hard to break, potentially resulting in
cascading failures through your microservices. The bulkhead in figure 8.7 performs
its checks and indicates whether you’re OK to continue processing the request or
whether it needs to be rejected.

 How would you implement a software bulkhead? Two of the most common
approaches are counters and thread pools. Counters allow you to set a maximum num­
ber of parallel requests that can be active at any one time. Thread pools also limit the
number of parallel requests that are simultaneously active, but by limiting the number
of threads available in a pool for executing requests. For a thread-pool bulkhead, a
specific pool is created to handle requests to a particular external service, allowing dif­
ferent external services to be isolated from each other, but also isolated from the
thread being used to execute your microservice.

 Details of rejected requests are provided to Circuit Health Data so that counters
can be updated for use the next time that the circuit breaker status needs to be calcu­
lated.

 As a software bulkhead, Hystrix provides execution strategies for thread pools
(THREAD) and counters (SEMAPHORE). By default, HystrixCommand uses THREAD, and
HystrixObservableCommand uses SEMAPHORE.

HystrixObservableCommand doesn’t need to be bulkheaded by threads, because
it’s already executing in a separate thread via the Observable. You can use THREAD
with HystrixObservableCommand, but doing so doesn’t add safety. If you wanted to
run StockCommand in SEMAPHORE, it would look like the following listing.

Listing 8.3 StockCommand using SEMAPHORE

public class StockCommand extends HystrixCommand<String> {

 private final String stockCode;

Using Setter as a fluent
interface to define additional

 public StockCommand(String stockCode) {
 configuration for Hystrix
super(Setter

.withGroupKey(HystrixCommandGroupKey.Factory.asKey("StockGroup"))

 .andCommandPropertiesDefaults(

 HystrixCommandProperties.Setter()

 .withExecutionIsolationStrategy(

151 Mitigating against failures

HystrixCommandProperties.ExecutionIsolationStrategy.SEMAPHORE

)

Set the execution isolation
)
 strategy to SEMAPHORE.

);

this.stockCode = stockCode;

 }

 ...

}

The listing illustrates how to set additional configuration for Hystrix to customize the
way a particular command behaves. In practice, you wouldn’t use SEMAPHORE with
HystrixCommand because it doesn’t provide any ability to set time-outs on how long an
execution should take. Without time-outs, you can easily find yourself with a
deadlocked system if the service you consume fails to provide a timely response.

8.3.4 Fallbacks

Currently, when your circuit breaker or bulkhead doesn’t proceed with the request,
an error response is returned. Though that’s not great, it’s better than your micro­
service being in a state of waiting until time-out.

 Wouldn’t it be nice if you could provide a simple response in place of the failure?
In some cases, it certainly may not be possible to provide a common response for
these situations, but often it’s possible and beneficial.

 In figure 8.8, you can see fallback handling after Circuit Breaker and Bulkhead on
the failure paths. If the microservice your method wants to consume has a fallback han­
dler registered, its response is returned to you. If not, the original error is returned.

Circuit
breaker

Fallback

Bulkhead
Closed OK

Open Reject

Circuit
health
data

Figure 8.8 Failure mitigation flow with fallback handling

152 CHAPTER 8 Strategies for fault tolerance and monitoring

Let’s see how to implement a fallback handler for StockCommand.

Listing 8.4 StockCommand with fallback

public class StockCommand extends HystrixCommand<String> {

 ...
 Override the default

fallback that throws
 @Override
 the failure exception.
 protected String getFallback() {

// Return previous days cached stock price, no network call.

 }

}

Implementing a fallback handler is a little different when you’re dealing with Hystrix-
ObservableCommand, but not much.

Listing 8.5 StockObservableCommand with fallback

public class StockObservableCommand extends HystrixObservableCommand<String> {

 ...
 Returns an Observable<String> instead of

String to match the command response type
 @Override

 protected Observable<String> resumeWithFallback() {

// Return previous days cached stock price as an Observable,

➥ no network call.

 }

}

8.3.5 Request caching

Though not directly mitigating against a failure, request caching can prevent bulkhead
and other failures from occurring by reducing the number of requests you make on
another microservice.

