2

2.1 What makes a good web server 21 2.5 Production server 30

2.2 Securing the site 24 2.6 Development server 33
2.3 The case for Apache 25 2.7 Using apachectl 35
2.4 Apache configuration 28 2.8 Serving documents 36

2.9 thttpd 37

In this chapter we'll discuss the different aspects of the web server, by which we mean
both the physical machine and the program that responds to clients. It may seem
somewhat confusing to mean two or more different things at different times, but the
usage is normal in the industry. Context should make it clear when we mean hardware
or software.

20

2.1 WHAT MAKES A GOOD WEB SERVER

First we'll start with the physical machine and basic setup. In deciding what is good for
the task, we first have to consider what the task is. Is this a server for internal docu-
mentation that gets a handful of lookups an hour, or is it a major commercial site that
is expecting millions of visitors per day? Obviously those are extremes, so let’s consider
three scenarios:

e Community site—The server is exposed to the Internet and provides news and
information to a group of hobbyists, a profession or some similar association.
The traffic is mostly reads, with some messages written back to the site. Down-
time is annoying but won't result in lawsuits.

« Intranet site—This is a server that supports a workgroup within a company’s
protected network. It has a fast network connection to all the clients, and will
host a handful of applications as well as the bulk of the group’s online documen-
tation. The server needs to be available during work hours.

« Store front—An e-commerce server that hosts a database of product information
and creates catalog pages on the fly. Security and constant availability are the
highest priority, followed closely by speed.

Those three cases will be used as examples throughout the book, and each gets its
own chapter.

Obviously the three scenarios have varying hardware needs, depending on the traffic,
of course; a popular news site could be the busiest of the three. But in general, traffic
level is the first consideration for choosing a machine. A fast CPU makes for a more
responsive server; the operators of the e-commerce site might consider a multiproces-
sor system so that users won't have to fight for computing time.

To decide how much memory our systems need, we have to consider what appli-
cations the servers run. By applications we mean both what the web server does to
serve up pages, and the other programs running on the machine. The requirements
to run a large database might swamp the web server by comparison. If it does, there
should probably be a dedicated database server (that will be discussed in chapter 12)
If the site offers mostly static pages (HTML files that are sent as-is to the client) then
the web server itself won’t need as much memory, but if that site also has intense
traffic demanding those pages, then, to improve performance, we might need a lot
of memory for caches. A site that generates most of its pages dynamically (such as
the e-commerce site) will need more memory because each web server process will
put greater demand on the system.

Network bandwidth is the next consideration. Consider the size of a typical
response to a client and multiply that by the expected number of requests in a time
period to figure out your bandwidth requirements. A site that serves large graphics

WHAT MAKES A GOOD WEB SERVER 21

22

files to a few users per hour might need more bandwidth than a site with intense
traffic for textual stock quotes.

Disk space and I/0 bandwidth come last, in part because disk space is so cheap
these days that only sites with intensive requirements need to even consider that part
of the issue. But if your site runs database applications and performance is a chief con-
cern, disk 1/0 may be the limiting factor. Consider the best SCSI bus and drives for
the e-commerce site, and also look into trading memory for application time by cach-
ing the results of database queries.

We'll discuss all these issues in more detail later on. If 1 recommend using a tool
that causes memory consumption to soar I'll point out that you need to reconsider
your configuration. All of chapter 12 is devoted to performance analysis and prob-
lem resolution.

Since this is a book about Open Source tools, I'm going to recommend freely available
OSs, but let me first say this: beyond certain considerations, the OS doesn't matter that
much. If you've already paid for a commercial version of Unix (or your company says
you have to use one) or even (horrors!), one of those shrink-wrapped box OSs, you can
run almost anything discussed in this book. With that in mind, let’s consider what is
important in the choice of OS.

Server and application software—Does the necessary and desired software run on
this OS? That’s the most important consideration, beyond any brand name or fea-
ture. Software compatibility is the reason that a mediocre and buggy operating system
dominated desktop computing through the '90s, and it will continue to outweigh
other factors.

In the case of our example systems, we want an operating system that runs the
Apache web server, our scripting language of choice (preferably Perl, although there
are others), and the applications that the web clients will run via the server. There also
may be a preferred database and other packages that will support the applications
developed for the site.

We're in luck here: nearly any OS with a recent release can run Apache and the
major utilities. There are caveats for some operating systems, so check the documen-
tation thoroughly before committing to a decision, but we're largely free to choose one
based on other factors.

Performance—The OS can be a major factor in system performance. This is a very
complex issue, with reams of academic work on the relative merits of such choices as
micro versus monolithic kernels and other design factors. To evaluate it in terms that
are important to a web server, go back to the same issues used to evaluate hardware:
does the operating system support the amount of memory needed by the server? Does
it provide for the kind of network connection to be used? What file system options
are there and what features do they provide?

