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More on functional
programning

This chapter covers

m A refresher on higher-order functions
m Partial application of functions
m |exical closures

m Traditional object-oriented programming (OOP)
in Clojure

So far you’ve seen a lot of the Clojure programming language, and you’ve used it to
write a good number of functions. Because it’s a functional programming lan-
guage, understanding and mastering the functional programming paradigm is key
to being successful with it. In this chapter, we’ll explore this topic some more.

Instead of approaching this from, say, a mathematical (or plain theoretical)
standpoint, we’ll review code to explore some of the main ideas. We’ll start by
implementing a few common higher-order functions that you often see used in
functional programs. The idea is to help you become comfortable with recursion,
lazy sequences, functional abstraction, and function reuse.

Next, we’ll visit the land of partial application. This exposure will give you fur-
ther insight into functional programming and what you can do with it. Although
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partial application doesn’t find particularly widespread use in Clojure, sometimes it’s
the perfect fit for the job. Incidentally, you’ll also see the alternatives to partial appli-
cation later in the chapter.

The final stop will be to explore closures. The last section puts everything together
to write a little object system that illustrates the ideas of OOP vis-a-vis functional pro-
gramming. You may wonder why there’s a section on OOP in a chapter on functional
programming. Once you read through to the end of this chapter, you’ll realize how
functional programming can be thought of as a superset of OOP—and in fact tran-
scends it.

Using higher-order functions

We talked about higher-order functions in chapter 3. A higher-order function is one
that either accepts another function or returns a function. Higher-order functions
allow the programmer to abstract out patterns of computation that would otherwise
result in duplicated code. In this section, we’ll look at a few examples of higher-
order functions that can greatly simplify many things you’ll come across. You've
seen several of these functions before, in other forms, and we’ll point these out as
you implement them.

Overall, this section will give you a sense of how higher-order functions can be
used to implement a variety of solutions in Clojure; indeed, how it’s an integral part of
doing so.

Collecting results of functions

Let’s begin our look at higher-order functions by considering the idea of a function
named square-all that accepts a list of numbers and returns a list of the squares of
each element. You may need such a sequence in a graphics program or in some other
math computation:

(defn square [x]
(* x x))

(defn square-all [numbers] |m°ﬁmﬁc
(if (empty? numbers) equwale.nt to
nil empty list

(cons (square (first numbers))
(square-all (rest numbers)))))

A quick note about returning nil in the empty case: you could also return an empty
list, but in Clojure it’s idiomatic to return nil instead because it’s falsey (unlike an
empty list, which is truthy) and all segrelated functions treat nil like an empty list
anyway (for example, conj-ing onto nil returns a list).

Notice that the cons function is used to build a new sequence. It accepts a single
element, and another sequence, and returns a new one with that element inserted in
the first position. Here, the first element is the square of the first number, and the
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body is the sequence of the squares of the remaining numbers. This works as expected,
and you can test this at the read-evaluate-print loop (REPL) as follows:

(square-all [1 2 3 4 5 6])
;j=> (1 4 9 16 25 36)

Now let’s look at another function, cube-all, which also accepts a list of numbers but
returns a list of cubes of each element:

(defn cube [x]
(* x x x))
(defn cube-all [numbers]
(if (empty? numbers)
()
(cons (cube (first numbers))
(cube-all (rest numbers)))))

Again, this is easy to test:

(cube-all [1 2 3 4 5 6])
;=> (1 8 27 64 125 216)

They both work as expected. The trouble is that there’s a significant amount of
duplication in the definitions of square-all and cube-all. You can easily see this
commonality by considering the fact that both functions are applying a function to
each input element and are collecting the results before returning the list of col-
lected values.

You’ve already seen that such functions can be captured as higher-order functions
in languages such as Clojure:

(defn do-to-all [f numbers]
(if (empty? numbers)
()
(cons (f (first numbers))
(do-to-all £ (rest numbers)))))

With this, you can perform the same operations easily:

(do-to-all square [1 2 3 4 5 6])
;=> (1 4 9 16 25 36)

(do-to-all cube [1 2 3 4 5 6])
;=> (1 8 27 64 125 216)

You can imagine that the do-to-all implementation is similar to that of the map func-
tion that’s included in Clojure’s core library. You've seen this function earlier in the
book. The map function is an abstraction that allows you to apply any function across
sequences of arguments and collect results into another sequence. This implementa-
tion is quite limited when compared with the core map function, and it also suffers
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from a rather fatal flaw: it will blow the call stack if a long enough list of elements is
passed in. Here’s what it will look like:

(do-to-all square (range 11000))
StackOverflowError clojure.lang.Numbers$LongOps.multiply (Numbers.java:459)

This is because every item results in another recursive call to do-to-all, thus adding
another stack frame until you eventually run out. Consider the following revised
implementation:

(defn do-to-all [f numbers]
(lazy-seq
(if (empty? numbers)
()
(cons (f (first numbers))
(do-to-all £ (rest numbers))))))

Now, because this return is a lazy sequence, it no longer attempts to recursively com-
pute all the elements to return. The lazy-seq macro takes a body of code that returns
a sequence (or nil) and returns an object that’s “seqable”—that is, it behaves like a
sequence. But it invokes the body only once and on demand (lazily) and returns
cached results thereafter. The function now works as expected:

(take 10 (drop 10000 (do-to-all square (range 11000))))

;=> (100000000 100020001 100040004 100060009 100080016 100100025 100120036
100140049 100160064 100180081)

This is similar to the map function that comes with Clojure (although the Clojure ver-
sion does a lot more). Here’s what that might look like:

(take 10 (drop 10000 (do-to-all square (range 11000))))
;=> (100000000 100020001 100040004 100060009 100080016 100100025 100120036
100140049 100160064 100180081)

Notice all that was done here was to replace do-to-all with map. The map function is
an extremely useful higher-order function, and as you’ve seen over the last few chap-
ters, it sees heavy use.