 How does it do that? With a request cache, previous requests and their responses
can be cached, allowing you to match future requests and return the response from
the cache instead. Figure 8.9 shows the request cache sitting in front of other mitiga­
tion strategies as it reduces the number of requests that need to pass through any sub­
sequent stages of the flow.

 The request cache provides the joint benefits of reducing the number of requests
passing through your mitigation flow and increasing the speed with which a response
is returned. Enabling the request cache isn’t appropriate for all situations but is bene­
ficial when the data being returned doesn’t change at all or is unlikely to have
changed during the time your microservice completes its task.

 This solution is particularly beneficial for reference data or for retrieving a user
account, as some examples. It allows your microservice to call out to an external
microservice as many times as needed without fear of increasing network traffic. This
approach also simplifies the interfaces of your microservices’ internal methods and

153 Mitigating against failures

Circuit
breaker

Request
cache

Fallback

Bulkhead
ClosedNo OK

OpenYes Reject

Circuit
health
data

Figure 8.9 Failure mitigation flow with request cache

services, as you no longer need to pass around data in your calls to prevent an addi­
tional call. With a request cache, you have no risk of additional calls.

 To enable the request cache in Hystrix, you need to do two things. First, you need
to activate HystrixRequestContext so you have a means of caching responses:

HystrixRequestContext context = HystrixRequestContext.initializeContext();

This call needs to occur before executing any Hystrix commands. For our situations,
you make the first call inside your JAX-RS endpoint method, as you’ll see later. Sec­
ond, you need to define the key to use for caching requests and their responses.

Listing 8.6 StockCommand with request cache

public class StockCommand extends HystrixCommand<String> {

 private final String stockCode;

 ...

Override key for request cache
with the stock symbol you used @Override

in your request protected String getCacheKey() {

return this.stockCode;

 }

}

8.3.6 Putting it all together

In your flow so far, you have a request cache, circuit breaker, bulkhead, and fallback.
Figure 8.10 shows how they fit into an actual call.

Here you add Execute to indicate that you’re making the call to an external service.
Any failures or time-outs that Execute experiences feed back into the fallback han­
dling, but also provide the failure data to Circuit Health Data. The information is then
used by the circuit breaker to determine whether error thresholds have been reached,
and the circuit should switch to Open.

 Figure 8.11 takes the flow a step further to show how Hystrix provides these fea­
tures when integrated between your microservice, Service A, and one that you con­
sume, Service B.

 As the request enters your Service A method, or endpoint, you create a request
and pass it to Hystrix. The request passes through whichever checks have been
enabled before being executed on Service B. A response from Service B passes back to

Circuit
breaker

Request
cache

Fallback

Bulkhead

Failure/
time-out

Execute
ClosedNoRequest OK

Yes

No

Response

Run

OpenYes Reject

Circuit
health
data

Figure 8.10 Entire failure mitigation flow

Service A

154 CHAPTER 8 Strategies for fault tolerance and monitoring

Circuit
breaker

Request
cache

Fallback

Bulkhead

Failure/
time-out

Execute
ClosedNo

Hystrix

OK

Yes

No

Response

Run

Service B
Service A
method

Client
request

Client
response

OpenYes Reject

Circuit
health
data

Request

Response

Figure 8.11 Microservice calls with failure mitigation

155 Mitigating against failures

your Service A method for any required processing before you construct a response
for the client.

 As you can see, at many points Hystrix can provide a different, or cached, response
without needing to call Service B directly. Such a flow provides many benefits in
directly reducing failures, but also in reducing the factors that lead to failure. An
example is the reduction of microservice load by using a request cache.

 Though you’ve been seeing how Hystrix implements these failure mitigation fea­
tures, other libraries or frameworks that provide the same features should operate in a
similar manner. But the way that other libraries or frameworks implement the
required mitigation can differ greatly.

8.3.7 Hystrix Dashboard

Awesome—you can now improve the reliability of your microservices in a distributed
architecture. But how can you determine whether a particular microservice is continu­
ally causing failures? Or whether you need to tune settings to reduce errors and han­
dle additional load?

 Sounds like you need a way to monitor how your fault-tolerance library is perform­
ing. It just so happens that Hystrix provides SSEs (server-sent events), providing many
details about a particular microservice. You can see and analyze everything—the num­
ber of hosts running the microservice, requests processed, failures, time-outs, and more.