CHAPTER 2 THE WEB SERVER

Again, nearly any OS that supports the desired software will have the performance
features needed for a web server, but some offer goodies worth considering: journaled
file systems that recover quickly from crashes, for instance.

Hardware requirements—Didn’t we already cover hardware? In this case, we mean
any specific requirements for this OS. If some higher power has mandated the use of
a particular OS, then we have to use the hardware it supports. If you are making this
choice yourself, you may have hardware at hand that you want to use, such as the ever-
popular PC that can be recycled into a Linux system.

In either case, make sure that the hardware choice doesn’t limit your performance.
For instance, an older PC with IDE disk controllers might not support the update
speed needed for an e-commerce site, and a prior-generation motherboard could sur-
prise you with the amount of memory it can handle.

Support costs—If downtime will be costly for your site, then you must have ade-
quate support for your operating system. Adequate may be mailing list or news-
group support for an Open Source OS, if you are comfortable with the rapidity of
responses you see when others have emergencies (check the archives). If your OS
doesn’t have such venues, then you will need commercial support that promises to
help you in time of need.

However you choose to arrange your support, figure the ongoing costs in your TCO.

Having examined hardware and OSs and made a choice, go back to the beginning and
re-evaluate it. The costs for an adequate machine and a commercial operating system
may surprise you. If you are purchasing all this for a high-traffic site, you should never
buy a machine that is only adequate, because if your site is successful, you will find
yourself buying another machine soon.

If your first round of evaluations included a commercial OS, consider Linux or one
of the BSDs. The hardware coverage is very broad, as is choice of software for the web
server and application languages, and support is free. While the cost of the OS and ini-
tial software are not a large fraction of TCO, having more money for memory or disk
bandwidth at the start can help you avoid a costly migration early in your server’s life.

Install the OS with an eye toward the goal: a fast, secure web site. That means
avoiding unneeded services that will have to be disabled later, even if they would be
nice to have at the start. Assume that the server will be maintained via file copies and
minimal shell access, and don’t bother installing your favorite GUI, desktop, and edi-
tor. Less is more (more disk space, more security, more peace of mind later).

Where there is a need to assume things, for the rest of the book I'll assume that the
web server is running a reasonably modern Linux distribution or Unix operating sys-
tem, with adequate hardware for the task at hand. In chapter 12 we’ll discuss options
for improving performance with a marginal system.

WHAT MAKES A GOOD WEB SERVER 23

2.2

24

SECURING THE SITE

Whether you have just built a brand new machine or you are recycling an existing
server, it’s time for a security review. It may seem early in the process to be worrying
about this, but in my experience, starting with a secure system is better than trying to
lock down a finished installation. The former builds good habits early, while the latter
is prone to loose threads.

The particulars are OS-specific, but for most Unix-like systems the procedure is
roughly the same:

1 Go to the password file (/ et ¢/ passwd or / et ¢/ shadow) and disable shell
access for all accounts that aren't necessary for a functioning server. You can take
that to mean everything but root, although some people prefer to have one non-
privileged account with normal access.

2 If you are running inetd, open / et c/ i net d. conf (or whatever the configu-
ration file is on your system) and start commenting out services. Which services
do you need? Possibly none, in which case you can just shut down inetd all
together: chances are however, that you'll use ftp for maintaining your site, and
you'll need telnet to log in and do the rest of the configuration. Consider replac-
ing both of these with ssh; it provides scp to perform secure, password-
encrypted file transfers as well as a secure shell that doesn’t expose passwords to
plain text network traffic. In chapter 11 we’ll discuss rsync and other configura-
tion management tools that will ease your site-management tasks.

3 Moving on to tougher tasks, find out what scripts and configuration files your
system uses to start other services. Some have a master script (r c. boot), some
have a program that executes a series of scripts (often located in / et c/ rc. d).
On my system, /etc/rc.d has the boot-time scripts: rc. sysi nit runs
first, then rc executes a series of scripts from one of the subdirectories, then
rc. | ocal executes. Examine the scripts to find out what services they start,
and which of those services respond to commands from the outside world.

4 Disable services that you don't need for a web server. Some things you should
not need are: nfs or other networked file systems; network printer services; SMB
or other Windows connectivity services; Yellow Pages (yp) or NIS services; and
any remote management utilities you can live without on your system. If you
aren't expecting to receive email on this site, you can shut down sendmail, imap,
pop, and other such tools. You will probably find inetd’s startup somewhere
along the line, and you can shut it down also if you aren't using its services.

5 Create a nonprivileged account that the web server will use to own its files, with
a name such as www, web, or apache. If anyone other than the system adminis-
trator will be putting files on the server, let him use that account; otherwise dis-
able shell access.

CHAPTER 2 THE WEB SERVER

6 Change the root password, preferably using mkpasswd or a similar tool to gen-
erate a random string of 10-15 letters and numbers. Do the same for any
remaining accounts with shell access. | keep such passwords in a small notebook
that I can lock in a drawer or cabinet.

