

SPECIFICATION
BY EXAMPLE

How successful teams deliver the right software

Gojko Adzic

MANNING

Shelter Island

Brief Contents

Preface xiii
Acknowledgments xxii
About the author xxiii
About the cover illustration xxiv

	 1	 Key benefits 3

	 2	 Key process patterns 17	

	 3 	 Living documentation 29

	 4 	 Initiating the changes 36

	 5 	 Deriving scope from goals 65

	 6 	 Specifying collaboratively 77

	 7 	 Illustrating using examples 95

	 8	 Refining the specification 114

	 9	 Automating validation without changing specifications 136

10 	 Validating frequently 162

	11	 Evolving a documentation system 183

	12	 uSwitch 201

	13	 RainStor 211

	14 	 Iowa Student Loan 217

	15	 Sabre Airline Solutions 224

	16	 ePlan Services 230

	17	 Songkick 237

	18	 Concluding thoughts 245

	 Appendix A Resources 250
	 Index 255

	 	 	 	 3

1
Key benefits

In the internet age, delivery speed is the theme of the day in software develop-
ment. A decade ago, projects lasted several years and project phases were mea-
sured in months. Today, most teams’ projects are measured in months and project

phases are reduced to weeks or even days. Anything that requires long-term planning
is dropped, including big up-front software designs and detailed requirements analysis.
Tasks that require more time than an average project phase are no longer viable. Good-
bye code freezes and weeks of manual regression testing!

With such a high frequency of change, documentation quickly gets outdated. De-
tailed specifications and test plans require too much effort to keep current and are
considered wasteful. People who relied on them for their day-to-day work, such as
business analysts or testers, often become confused about what to do in this new world
of weekly iterations. Software developers who thought they weren’t affected by the lack
of paper documents waste time on rework and maintaining functionality that’s not
required. Instead of spending time building big plans, they waste weeks polishing the
wrong product.

In the last decade, the software development community has strived to build soft-
ware the “right” way, focusing on technical practices and ideas to ensure high-quality
results. But building the product right and building the right product are two different
things. We need to do both in order to succeed.

4	 Specification by Example

Figure 1.1 Specification by Example helps teams build the right software product,
complementing technical practices that ensure that the product is built right.

To build the right product effectively, software development practices have to provide
the following:

•	Assurance that all stakeholders and delivery team members understand what
needs to be delivered in the same way.

•	Precise specifications so delivery teams avoid wasteful rework caused by ambi-
guities and functional gaps.

•	An objective means to measure when a piece of work is complete.

•	Documentation to facilitate change, in terms of both software features and
team structure.

Traditionally, building the right product required big functional specifications, docu-
mentation, and long testing phases. Today, in the world of weekly software deliveries,
this doesn’t work. We need a solution that gives us a way to

•	Avoid wasteful over-specifying; avoid spending time on details that will change
before a piece of work is developed.

•	Have reliable documentation that explains what the system does so we can
change it easily.

•	Efficiently check that a system does what the specifications say.

•	Keep documentation relevant and reliable with minimal maintenance costs.

•	Fit all this into short iterations and flow-based processes, so that the
information on upcoming work is produced just-in-time.

	 	 	 	 	 Chapter 1 Key benefits 5

Figure 1.2 Key factors for the right kind
of documentation for agile projects

Although these goals might seem in conflict at first, many teams have succeeded at
fulfilling all of them. While researching this book, I interviewed 30 teams that imple-
mented around 50 projects. I looked for patterns and common practices and identified
underlying principles behind these practices. The common ideas from these projects
define a good way to build the right software: Specification by Example.

Specification by Example is a set of process patterns that helps teams build the right
software product. With Specification by Example, teams write just enough documenta-
tion to facilitate change effectively in short iterations or in flow-based development.

The key process patterns of Specification by Example are introduced in the next
chapter. In this chapter, I’ll explain the benefits of Specification by Example. I’ll do so
using Specification by Example style; instead of building a case for this book in a theo-
retical introduction, I’ll present 18 real-world examples of teams that got big dividends
from Specification by Example.