 Hystrix also provides a way to visualize all these
StockCommand events: the Hystrix Dashboard, shown in figure 8.12.
0 0 100.0%

The Hystrix Dashboard provides a visual representa- 40 0
tion of the SSEs that it receives from each registered 0 0

stream. You’ll get to see what a stream is shortly. Host: 4.0/s
 Figure 8.12 shows the information for the Stock- Cluster: 4.0/s

Circuit OpenCommand. There are many data points in such a small
Hosts 1 90th 522 ms

UI, but some of the most crucial are as follows: Median 127 ms 99th 563 ms
Mean 168 ms 99.5th 563 ms

 Error percentage in last 10 seconds—100%
 Number of hosts running the microservice—1 Figure 8.12 A single circuit

from the Hystrix Dashboard
 Successful requests in last 10 seconds—0
 Short-circuited requests that were rejected in the last 10 seconds—40
 Failures in last 10 seconds—0
 Circuit is open or closed—Open

TIP Full details of each metric for a circuit can be found at https://github
.com/Netflix/Hystrix/wiki/Dashboard.

Let’s see the dashboard in action. Change into the /hystrix-dashboard directory and
build the project:

mvn clean package

https://github.com/Netflix/Hystrix/wiki/Dashboard
https://github.com/Netflix/Hystrix/wiki/Dashboard
https://github.com/Netflix/Hystrix/wiki/Dashboard

156 CHAPTER 8 Strategies for fault tolerance and monitoring

then run the dashboard:

java -jar target/hystrix-dashboard-thorntail.jar

After the dashboard is started, open a browser and navigate to http://localhost
:8090/. For the dashboard to visualize metrics data, it needs to get that data from your
circuit breaker! For a single circuit, you can add the SSE stream directly by adding
http://localhost:8080/hystrix.stream into the main entry box, as shown in figure 8.13.
Click the Add Stream button and then click Monitor Streams. The main page will
load, but until you start your microservice, no SSEs are being received in the stream,
so the visualization won’t appear yet.

 Change to the /chapter8/stock-client directory and start the microservice:

mvn thorntail:run

In another browser window, you can access http://localhost:8080/single/AAPL to
request the current stock price details represented by the code AAPL. Any valid stock
code could have been used in the URL path.

 If you refresh the page, or make multiple requests in another manner, you can
switch back to the Hystrix Dashboard and see the data on your circuit.

 Your stock-client has built-in handling to showcase specific Hystrix functionality.
For instance, every tenth request will throw an exception back to your consuming
microservice, and every second request is put to sleep for 10 seconds to trigger a time­
out. This allows you to see how failures are represented on the dashboard.

To see how request caching works, you can access http://localhost:8080/single/
AAPL/4. Note in the console that only a single request was made to the external ser­
vice, and each response to the browser has an identical request number.

Figure 8.13 Hystrix Dashboard homepage

http://localhost:8080/single
http://localhost:8080/single/AAPL
http://localhost:8080/hystrix.stream
http://localhost

157 Mitigating against failures

To fully see your circuit in action, you need to hit the service many times:

curl http://localhost:8080/single/AAPL/?[1-100]

This hits your service 100 times in succession, allowing you to monitor the circuit in
the dashboard as you see the requests come in. You’ll notice a point at which too
many errors have occurred, causing the circuit breaker to open. Then you immedi­
ately see all remaining requests short-circuited by not calling the microservice and
returning the fallback instead. If you wait a few seconds before accessing the service
through a browser as before, you then see the circuit-breaker attempt the request, suc­
ceed, and revert to Closed again.

Play around with the settings in StockCommand to see how the circuit behavior
changes. One example, which is present in the book’s example code, is to modify
StockCommand to set the number of threads that should be available to consume the
microservice.

Listing 8.7 StockCommand with thread configuration

super(Setter

 .withGroupKey(HystrixCommandGroupKey.Factory.asKey("StockGroup"))

 .andCommandPropertiesDefaults(

 HystrixCommandProperties.Setter()

 .withCircuitBreakerRequestVolumeThreshold(10)

 .withCircuitBreakerSleepWindowInMilliseconds(10000)

 .withCircuitBreakerErrorThresholdPercentage(50)

)

 .andThreadPoolPropertiesDefaults(

Specifies that a single HystrixThreadPoolProperties.Setter()

thread must be used

 .withCoreSize(1)

)

);

With the listing 8.7 constructor for StockCommand, rerunning your tests shows requests
being rejected by ThreadPool.