Now you are ready to reboot your system and verify that all is well and your system is
secure. While booting you may notice other services that should be disabled, so go
back to the research step and find out how to remove them. You might also investigate
tools such as nessus (http://www.nessus.org) that will help check your security.

Some systems don’t need to be locked down this tightly. In particular, an intranet
server can be considered secure if it has its own root password and there are no shell
accounts that have privileges to change configurations. Since the server is inside a pro-
tected network, you can take advantage of nfs and other LAN-level services to make
your workgroup’s life easier.

If your server has an open connection to the Internet, all these steps are required
and should be taken before you proceed with any other installations. From this point
on you’'ll be working with the machine either by logging in directly or via a remote
session (preferably protected by ssh). There should be no other way to get to the
server’s files.

Systems exposed to the Internet get attacked. It is a sad fact of life that crackers are
always finding new ways to find and exploit vulnerable systems. But protecting your
system isn’t as difficult as the media sometimes portrays: remove vulnerabilities by dis-
abling services that your system doesn’t need, and tightly secure the rest with pass-
words that can’t be guessed (or generated from a dictionary) and use configurations
that make sense.

From here on, I’ll assume that the system is secure. As configuration issues or
new potential vulnerabilities come up, I'll highlight the steps needed to keep things
that way.

2.3 THE CASE FOR APACHE

Now it is time to apply the Open Source value considerations and buyer’s guide prin-
ciples to a real-world choice: what web server should you use for your site?

In the rest of the book I'll present alternatives where possible, but in this case there
is only one strong choice: the Apache web server. There are other Open Source choices
(including thttpd, which we’ll discuss in section 2.9), but most are either experimental
or specialized; Apache is hardened by years of use at millions of web sites. Of the com-
mercial choices available, many are actually made from Apache itself; the code is
offered under a BSD-like license that doesn’t constrain commercial use. In fact, the
developers encourage other companies to use it as a reference implementation for the
HTTP protocol.

THE CASE FOR APACHE 25

26

4 - The Apache mindshare is one of the largest in
30 Million Open Source. Estimates of the number of active
developers run in the hundreds of thousands,
second only to Linux. Development began in
18 Million 1995, using the code from the original NCSA
server (all of which has been replaced in the
intervening years). By early 1996 the Apache
server was the most popular web server in use by
sites polled by Netcraft (http://www.net-
4 Million craft.com/survey), and in 1998 it gained over 50
’—‘ percent of the market, making it more popular
than all other commercial and Open Source
Total Apache 1IS Other servers combined. Its market share in 2001 has
Figure 2.1 Apache market share passed 60 percent, running on 18 million serv-
ers, more than twice that of Microsoft 1IS (the

only strong competition). This is illustrated in figure 2.1.

Apache is developed by the Apache Group, a cadre of programmers that was started
when a number of web administrators and programmers decided to make an official
release of the NCSA server based on their patches. From that beginning they embarked
on full-scale redevelopment of the server into their own product, with a stable release
in December 1995. The group develops the server and also coordinates the volunteer
efforts of countless other contributors, evaluating and accepting patches from outside
their number. The membership changes with time as some drop out and other vol-
unteer contributors are invited to join.

8 Million

There are a number of options for installing the web server. Prebuilt binary distribu-
tions are available for a number of operating systems, and for most sites this is the best
way to go. The source distribution is always there of course (this being Open Source),
and building Apache from source is quick and easy on most operating systems. Since
version 1.3.20, Apache’s configuration and build scripts have included support for the
free CygWin compiler and tools for Windows operating systems.

The binary distributions on Apache sites (http://www.apache.org) are built with
the default set of modules and options. We’ll cover what those are in other sections of
the book which discuss the need for something that isn’t a default. You may need to
build from source if your site requires special modules, although it is possible to use a
binary distribution with support for dynamically loaded libraries to add in the extras.
If you want to strip down Apache by taking out things you won’t use or that constitute
security risks for your site, make your own binaries. | recommend doing so anyway—
it isn’t difficult. I'll show you how 1 built special modules on my system.

CHAPTER 2 THE WEB SERVER

Given the number of people who build Apache by hand, it’s no surprise that there
are programs and tools made just for this purpose. Go to http://www.apache-tools.com/
and search for the Configurator category, where you will find Apache Toolbox,
Comanche, and other helpers.

If you download a binary distribution from the Apache site or another distribution
site, you will need to find out where it installs the server’s main directory. When build-
ing from source on Linux or Unix the main directory is / usr/ 1 ocal / apache
(unless you override the default when setting up the build). I'll refer to that as Apache’s
home directory from here on, and any relative file paths (those that don’t begin with
a leading /) are relative to that point.

Naturally you'll want to see results. Apache works on most systems without any further
configuration effort, so let’s get started. Your distribution directory contains directions
on how to launch the server; for Linux or Unix systems, run this command:

bi n/ apachect!| start

You should get a response back that says the server started. Fire up your favorite web
browser and direct it to your own system. For Linux and Unix users, http://localhost/
or your real host name should work. If all is well, you'll get the default page Apache
puts up as part of the installation, directing you to the included online documentation.