Before I begin, let me emphasize that it’s hard to isolate the impact or effect of
any single idea on a project. The practices described in this book work with—and en-
hance—the effectiveness of other, more established agile software development prac-
tices (such as test-driven development [TDD], continuous integration, and planning
with user stories). When considering a range of projects in different contexts, patterns
emerge. Some of the teams I interviewed were using an agile process before implement-
ing Specification by Example, and some implemented Specification by Example while
transitioning to an agile process. Most of the teams used iteration-based processes, such
as Scrum and Extreme Programming (XP), or flow-based processes, such as Kanban—
but some even used these practices in an environment that wouldn’t be considered agile
by any standard. Yet most reported similar benefits:

6	 Specification by Example

• Implementing changes more efficiently—They had living documentation—
a reliable source of information on system functionality—which enabled them
to analyze the impact of potential changes and share knowledge effectively.

•	Higher product quality—They defined expectations clearly and made the
validation process efficient.

•	Less rework—They collaborated better on specifications and ensured a shared
understanding of the expectations by all team members.

•	Better alignment of the activities of different roles on a project—Improved
collaboration led to a more regular flow of delivery.

In the next four sections, we’ll take a closer look at each of these benefits using
real-world examples.

Implementing changes more efficiently
In the course of researching this book, the most important lesson I learned concerned
the long-term benefits of living documentation—in fact, I consider it one of this book’s
most important messages, and I cover it extensively. Living documentation is a source
of information about system functionality that’s as reliable as programming language
code but much easier to access and understand. Living documentation allows teams to
collaboratively analyze the impact of proposed changes and discuss potential solutions.
It also allows them to make use of existing documentation by extending it for new re-
quirements. This makes specifying and implementing changes more efficient over time.
The most successful teams discovered the long-term benefit of living documentation as
a result of implementing Specification by Example.

The Iowa Student Loan Liquidity Corporation, based in West Des Moines, Iowa,
went through a fairly significant business model change in 2009. The financial market
turmoil during the previous year made it nearly impossible for lenders to find funding
sources for private student loans. Because of this, many lenders were forced to leave the
private student loan market or change their business models. Iowa Student Loan was
able to adapt. Instead of using bond proceeds to fund private student loans, it pooled
funds from banks and other financial institutions.

In order to adapt effectively, they had to perform a “dramatic overhaul of a core
piece of the system,” according to software analyst and developer Tim Andersen. The
team used living documentation as a primary mechanism for documenting business re-
quirements when they were developing their software. The living documentation system
made it possible for them to ascertain the impact of new requirements, specify required
changes, and ensure that the rest of the system works as it had before. They were able

	 	 	 	 	 Chapter 1 Key benefits 7

to implement fundamental change to the system and release it to production in only
one month. A living documentation system was essential for this change. Andersen said,

Any system that didn’t have the tests [living documentation] would
halt the development and it would have been a re-write.

The Talia project team at Pyxis Technologies in Montreal, Quebec, had a similar experi-
ence. Talia is a virtual assistant for enterprise systems, a chat robot with complex rules
that communicates with employees. From the first day of development, the Talia team
used Specification by Example to build a living documentation system. A year later, they
had to rewrite the core of the virtual agent engine from scratch—and that’s when the
investment in living documentation paid off. André Brissette, the Talia product director,
commented,

Without that, any major refactoring would be a suicide.

Their living documentation system made the team confident that the new system would
work the same as the old one when the change was complete. It also enabled Brissette to
manage and track the project’s progress.

The team at Songkick, a London-based consumer website about live music, used
a living documentation system to facilitate change when redeveloping activity feeds on
their site. They had realized that the feeds were implemented in a way that wouldn’t scale
to the required capacity; living documentation supported them when they were rebuild-
ing the feeds. Phil Cowans, the CTO of Songkick, estimates that the team saved at least
50% of the time needed to implement change because they had a living documentation
system. According to Cowans,

Because we had such a good coverage and we really trusted
the tests [in the living documentation system], we felt very confident
making big changes to the infrastructure rapidly. We knew that the
functionality wouldn’t change, or if it did change, it would be picked up
by a test.

The development team at ePlan Services, a pension service provider based in Denver,
Colorado, has used Specification by Example since 2003. They build and maintain a
financial services application with numerous stakeholders, complex business rules, and
complex compliance requirements. Three years after starting the project, a manager with
unique knowledge about the legacy parts of the system moved to India. According to
Lisa Crispin, a tester working for ePlan Services and author of Agile Testing: A Practical

8	 Specification by Example

Guide for Testers and Teams (Addison Wesley, 2009), the team worked hard to learn what
the manager knew and build it into living documentation. A living documentation
system enabled them to capture the specialist’s knowledge about their business pro-
cesses and make it instantly available to all the team members. They eliminated a
bottleneck in knowledge transfer, which enabled them to efficiently support and ex-
tend the application.