 After taking a look at the Hystrix Dashboard, we should all appreciate how crucial
such a tool is in our arsenal. Adding Hystrix to your external calls provides a level of
fault tolerance to those executions, but it’s not foolproof. You need continual real-
time monitoring of your microservices to track impending problems and observe fail­
ures that could be resolved with tuning of circuit-breaker settings.

 If you don’t take advantage of what the Hystrix dashboard offers, particularly in terms
of real-time monitoring, you won’t receive all the benefits of using a fault-tolerant library
in your code.

http://localhost:8080/single/AAPL/?[1-100

158 CHAPTER 8 Strategies for fault tolerance and monitoring

8.4 Adding Hystrix to your Payment microservice
You’ve seen how Hystrix can be implemented and its metrics viewed from a dash­
board. Your Stripe microservice isn’t super reliable, so let’s use Hystrix in Payment to
make sure you’re not overly impacted by its failures or time-outs!

 The previous sections have covered the various pieces Hystrix offers to help with
fault mitigation. When adding Hystrix to Payment, you’ll take advantage of the full
flow that Hystrix provides.

 For each of the next sections, you need your Stripe microservice running, so let’s start
that now. First you need to make sure that a Minishift environment is running and that
you’ve logged into it with the OpenShift client. Then change to the /chapter8/stripe
directory and run this:

mvn clean fabric8:deploy -Popenshift -DskipTests

8.4.1 Hystrix with the RESTEasy client

Let’s modify Payment from chapter 7 with a HystrixCommand for interacting with
Stripe.

Listing 8.8 StripeCommand

public class StripeCommand extends HystrixCommand<ChargeResponse> {

 private URI serviceURI;

Pass the Stripe URL and
ChargeRequest into the command

 private final ChargeRequest chargeRequest;
 and set up properties.

 public StripeCommand(URI serviceURI, ChargeRequest chargeRequest) {

super(Setter

 .withGroupKey(HystrixCommandGroupKey.Factory.asKey("StripeGroup"))

 .andCommandPropertiesDefaults(

 HystrixCommandProperties.Setter()

 .withCircuitBreakerRequestVolumeThreshold(10)

 .withCircuitBreakerSleepWindowInMilliseconds(10000)

 .withCircuitBreakerErrorThresholdPercentage(50)

)

);

this.serviceURI = serviceURI;

this.chargeRequest = chargeRequest;
 Overloaded constructor

}
 allowing Hystrix properties
to be set up by caller

 public StripeCommand(URI serviceURI,

 ChargeRequest chargeRequest, HystrixCommandProperties.Setter

➥ commandProperties) {
super(Setter

.withGroupKey(HystrixCommandGroupKey.Factory.asKey("StripeGroup"))

 .andCommandPropertiesDefaults(commandProperties)

);

159 Adding Hystrix to your Payment microservice

this.serviceURI = serviceURI;

this.chargeRequest = chargeRequest;

 }

 @Override

 protected ChargeResponse run() throws Exception {

Equivalent to
PaymentServiceResource
method in chapter 7, as
call is no longer made in
JAX-RS Resource

ResteasyClient client = new ResteasyClientBuilder().build();

ResteasyWebTarget target = client.target(serviceURI);

StripeService stripeService = target.proxy(StripeService.class);

return stripeService.charge(chargeRequest);

 }

 @Override
 protected ChargeResponse getFallback() {

return new ChargeResponse();

Fallback to empty ChargeResponse
if there was a problem.

}
}

Now that you have your StripeCommand, how different does PaymentServiceResource
from chapter 7 look?