If the server doesn’t start, or you don’t get that page, round up the usual suspects:

1 If apachect | didn't start the server, examine the error message. If it reports a
problem with the configuration file then the default configuration doesn’t work
on your system; go on to section 2.4, which is about changing the things you'll
probably want to change anyway.

2 Apache may be configured to use another port; try http://localhost:8080/ (or
your real host name) instead.

3 Look in the log files, | ogs/ error _| og and| ogs/ access_| og. Run-time
errors are reported to er r or _| og, so if the server started but then had a prob-
lem talking to your browser a message will appear there. If there aren’t any mes-
sages in err or _| og, check access_| og, which logs every transfer to each
connected client. If there aren’t any messages in access_| og, then your
browser didn’t connect to your server in the first place.

4 Check for other conflicts on your system. Is there already a web server installed
that is using the HTTP port? By default, Apache listens for requests on port 80,
but it can be configured to use a different port if that’s a problem for your system.

THE CASE FOR APACHE 27

2.4

28

APACHE CONFIGURATION

Like most Open Source programs, Apache gets its knowledge of the system from text
files.1 Get out your favorite text editor and examine the contents of the conf directory
in Apache’s home; it contains a handful of files which are all readable by humans. Lines
beginning with ‘#’ (or any text after a ‘# that’s not in a quoted string) are comments;
the rest is information for the server.

The main configuration file for Apache is conf / ht t pd. conf . The other files in
the directory are auxiliaries (such as magi ¢ and i me. t ypes) or vestigial configu-
ration files that are left over from the way NCSA did things (access. conf and
srm conf). The .default files provide the original configuration info shipped with
Apache, and can be used as a reference if you want to go back to the way things started.

Note that in discussing configuration here, we mean run-time configuration.
Apache also has compile-time configuration, which uses a separate configuration file
(src/ Confi gurati on in the source distribution) as well as other sources that say
how Apache should be put together. One of Apache’s strengths is the flexibility each
site’s management has in deciding what to include in its server. We’ll discuss these
compile-time options in each section that requires them.

A quick look at ht t pd. conf can be intimidating; it’s a big file and it seems very
complex. You don't need to digest it all at once, though, and as you've perhaps seen,
Apache runs just fine without changing a single line.

The good news is that the file documents all of the defaults and explains which sec-
tions you might want to change and why. For further information you can look up
each of those options (and the ones not included by default) in the Apache documen-
tation that was installed with the distribution. Assuming you have a working server
and browser, go back to the default page and click the documentation link. You'll get
a page of documentation topics, including run-time configuration directives; go to
that page for a list of everything that can be set.

The configuration file contains comments (any unquoted text after a ‘#’) and direc-
tives; a directive is either a one-line command or a section containing a set of further
directives.

One-line directives begin with the directive name followed by arguments:

M nSpar eServers 5
MaxSpar eServers 10

1 Configuration files for Unix utilities are usually plain text delimited by white space. There is a move-
ment toward using XML for configuration information; this format looks more complex at a glance,
but it is also very readable once you get used to all the <br acket s>. XML-based configuration files
are easier for programs to parse, which in turn makes it simpler to write configuration helper programs.

CHAPTER 2 THE WEB SERVER

These lines contain two directives, setting the values of the M nSpar eSer ver s and
MaxSpar eSer ver s parameters to 5 and 10 respectively, meaning that Apache will
keep at least five servers ready and at most 10 inactive servers). The lines can start and
end with white space, and the amount of white space between the directive name and
the arguments isn't significant as long as there is some separation. If it reads correctly
to you, chances are good it will read fine for Apache.
Sections are bracketed by a pair of tags in the style of XML and HTML.:

<Location /server-status>

Set Handl er server-status

Order deny, al | ow

Deny from all

Al'l ow from . your_domai n. com
</ Locati on>

The Location section starts with <Locat i on ar gunent > and ends with </ Loca-
t i on>; between the < > brackets of the opening tag the directive works as a one-liner,
with the directive name followed by arguments. Any number of directives can appear
between the opening and closing tags, including other tag pairs that close off further
nested directives. By convention we indent the enclosed directives to show that they
apply only to surrounding tags, but again the white space isn't significant to Apache.

The most common of these section tags are <Locati on>, <Di rectory>,
<Fi | es>, and, if you are managing more than one host on a server, <Vi r t ual -
Host >. <Locat i on> specifies directives for a particular URL, while <Di r ect or y>
applies to directories on a file system and <Fi | es> applies to files that match a pat-
tern. If multiple blocks all match a given file, <Locat i on> has the highest impor-
tance, so you can set different rules for a file when it is accessed by different URLS.
After that, <Fi | es> overrules <Di r ect or y>.

Actually, Apache doesn’t need much configuration. Look for these sections and change
them if the conditions apply to your site.