The Central Patient Administration project team at the IHC Group in Oostkamp,
Belgium, implemented a living documentation system with similar results. The ongoing
project, which started as a rewrite of a legacy mainframe system, began in 2000. Pascal
Mestdach, a solution architect on the project, said that the team benefited greatly:

There were just a few people who knew what some functionality on
the legacy system did—that became much clearer now because the team
has a growing suite of tests [living documentation] against that function-
ality and it describes what it does. Also questions can be answered when a
specialist is on holiday. It’s more clear to other developers what a piece of
software is doing. And it is tested.

These examples illustrate how a living documentation system helps delivery teams share
knowledge and deal with staff changes. It also enables businesses to react to market
changes more efficiently. I explain this in more detail in chapter 3.

Higher product quality
Specification by Example improves collaboration between delivery team members,
facilitates better engagement with business users, and provides clear objective targets for
delivery—leading to big improvement in product quality.

Two case studies stand out. Wes Williams, an agile coach from Sabre Holdings,
and Andrew Jackman, a consultant developer who worked on a project at BNP Paribas,
described how projects that had failed several times before succeeded with Specification
by Example. The approach described in this book helped their teams conquer the com-
plexity of business domains that were previously unmanageable and ensure high quality
of deliveries.

At Sabre Holdings, Wes Williams worked on a two-year airline flight-booking
project complicated by global distribution and data-driven processes. The project
involved 30 developers working in three teams on two continents. According to
Williams, the first two attempts to build the system failed, but the third—which used
Specification by Example—succeeded. Williams had this to say:

	 	 	 	 	 Chapter 1 Key benefits 9

We went live with a large customer [a big airline] with very few issues
and had only one severity 1 issue during [business acceptance] testing,
related to fail-over.

Williams estimates that Specification by Example was one of the keys to success. In ad-
dition to ensuring higher quality, Specification by Example also facilitated trust between
developers and testers.

At BNP Paribas, the Sierra project is another great example of how Specification by
Example leads to high-quality products. Sierra is a data repository for bonds that con-
solidates information from several internal systems, rating agencies, and other external
sources and distributes it to various systems inside the bank. Various systems and orga-
nizations used the same terms with different meanings, which caused a lot of misunder-
standing. The first two attempts to implement the system failed, according to Channing
Walton, one of the developers on the team that helped make the third attempt a success.
The third effort succeeded partially because Specification by Example enabled the team
to tackle complexity and ensure a shared understanding. Product quality of the end
result was impressive. The project has been live since 2005 “with no major incidents in
production,” according to Andrew Jackman, a consultant developer on the Sierra proj-
ect. Most people currently working on the Sierra project were not there when the project
started, but the level of quality is still very high.

Similar results were obtained by Bekk Consulting for a branch of a major French
bank with a car-leasing system. According to Aslak Hellesøy, a member of the original
team and the author of Cucumber, a popular automation tool that supports Specifica-
tion by Example, they had only five bugs reported in the two years since the system went
live, even though the software is now maintained by a completely new team.

Lance Walton worked as a process consultant for a branch of a large Swiss bank in
London on a project to develop an order-management system that had failed to start
several times before. Walton stated that the project was implemented in an environ-
ment where it was assumed that systems required a support team at least as big as the
development team. His team used Specification by Example and delivered a system to
production nine months after the project started, passed the business acceptance testing
in one day, and reported no bugs for six months after that. According to Walton, the
new system required no additional support staff, cost less than predicted, and enabled
the team to deliver a finished product earlier. In comparison, the team next to them had
ten times more people working on support than development. According to Walton,

At the moment the team is still releasing every week and the users are
always happy with it. From the point of quality, it is superb.

10	 Specification by Example

The techniques of Specification by Example work for brownfield as well as greenfield
projects. It takes time to build up trusted documentation and clean up legacy systems,
but teams see many benefits quickly, including confidence in new deliverables.