Listing 8.9 PaymentServiceResource

@Path("/")

@ApplicationScoped

public class PaymentServiceResource {

 @POST

 @Path("/sync")

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 @Transactional

 public PaymentResponse chargeSync(PaymentRequest paymentRequest) throws

➥ Exception {
Payment payment = setupPayment(paymentRequest);
ChargeResponse response = new ChargeResponse();

try {

Instantiate URI url = getService("chapter8-stripe");

command and set
Hystrix properties. StripeCommand stripeCommand = new StripeCommand(

 url,

 paymentRequest.getStripeRequest(),

 HystrixCommandProperties.Setter()

 .withExecutionIsolationStrategy(

HystrixCommandProperties.ExecutionIsolationStrategy.SEMAPHORE

)

 .withExecutionIsolationSemaphoreMaxConcurrentRequests(1)

 .withCircuitBreakerRequestVolumeThreshold(5)

);

160 CHAPTER 8 Strategies for fault tolerance and monitoring

 response = stripeCommand.execute(); Block on command
 payment.chargeId(response.getChargeId());
} catch (Exception e) {

execute().

 payment.chargeStatus(ChargeStatus.FAILED);
}

em.persist(payment);
return PaymentResponse.newInstance(payment, response);

 }

 @POST

 @Path("/async")

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public void chargeAsync(@Suspended final AsyncResponse asyncResponse,

 PaymentRequest paymentRequest) throws Exception {

Payment payment = setupPayment(paymentRequest);

Instantiate command with URI url = getService("chapter8-stripe");

default Hystrix properties. StripeCommand stripeCommand =

 new StripeCommand(url, paymentRequest.getStripeRequest());

Get

Observable stripeCommand

Subscribe to the Observable, passing for command. .toObservable()

success and failure methods. .subscribe(

(result) -> {

 payment.chargeId(result.getChargeId());

 storePayment(payment);

 asyncResponse.resume(PaymentResponse.newInstance(payment,

result));

 },

 (error) -> {

 payment.chargeStatus(ChargeStatus.FAILED);

 storePayment(payment);

 asyncResponse.resume(error);

 }

);

 }

}

Your PaymentServiceResource has shown that when expecting only a single response,
you’re able to easily switch between synchronous and asynchronous execution modes
with the same HystrixCommand implementation.

 It didn’t take much of a refactor from your chapter 7 version to this one, mostly
extracting out the code that consumes the external microservice into a new method
and class, StripeCommand.

 Now that you’ve refactored your resources, let’s run it! Change to the /chapter8/
resteasy-client directory and run this:

mvn clean fabric8:deploy -Popenshift

161 Adding Hystrix to your Payment microservice

If the Hystrix Dashboard is still running, head back to the homepage so you can add a
new stream. If it’s not still running, start it up again as you did earlier in the chapter.

 Copy the URL for chapter8-resteasy-client from the OpenShift console, paste it
into the text box on the Hystrix Dashboard homepage, and add hystrix.stream as a
URL suffix. Click Add Stream and then Monitor Streams.

 The Hystrix Dashboard won’t show anything immediately because you haven’t
made any requests yet. To exercise the Payment service, you can execute either single
requests or multiple requests, with the latter being easier to see results in the dash­
board, especially if their execution can be automated.

 With the URL for chapter8-resteasy-client from earlier, you can access the synchro­
nous (/sync) or asynchronous (/async) versions of the service. After starting a series
of requests on either, or both, of those endpoints, the Hystrix Dashboard will show all
the details of successful and failed requests that have been made.

8.4.2 Hystrix with the Ribbon client

Your RESTEasy client required a little bit of rework to add Hystrix support. Now you’ll
take a look at what’s required for the Ribbon client.

 First, you need to update your interface definition for the Stripe microservice so
that it takes advantage of Hystrix annotations with Ribbon.

Listing 8.10 StripeService

@ResourceGroup(name = "chapter8-stripe")

public interface StripeService {

 StripeService INSTANCE = Ribbon.from(StripeService.class);

 @TemplateName("charge")

 @Http(

 method = Http.HttpMethod.POST,

 uri = "/stripe/charge",

 headers = {
Adds Hystrix @Http.Header(
functionality into your name = "Content-Type",

Ribbon HTTP request, value = "application/json"

with a fallback handler)

 }

)

 @Hystrix(

 fallbackHandler = StripeServiceFallbackHandler.class

)

 @ContentTransformerClass(ChargeTransformer.class)

 RibbonRequest<ByteBuf> charge(@Content ChargeRequest chargeRequest);

}

That was easy—only a few extra lines!

NOTE Hystrix annotations are available only for use in combination with Net­
flix Ribbon.

162	 CHAPTER 8 Strategies for fault tolerance and monitoring

Right now, the code won’t compile because you don’t have the class for the fallback
handler. Let’s add that.