* ServerRoot "/usr/local/apache"—Put the home directory for the
Apache server here if you aren't using the default. Then search through the rest
of the file and change the same string everywhere that it appears.

* Port 80—If you have another web server running already, you'll need to tell
your new Apache server to use a different port. 8080 is a common alternative.

e Server Adm n r oot @ ocal host —Replace the default address with your
email address.

e #Server Nane | ocal host —This directive is commented out by default,
and the server will use the regular host name for reporting its name (in error
messages for example). If you'd rather use a different name, uncomment the line
by removing the leading # and then replace the default with the name you
want. Virtual hosts require this directive in each site’s configuration section.

APACHE CONFIGURATION 29

2.5

30

PRODUCTION SERVER

When actively building web sites, a development group often needs a set of servers in
different roles: a “toy” server where the developers can experiment with things, a pro-
duction server where the finished product runs, and perhaps something in between.

If you are working alone and your server isn’t exposed to the great wide world, the
minimum configuration is fine for getting started and learning what to do next. If,
however, you are setting up a group of servers, you should secure your production
server immediately. While it’s unlikely that some cracker is lurking in the shadows
waiting to pounce on your hapless web site, securing the server from the start will
establish good habits all around by making developers learn how things need to work
in the final installation.

Apache’s default configuration has reasonable security practices in place, but not
as good as you might like. Read through the Security Tips page in the Apache online
documentation, set the protections on your files and directories as shown there, then
consider how permissive you want to be with your users.

After deciding on your site’s policies, you’ll want to look for the following direc-
tives in ht t pd. conf and change them accordingly:

Al | owOver ri de—Permits or disables the use of local configuration files (usually
called . htaccess) in directories, so examine carefully each occurrence in
ht t pd. conf . In general, a production server should disable this at the top directory,
and then enable it again if needed in specific directories or locations:

<Directory />

Al l owOverride None
</Directory>

This directive turns off the use of local configuration files in all directories. If you need
to enable it again for a given directory—say, the document directory of a trusted
user—you can use Al | owQver ri de again to enable some features:

<Directory /home/sysngr/public_htm >

Al'l owOverride Filelnfo AuthConfig Limt
</Directory>

This allows sysmgr to set some directives in a .htaccess file in / horme/ sysnyr/
publ i c_ht m . Not all directives will be honored; look up Al | owOverri de’s doc-
umentation to see exactly what we've permitted.

Note that allowing local configuration files slows down the server, as it has to parse
the local file for each request to a URL that permits them. This is not how you want
to run your primary applications.

Opt i ons—Permits or disables a grab bag of server features, including the execution
of CGlI scripts and browsing of directories. For a secure server, the top directory should
turn off everything:

CHAPTER 2 THE WEB SERVER

<Directory />
Opti ons None
</Directory>

Opt i ons None is as tight as it gets, but you might consider allowing Fol | owSy m
Li nks or SynlLi nksl f Oaner Mat ch. These two permit the use of symbolic links
on Linux and Unix, which is convenient as long as users don't have general write per-
missions to important directories. SynlLi nksl f Oaner Mat ch allows links only if
the link and the file it points to are owned by the same user. Using just Fol | owSy m
Li nks is the best option performance-wise, since it doesn’t require Apache to do extra
look-ups along file paths. See chapter 12 for more information.

Again, the Opt i ons directive can be used in specific <Di r ect or y> or <Loca-
t i on> sections to open up permissions as needed.

What if we had this section and the previous one setting Al | owOver ri de? They
would both apply; Apache neatly merges sections that apply to the same target in the
order they occur. The same applies to <Locat i on>, <Fi | es>, and so on. Sane
administrators will want to do that merging manually though, so that it is more obvi-
ous what directives apply to which sections.

User Di r—This directive controls the mapping of username URLs; that is, http://
www.example.site/~user. The default is to enable user directories for all users and map
them to publ i c_ht m , meaning that http:.//www.example.site/~bob/resume.html
gets mapped to / hone/ bob/ publ i c_ht m /resune. ht M (assuming / hone/
bob is Bob’s home directory). The argument can either be disabled or enabled (with
a list of users following either) or a path can be mapped onto the user’s home directory.
If your site doesn’t have general user accounts, you can turn this feature off: setting
User Di r di sabl ed will turn off the mapping functions. Better yet, if you build
Apache from source files you can leave out mod_user di r entirely. See the helpful
files on compile-time configuration in the source distribution. If you want to let a few
users do this but disable it for the rest, then use:
UserDir public_htm

User Dir di sabl ed
UserDir enabl ed bob carol ted alice

The more permissive variation is to disable user directories for sensitive accounts and
leave it open otherwise:

UserDir di sabl ed root www nobody ftp

If you allow user directories, then you should also have a <Di r ect or y> section
that specifies Al | owOverri de and Opti ons to control what users can do. The
default ht t pd. conf contains such a section (possibly commented out), so modify
it accordingly:

<Directory /home/*/public_htm >
Al l owOverri de None

PRODUCTION SERVER 31

32

Options | ndexes Syniinkslf Oaner Mat ch
</Directory>

This section disables the use of local configuration files and allows browsing of direc-
tories (that's what Indexes does) and symbolic links that are owned properly.