A good example is the foreign exchange cash-management system at JP Morgan
Chase in London. Martin Jackson, a test automation consultant on the project, said that
the business analysts expected the project to be late—instead, it was delivered two weeks
early. High product quality enabled them to successfully complete the business-accep-
tance testing phase in a week instead of four weeks, as originally planned. Jackson said,

We deployed it and it worked. The business reported back to the
board as the best UAT experience they ever had.

Specification by Example also enabled Jackson’s team to quickly implement “quite a
significant technical change” late in the project development, improving the precision
of calculations. Jackson reported:

All the functionality covered by the FitNesse suite [living documenta-
tion] went through the whole of system test, whole of UAT, and live to
production without a single defect. There were several errors outside of
the core calculation components that were captured during system test-
ing. What made the UAT experience so good for the business was that
when calculation errors appeared, we were all pretty certain that the root
cause was going to be upstream from the calculation code itself. As a result
of the FitNesse suite, it was easier to diagnose the source of defects and
hence the cleaner and faster delivery through to production.

The software development team at Weyerhaeuser in Denver, Colorado, writes and
maintains several engineering applications and a calculation engine for wooden frames.
Before applying Specification by Example, construction engineers were not usually
involved in software development, even though the team was dealing with complex sci-
entific calculation formulas and rules. This caused numerous quality issues and delays,
and the process was further complicated by the fact that the engine is used by several
applications. According to Pierre Veragen, the SQA lead on the project, the hardening
phase prior to release would drag on and a release would rarely go out without problems.

After implementing Specification by Example, the team now collaborates on specifi-
cations with structural engineers and automates the resulting validations. When a change
request comes in, the testers work with structural engineers to capture the expected cal-
culation results and record them as specifications with examples before development
begins. The engineer who approves a change later writes the specifications and tests.

	 	 	 	 	 Chapter 1 Key benefits 11

Veragen states that the main benefit of the new approach is that they can make
changes with confidence. In early 2010, with more than 30,000 checks in their living
documentation system, they haven’t noticed big bugs in years and have now stopped
tracking bugs. According to Veragen:

We don’t need the [bug count] metrics because we know it’s not com-
ing back...engineers love the test-first approach and the fact that they have
direct access to automated tests.

Lance Walton worked on a credit risk-management application for a branch of a large
French bank in London. The project began with external consultants helping the team
adopt Extreme Programming (XP) practices, but they did not adopt any of the Specifi-
cation by Example ideas (although XP includes customer tests, which is closely related
to executable specifications). After six months, Walton joined the project and found
the quality of the code to be low. Although the team was delivering every two weeks,
the code was written in a way that made validation complicated. Developers tested
only the most recently implemented features; as the system grew, this approach
became inadequate. “When a release happened, people would sit around nervously,
making sure that everything was still running and we’d expect a few issues to come up
within hours,” said Walton. After they implemented Specification by Example, the qual-
ity and confidence in the product significantly improved. He added:

We were pretty confident that we could release without any issues.
We got to the point where we would quite happily deploy and go out for
lunch without sticking around to see if it was OK.

In contrast, a website-rewrite project at the Trader Media Group in the United Kingdom
suffered from quality problems when the team stopped using Specification by Example.
Initially, the team was collaborating on specifications and automating the validation.
They stopped under management pressure to deliver more functionality earlier and
faster. “We noticed that the quality took a nose dive,” said Stuart Taylor, the test team
leader. “Where before it was quite hard for us [testers] to find defects, later we found that
one story could produce four, five defects.”

12	 Specification by Example

Not only for agile teams

Collaborating on specifications isn’t something that only agile teams can ben-
efit from. In Bridging the Communication Gap,† I suggested that a similar set of
practices could be applied to more traditional structured processes. After the
book was published, I came across an example of a company that did just that
while researching this book.

Matthew Steer, a senior test consultant at the Sopra Group in the UK, helped
a major telecommunication company with a third-party offshore software 	
delivery partner implement these practices. The main reason for change was the
realization that projects were suffering from poorly defined requirements. Steer
compared delivery in the year when ideas were implemented to the costs of 	
delivering software the previous year. Not surprisingly, with a Waterfall 	
approach these projects did not get to a zero-defect level, but the changes 	
“increased upstream defect detection and reduced downstream rework and
costs.” According to Steer:

We were able to demonstrate the effectiveness of this approach
by catching many more defects earlier in the life cycle that were tradition-
ally found at later phases. The volumes of defects at the end of the life
cycle significantly reduced and the pile increased at the early phases of

	 the life cycle.