Listing 8.11 StripeServiceFallbackHandler

public class StripeServiceFallbackHandler implements FallbackHandler<ByteBuf> {

Write byte[]
into ByteBuf

that you
created on

the previous
line.

}

 @Override

 public Observable<ByteBuf> getFallback(
 Implement getFallback() to

HystrixInvokableInfo<?> hystrixInfo,
 return whatever you choose
Map<String, Object> requestProperties) {
 in the fallback case.

ChargeResponse response = new ChargeResponse();

byte[] bytes = new byte[0];

try {

 bytes = new ObjectMapper().writeValueAsBytes(response);

} catch (JsonProcessingException e) {
 Create an empty ChargeResponse to

e.printStackTrace();
 use for fallback and convert to byte[].
}

ByteBuf byteBuf =

UnpooledByteBufAllocator.DEFAULT.buffer(bytes.length);

byteBuf.writeBytes(bytes);

return Observable.just(byteBuf);
 Create an Observable that returns the

}
 ByteBuf content as a single result.

The last piece you need is to update PaymentServiceResource from chapter 7. But not
so! One advantage of using Hystrix with Ribbon when using annotations is that your
PaymentServiceResource from chapter 7 doesn’t need to change at all. A big advan­
tage is that you can easily add Hystrix into an existing microservice that uses Ribbon
without refactoring. Simply add an extra annotation and a fallback handler, if needed.

 Time to run it! Change to the /chapter8/ribbon-client directory and run this:

mvn clean fabric8:deploy -Popenshift

As with the RESTEasy client example, you can open a browser and access /sync or
/async URLs of the service, using the base URL from the OpenShift console for the
service. You can then update the Hystrix Dashboard to use this new stream, execute
some requests, and see how the dashboard changes.

 As with other examples you’ve deployed to Minishift, after you’re finished, you
need to undeploy them to free up the resources:

mvn fabric8:undeploy -Popenshift

Summary
 Latency and fault tolerance are important when considering deployments to a

distributed architecture, as it can adversely affect the throughput and speed of
your microservices.

Summary	 163

 Your code that consumes microservices can be wrapped with Hystrix to incorpo­
rate fault-tolerant features such as fallback, request caching, and bulkheads.

 Hystrix alone is not a panacea for supreme fault tolerance. Real-time monitor­
ing, through a tool such as the Hystrix Dashboard, is crucial to successfully
improving overall fault tolerance.

JAVA

Enterprise Java Microservices

Ken Finnigan

L
arge applications are easier to develop and maintain when
you build them from small, simple components. Java
developers now enjoy a wide range of tools that support

microservices application development, including right-sized
app servers, open source frameworks, and well-defi ned
patterns. Best of all, you can build microservices applications
using your existing Java skills.

Enterprise Java Microservices teaches you to design and build
JVM-based microservices applications. You’ll start by learning
how microservices designs compare to traditional Java EE
applications. Always practical, author Ken Finnigan intro­
duces big-picture concepts along with the tools and techniques
you’ll need to implement them. You’ll discover ecosystem
components like Netflix Hystrix for fault tolerance and master
the Just enough Application Server (JeAS) approach. To ensure
smooth operations, you’ll also examine monitoring, security,
testing, and deploying to the cloud.

What’s Inside
● The microservices mental model
● Cloud-native development
● Strategies for fault tolerance and monitoring
● Securing your fi nished applications

This book is for Java developers familiar with Java EE.

Ken Finnigan leads the Thorntail project at Red Hat, which
seeks to make developing microservices for the cloud with
Java and Java EE as easy as possible.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/enterprise-java-microservices

M A N N I N G $49.99 / Can $65.99 [INCLUDING eBOOK]

“Frameworks, patterns, and

concepts that Java developers

need to be successful in a

microservices world.”
 —Andrew Block, Red Hat

“A complete overview of

how to implement micro­

services in a company

environment, with different

solutions to the same problem

given and explained.”
 —Damián Mazzini, UBA Argentina

“Covers everything a

developer must know before

stepping from monolith to

 microservices architecture.
—Kelum Prabath Senanayake ”

Equinix

“A great guide through the

world of Java enterprise

microservices with cool use

cases and code examples.”
 —Alexandros Koufoudakis

Red Hat

See first page