Mapping ~user URLS to the user’s publ i c_ht nl directory is a typical scheme,
but User Di r can also be set to map those requests onto an entirely separate directory
tree with a subdirectory for each user. For example, this arrangement directs the
requests to appropriate directories under / ww/ user s:

UserDir /ww/ users

Whether using subdirectories of the user’s home or a separate directory tree, each user
chooses what files to expose on the web site by moving those files to the appropriate
directory. Directory ownership and write permissions should be set accordingly.
User Di r should never map requests directly to a user’s home directory since that
could make all subdirectories visible, thus removing the active choice. Another expla-
nation given for this arrangement is that by not exposing the user’s home directory, you
also don't expose the various hidden files (those beginning with *.” on Linux and Unix)
that contain sensitive information such as passwords for mail servers, which are stored
by some mail clients. It's not a good idea to use such things on a server that has an open
Internet connection.
A third possibility is to direct ~user URLS to another server entirely:

UserDir http://another.exanpl e.site/hone_pages

This version causes User Di r to redirect requests for http://www.example.site/~user
to http://another.example.site/home_pages/user.

Scri pt Al i as—Specifies a directory that contains executable scripts. This is one
way to get the Apache server to execute a script for a URL, and is very secure as long as
the administrator controls the scripts. A typical setting is:

ScriptAlias /cgi-bin/ /usr/local/cgi/

The first argument matches the beginning of a URL, and the second specifies the direc-
tory that contains the script for the match. For example, http://www.example.site/cgi-
bin/hello_world.cgi would map to/ usr /1 ocal / cgi / hel | o_wor | d. cgi . Note
that directories containing executable scripts should not be viewable by browsers. Set
Docunent Root appropriately and don’t mingle the two.

That’s one way to handle executable scripts. The others are via the ExecC3
option in the Opt i ons directive and by setting special handlers for given files. We'll
cover special handlers in later chapters. Think twice about using ExecCQ , especially
in user directories. In conjunction with AddHandl er , this option can lead to Apache
running arbitrary code. Even if your users are trustworthy, you have to trust that they
are taking proper precautions with their directories, passwords, and so forth.

CHAPTER 2 THE WEB SERVER

2.6

If you have opened up directory permissions, then also use a <Di r ect or y> sec-
tion to lock down each script directory:
<Directory "/usr/local/cgi">
Al owOverride None

Opti ons None
</Directory>

The Scri pt Al i as tells Apache that the directory contains executable scripts in spite
of Opt i ons None, so everything is set and ready for testing.

After making all these changes, restart Apache and test the server again. You can
even skip to the next chapter and grab a few CGI sample scripts to make sure that
works. Your production server is now secure and running!

DEVELOPMENT SERVER

While it is possible to build a site using a single server, it's often handy to have a sep-
arate place for working on new programs and content (a “toy” server where security is
loosened and developers can try out their code without a lot of bother). As compared
to the production environment, a development server can allow open access to con-
figuration files, documents, and scripts so that programmers can drop in new works
quickly. Of course, this assumes that the server is not on an open Internet connec-
tion—it should be in a protected network or otherwise configured to refuse requests
from outside its LAN.
Here are a few possible configuration scenarios:

The following directives allow Apache to serve documents and scripts from users’
directories:

UserDir /hone
<Directory /hone/ *>

Al l owOverride All

Options Al

AddHandl er cgi-script .pl .cgi
</Directory>

The User Di r directive maps ~user URLS to the user’s home directory (assuming, of
course, your users’ directories are under / horre), allowing any unprotected document
to be read. We then open up permissions in those directories with Al | owQOverri de
Al and Opti ons Al | , and tell Apache to treat any file ending in .pl or .cgi as an exe-
cutable script.

Each developer can tailor what Apache shows and does by appropriate use of
.htaccess files, starting with one in his home directory that will be inherited by
each subdirectory.

It’s hard to imagine giving the users much more than this, but of course it is pos-
sible: we could give each user his own server! If you want to maintain the illusion of

DEVELOPMENT SERVER 33

34

a single site but map each user to a different server, look at combining User Di r with
a Redi r ect for each user to send requests to developer sites.

This scenario lets users publish documents and run CGI scripts, but only from certain
directories:
UserDir public_htm
ScriptAlias /~user/cgi-bin/ "/honme/user/cgi-bin/"
<Directory /home/*/public_htm >
Al l owOverride None

Options | ndexes Fol | owSynii nks
</Directory>

The User Di r directive maps requests for http://www.example.site/~user to / horre/
user/ public_htm , while ScriptAlias similarly sends http://www.exam-
ple.site/~user/cgi-bin/ requests to / home/ user/ cgi - bi n (and tells the server to
execute the resulting file—no need for an AddHandl er directive). Directories are
browsable (Opt i ons | ndexes) and users can manage their documents using sym-
bolic links (Fol | owSynLi nks), but can't override server configuration or options in
general (Al | owOverri de None).