The end result was a delivery cost savings of over 1.7 million GBP in 2007 alone.

Less rework
Generally, frequent releases promote quick feedback, enabling development teams to
find mistakes and fix them sooner. But iterating quickly doesn’t prevent mistakes. Often,
teams take three or four stabs at implementing a feature; developers claim this is because
customers don’t know what they want until they get something to play with. I disagree.
With Specification by Example, teams generally hit the target in the first attempt. This
saves a lot of time and makes the delivery process more predictable and reliable.

The Sky Network Services (SNS) group at British Sky Broadcasting Corporation
in London is responsible for broadband and telephony provisioning software with high
business workflow and integration complexity. The group consists of six teams. They
have been using Specification by Example for several years. According to Rakesh Patel,
a senior agile Java developer there, “We do tend to deliver when we say we do,” and

† �Gojko Adzic, Bridging the Communication Gap: Specification by Example and
Agile Acceptance Testing (Neuri Limited, 2009).

	 	 	 	 	 Chapter 1 Key benefits 13

the group has a great reputation within Sky. At one time, Patel briefly worked with a
different organization; he compared the two teams as follows:

Every time they [developers in the other organization] give software
to testers towards the end of the sprint, testers find something wrong and
it always comes back to the developers. But here [at Sky] we don’t have
that much churn. If we have an issue, we have an issue to make a test go
green during development—it either does or it doesn’t. We can raise it
there and then.

Several other teams noticed a significant reduction of rework, including LeanDog, a
group developing an aggregation application for a large insurance provider in the United
States. Their application presents a unified user interface on top of a host of mainframe
and web-based services and is further complicated by a large number of stakeholders
from across the country. Initially, the project suffered from many functional gaps in
requirements, according to Rob Park, an agile coach at LeanDog who helped the team
with the transition. He said,

As we started figuring stuff out, we needed clarification, and then we
found out that we have to actually do something else.

The team implemented Specification by Example, which resulted in much better specifi-
cations and reduced rework. Although developers continue to have questions for business
analysts when they start working on a story card, “The questions have dropped consid-
erably, as has the amount of back and forth we have to have and the questions are a lot
different,” said Park. For him, the most rewarding aspects of Specification by Example is
“getting the sense of the story and knowing the extent of the story as you start to build it.”

Many teams have also discovered that using Specification by Example to make re-
quirements more precise at the start of a development cycle makes it easier to manage
product backlogs. For example, being able to spot stories that are too vague or have too
many gaps in required functionality early on prevents problems later. Without Specifi-
cation by Example, teams often discover problems in the middle of an iteration, which
interrupts the flow and requires time-consuming renegotiations—in larger companies,
stakeholders who decide on the scope are often not readily available.

Specification by Example helps teams establish a collaborative specification pro-
cess that lowers problems in the middle of an iteration. Additionally, Specification by
Example fits into short iterations and doesn’t require months of writing long documents.

Less rework is a major advantage for the Global Talent Management team at
Ultimate Software in Weston, Florida. Collaborating on specifications had a significant
impact on focusing the development effort. According to Scott Berger, a senior develop-
ment engineer in test at Ultimate Software:

14	 Specification by Example

Meeting with our product owners to review our test scenarios prior
to the team accepting a story readily allows the working group (product
owner, developer, tester) to clarify ambiguous or missing requirements.
On occasion, the outcome of the meeting has even resulted in the cancel-
lation of stories, for example, when test scenarios reveal hidden complexity
or conflicting requirements within the system. After one such discussion,
the decision was made to nearly redesign an entire feature! Product own-
ers are afforded the opportunity to rewrite and reslice the specifications,
as opposed to having the development effort begin and halt or cancel the
story midstream. By holding these meetings, we find ourselves being both
more productive and efficient, because waste is reduced and vague and
missing specifications are minimized. It also allows the team to come to a
common understanding of what is expected.

Most teams have significantly reduced or completely eliminated rework that occurred as
a result of misunderstood requirements or neglected customer expectations. The prac-
tices described in this book allowed teams to engage better with their business users and
ensure a shared understanding of results.