Scri pt Al i as tells Apache that the given directory contains executable scripts.
The previous example works only for a user named “user.” For this scenario to work,
we need toadd a Scri pt Al i as line for each user who is allowed to run CGI scripts.
If all users are permitted, we can handle this in one directive using the Match variant
of Scri pt Ali as:

ScriptAliasMatch A ~([*]+)/cgi-bin(.*) /home/$1/cgi-bin$2

The parts that look like cartoon characters swearing are regular expression matches; see
your Apache documentation for more information on the Match variations of direc-
tives and how to use regular expressions in them. Briefly, this particular match looks
for URLs of the form /~user/cgi-bin/* and translates them to / hone/ user/ cgi -
bi n/ *, where the real user name is substituted for “user” in both cases.

As shown in one of the production server configurations, User Di r can also be used
to map ~user URLS to a separate directory tree. This variation stores users' public doc-
uments in subdirectories under / ww/ user s:
UserDir /ww/ users
<Directory "/ww users/*">

Al l owOverri de None

Opti ons None
</Directory>

This is as tight as it gets, assuming the directory protections are set properly. If write
permission is restricted to the system administrator then only those files permitted by

CHAPTER 2 THE WEB SERVER

2.7

the boss will be displayed on the web site. In such a scenario it makes no sense to dis-
cuss executing scripts, since a CGI could display arbitrary files (and leads one to won-
der if this is actually a development site).

USING APACHECTL

Having chosen a configuration and set things up properly, test your server again. This
is a good idea after any change to a configuration file, even if the changes look trivial.
If your configuration allows CGI then take an example from the next chapter and try
that out too.

The apachectl program includes helpful code for verifying configuration files. This
command checks that things are all proper:

/usr /1 ocal / apache/ bi n/ apachect| confi gtest

There are three options for restarting the server, in order of severity: graceful, imme-
diate, and hard.

A graceful restart allows Apache to complete work in progress; servers with open
connections won't restart until they finish their transfers or time out waiting for cli-
ents. A server won't close an open log file until the server shuts down. Your users will
appreciate having a chance to finish their business, but you might find it troubling if
you are looking for an immediate change.

Trigger this restart using apachectl or kill:

/usr /1 ocal / apache/ bi n/ apachect| graceful
or
kill -USRL httpd

If you use apachectl, it will also run a configtest for you automatically, so you can be
assured the server will start up again properly.

An immediate restart tells Apache to close log files and open connections and then
read the configuration files again:

/usr /| ocal / apache/ bi n/ apachect| restart
or
kill -HUP httpd

The apachectl program will confirm the configuration files with configtest before stop-
ping the server. If the server isn't running in the first place, it will just start it for you
without an error.

A hard restart is necessary if you have changed the Apache program itself or made
system changes that the server won’t normally track:

/usr /| ocal / apache/ bi n/ apachect| stop
/usr/ | ocal / apache/ bi n/ apachect| start

USING APACHECTL 35

2.8

36

or
kill -9 httpd
/usr/ | ocal / apache/ bi n/ apachect| start

Shutting the server down with apachectl is preferable, but not always possible if things
are going wrong.

SERVING DOCUMENTS

Your site now has a functional web server that can present static documents and run
CGil scripts. Most sites have some static content, and it’s easy to manage once you learn
how Apache translates a URL into a file path.

We've discussed URL mapping previously in the sections on User Di r. When
Apache receives a request for a particular URL, it translates it into a file path and then
figures out how to serve up that file. The rules for the latter can be quite complicated.
Later chapters will explore them in examples that use handlers to take over this process
for certain files or directories. The mapping rules themselves are generally simple:

1 If Apache is configured to handle multiple sites using <Vi r t ual Host > direc-
tives, it looks at the site specification to see which set of rules to use. The site is
the part of the URL between http:// and the next /. If there aren't any virtual
hosts, this part of the URL is ignored and the general rules are applied.

2 The section of the URL after the site specification is the path, composed of
words separated by /s; it can end in a file name such as document . htnl , a
trailing path component or just a /. Apache evaluates User Di r, Scri pt -
Ali as, <Locat i on>, and other directives to see if they match this path.

3 If the beginning of the path matches a Scri pt Al i as directive, the rest of the
path is mapped onto the given directory and the resulting file is executed as a
CGil script. Similarly Al i as directives, Redi r ect s, and other rewriting rules
are applied.

4 If Apache is built with mod_userdir and User Di r isn't disabled, it checks to
see if the path begins with a ~. If so, the first path component is considered to
be a user name and the User Di r rules discussed previously are applied to map
the rest of the URL as a file path onto the user’s document directory.