Better work alignment
Another important benefit of Specification by Example is the capacity to align differ-
ent software development activities into short iterative cycles. From my experience and
according to the case studies in this book, one of the most common stumbling points
for teams moving to Scrum is the inability to fully complete tasks inside an iteration.
Many teams hold onto the “old world” concepts: finish development first, then finish
testing, and, finally, polish the product enough for it to be deployable. This fosters the
illusion that development is completed in stages, when in fact subsequent testing and
fixing are required for completion. One “done” column on the Scrum board means a
developer thinks something is finished, a “done-done” column means the tester agrees,
and so on (there are even reports of “done-done-done” columns). Work often falls into
this pattern, and the results from testing affect the next cycle, causing much variability
and making the delivery process less predictable.

Specification by Example resolves this issue. The practices described in this book
enable teams to clearly define a target that’s universally understood and objectively mea-
sured. As a result, many teams find that their analysis, development, and testing activi-
ties became better aligned.

	 	 	 	 	 Chapter 1 Key benefits 15

A good example of improved alignment occurred at uSwitch, one of the busiest
websites in the United Kingdom. uSwitch implemented Specification by Example in
2008 because they had difficulty knowing when a feature was completed. “We’d finish
something, give it over to the QA department, and they would immediately say to us
that we forgot to test it in a certain scenario. This caused a lot of problems for us,” said
Stephen Lloyd, a developer who works on the website. By implementing Specification
by Example, they overcame that problem. Lloyd said that they’re now better integrated
as a team and have a better understanding of the needs of the business. The process
changes also resulted in improved software quality. Hemal Kuntawala, another devel-
oper working on the site, had this comment:

Our error rates have dropped significantly, across the site. The
turnaround of fixing problems is much quicker than it was previously.
If a problem does occur on the live site, we can normally get a fix out
within a few hours, where previously it took days or weeks to get some-
thing fixed.

The team at Beazley, a specialist insurance company, also experienced improved align-
ment. Their business analysts work from the United States with developers and testers in
the United Kingdom. They implemented Specification by Example primarily to ensure
that software is finished when an iteration ends. Ian Cooper, a development team leader
at Beazley, said:

We’ve always done unit testing but the problem was that there was a
gap around these tests telling us if the software works, not if it does what
the customer wanted. We didn’t even use to have testers testing in the
same cycle. They were feeding back the information from the previous
iteration into the current iteration. That’s gone now. We have a much
clearer idea of acceptance.

The team working from New Zealand on AdScale.de, a marketplace for online advertis-
ing, had similar experiences. Two years after the project started, increasing complexity of
the user interface and system integrations made the code base too large to be effectively
managed just with unit testing. Developers would think that something was done, move
on, and then have to redo the work after the testers’ review. Because of the disconnect
between testers and developers, it took a long time to find problems. Issues from pre-
vious iterations were affecting future ones, disrupting the flow of development. After
implementing Specification by Example, development and testing were more closely
aligned. Clare McLennan, a developer/tester working on the project, declared:

16	 Specification by Example

It took a lot of pressure from the release process—because the feed-
back is instantaneous. Previously, developers would be frustrated at us
because their features hadn’t gone out. At the same time we were frus-
trated at them because they haven’t fixed the thing so we couldn’t test their
features. We were waiting for them and they were waiting for us. That’s
gone now because it only takes an hour to do all the testing. The features
aren’t coming back into the next iteration.

Specification by Example allows teams to define expected functionality in a clear, objec-
tive, and measurable way. It also speeds up feedback, improving the development flow
and preventing interruptions to planned work.

Remember

•	Building the product right and building the right product are two different
things. You need to do both in order to succeed.

•	Specification by Example provides just enough documentation at the right
time, helping to build the right product with short iterations or flow-based
development processes.

•	Specification by Example helps to improve the quality of software products,
significantly reduces rework, and enables teams to better align analysis,
development, and testing activities.

•	In the long term, Specification by Example helps teams create a living
documentation system, a relevant and reliable description of the functionality
that’s automatically updated with the programming language code.

•	The practices of Specification by Example work best with short iterative
(Scrum, Extreme Programming [XP]) or flow-based (Kanban) development
methods. Some ideas are also applicable to structured development (Rational
Unified Process, Waterfall) processes, and there have been cases where
companies saved millions as a result.

	Chapter 1 Key benefits
	Implementing changes more efficientl
	Higher product quality
	Less rework
	Better work alignment
	Remember