5 If the rules in number four didnt satisfy the most, the path is considered as a file
path relative to the directory given by the Docunent Root directive, usually
the ht docs subdirectory of Apache’s home. Any <Di r ect or y> directives
that match some or all of that file path are applied to the URL.

6 If the path ends in a file name and that file exists, <Fi | e> directives are
checked and the file is served if permissions allow. The browser receives the file
and displays it according to its rules and idiosyncrasies.

CHAPTER 2 THE WEB SERVER

2.9

THTTPD

7 If the path ends in a trailing /, Apache checks for the existence of a default file
(usually i ndex. ht ml') and serves that if it exists. Otherwise, if directory
browsing is allowed (Opt i ons | ndexes), Apache creates a document on the
fly that represents a directory listing. Depending on the other options you allow
and the number of icons supplied for file types, this directory listing can look
like a desktop file browser or an FTP site listing.

s If Apache hasn't figured out any other way of handling the path, it sends back
an error document. These too are configurable; some sites have nice, apologetic
error documents that offer an email address for sending complaints, while oth-
ers reroute the user to a site navigation page. My favorite variations are those
that use haiku:

You step into the stream,
but the water has moved on.
Document not found.

There is a bit more to it than that; when Apache decides what file to send to the
browser, it also tries to figure out what type of file it is so that it can send along appro-
priate headers to the browser. These types are managed in the m ne. t ypes file in
Apache’s configuration directory. If you are serving up unusual content, you'll need to
add types to this file so that browsers know what to do with the documents you send.

Suppose a browser sends a request for http://www.example.site/hello_web.html to
our server. The path consists of just a file name, so there isn’t much in the way of anal-
ysis to do; Apache looks up hel | o_web. ht m in the Docunent Root directory
and sends it back to the browser.

That file contains an IMG tag specifying a relative URL for images/hi.jpg. Assum-
ing the browser is displaying images, it sends a request for that URL back to Apache.
The URL has a path, images, and a file name, hi.jpg. Apache looks for directives that
apply to the path, and finding none, maps it onto the document root as a simple direc-
tory path. It sends the file back with appropriate headers and the image is displayed.

That’s static document handling in a nutshell. As I mentioned, there are plenty of
ways to make even this process more complicated. Apache has a rich set of directives
for rewriting URLs and managing changes of directories, file names, and so on that are
inevitable over the lifetime of a site.

If that’s all you need, Apache will serve you and your documents well. You might
consider an alternative, however, one specially built for speed at just this task.

THTTPD

thttpd is a small and versatile web server. Its flexibility begins with its name: the ‘t’
stands for tiny, turbo or throttling, take your pick. The author (Jef Poskanzer) offers
the software from its web page (http://www.acme.com/software/thttpd/thttpd.html).
While thttpd’s design goals are much the same as those for Apache—a secure, stable

37

38

web server that handles static documents and other tasks—thttpd is built for speed,
while Apache is meant to be a general platform for many other pieces of software.

thttpd’s feature list shows its focus: it serves static documents with a minimal
implementation of the HTTP 1.1 protocol, offers a few utilities such as CGI process-
ing, and a unique throttle utility which lets a webmaster allocate bandwidth to differ-
ent sections of a site. It handles virtual hosts (see chapter 11), an absolute necessity for
modern web sites. Other features such as redirection and server-side include (SSI) are
given over to external programs, keeping thttpd small.

One reason for its lean size is it runs as a single process, unlike Apache with its
separate children. The server listens on its socket for incoming requests and handles
each in turn, but it doesn’t bog down on any particular client. thttpd uses nonblock-
ing 1/0 via sel ect to fill each waiting socket and move on to the next, so it can
feed documents to a large number of browsers concurrently. That single process is
smaller than just one normal Apache child (of which a typical configuration has at
least several hanging around waiting for work).

Thus by keeping a tight focus and using a minimum of system resources, thttpd
provides a very high performance level for servers that run in small spaces. In a race
with Apache, thttpd can serve documents faster per second than the larger server can,
but the author points out that the bandwidth limitations of most sites limit the per-
formance of either server more than memory or other system resources. Don’t expect
thttpd to improve on a site that has a network bottleneck.

In chapter 12 we’ll discuss how thttpd can be used as a front-end server to handle
static documents while a more heavyweight Apache serves dynamic content. Don’t
consider it just for a secondary role, however; it’s a fine server for many workloads.

It is also easy to extend thttpd for more than static documents. PHP users can use
the popular mod_php module directly to run their applications, and Freshmeat lists
a thttpd variant, pthttpd, which has an embedded Perl interpreter for speeding up the
kind of code I'll be talking about in the rest of the book. The web page for thttpd lists
add-ons for SSL (see chapter 6) and other frequently needed options.

Ifyou need only to publish static documents, Apache or thttpd will work fine for you.
Chances are good you want more from your web server, however, and dynamic content
is where the action is, so let’s go on to the tools that make the exciting stuff happen.

CHAPTER 2 THE WEB SERVER