Let’s now look at another important operation, which can be implemented using a
different higher-order function.

Reducing lists of things

It’s often useful to take a list of things and compute a value based on all of them. An
example might be totaling a list of numbers or finding the largest number. You’ll
implement the total first:

(defn total-of [numbers]
(loop [nums numbers sum 0]
(if (empty? nums)
sum
(recur (rest nums) (+ sum (first nums))))))
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This works as expected, as you can see in the following test at the REPL:

(total-of [5 7 9 3 4 1 2 8])
;=> 39

Now you’ll write a function to return the greatest from a list of numbers. First, write a
simple function that returns the greater of two numbers:

(defn larger-of [x y]
(if (> xvy) xvy))

This is a simple enough function, but now you can use it to search for the largest num-
ber in a series of numbers:

(defn largest-of [numbers]
(loop [1 numbers candidate (first numbers)]
(if (empty? 1)
candidate
(recur (rest 1) (larger-of candidate (first 1))))))

You need to see if this works:

(largest-of [5 7 9 3 4 1 2 8])
i=> 9

(largest-of [])

1=> nil

It’s working, but there’s clearly some duplication in total-of and largest-of. Specif-
ically, the only difference between them is that one adds an element to an accumula-
tor, whereas the other compares an element with a candidate for the result. Next,
you’ll extract the commonality into a function:

(defn compute-across [func elements value]
(if (empty? elements)
value
(recur func (rest elements) (func value (first elements)))))

Now you can easily use compute-across to implement total-of and largest-of:

(defn total-of [numbers]
(compute-across + numbers 0)
(defn largest-of [numbers]
(compute-across larger-of numbers (first numbers)))

To ensure that things still work as expected, you can test these two functions at the
REPL again:

(total-of [5 7 9 3 4 1 2 8])
i=> 39

(largest-of [5 7 9 3 4 1 2 8])
;=> 9
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compute-across is generic enough that it can operate on any sequence. For instance,
here’s a function that collects all numbers greater than some specified threshold:

(defn all-greater-than [threshold numbers]
(compute-across #(if (> %2 threshold) (conj %1 %2) %1) numbers []))

Before getting into how this works, you need to check if it works:

(all-greater-than 5 [5 7 9 3 4 1 2 8])
;=> [7 9 8]

It works as expected. The implementation is simple: you’ve already seen how compute-
across works. The initial value (which behaves as an accumulator) is an empty vector.
You need to conjoin numbers to this when it’s greater than the threshold. The anony-
mous function does this.

The compute-across function is similar to something you’ve already seen: the
reduce function that’s part of Clojure’s core functions. Here’s all-greater-than
rewritten using the built-in reduce:

(defn all-greater-than [threshold numbers]
(reduce #(if (> %2 threshold) (conj %1 %2) %1) [] numbers))

And here it is in action:

(all-greater-than 5 [5 7 9 3 4 1 2 8])
1=> [7 9 8]

Both the compute-across and reduce functions allow you to process sequences of
data and compute a final result. Let’s now look at another related example of using
compute-across.

Filtering lists of things

You wrote a function in the previous section that allows you to collect all numbers
greater than a particular threshold. Now you’ll write another one that collects those
numbers that are less than a threshold:

(defn all-lesser-than [threshold numbers]
(compute-across #(if (< %2 threshold) (conj %1 %2) %1) numbers []))

Here’s the new function in action:

(all-lesser-than 5 [5 7 9 3 4 1 2 8])
;=> [3 4 1 2]

Notice how easy it is, now that you have your convenient little compute-across func-
tion (or the equivalent reduce). Also, notice that there’s duplication in the all-
greater-than and all-lesser-than functions. The only difference between them is
in the criteria used in selecting which elements should be returned.
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Now you need to extract the common part into a higher-order select-if function:

(defn select-if [pred elements]
(compute-across #(if (pred %2) (conj %1 %2) %1) elements []))

You can now use this to select all sorts of elements from a larger sequence. For
instance, here’s an example of selecting all odd numbers from a vector:

(select-1if odd? [5 7 9 3 4 1 2 8])
;=> [5 7 9 3 11

To reimplement the previously defined all-lesser-than function, you could write it
in the following manner:

(defn all-lesser-than [threshold numbers]
(select-1if #(< % threshold) numbers))

This implementation is far more readable, because it expresses the intent with sim-
plicity and clarity. The select-if function is another useful, low-level function that
you can use with any sequence. In fact, Clojure comes with such a function, one
that you’ve seen before: filter. Here, for instance, is the same selection of odd
numbers you just saw:

(filter odd? [5 7 9 3 4 1 2 8])
i=> (57 9 3 1)

Note that although filter returns a lazy sequence here, and the select-1if func-
tion returned a vector, as long as your program expects a sequence, either function
will work.

Over the last few pages, you've created the functions do-to-all, compute-across,
and select-1if, which implement the essence of the built-in map, reduce, and filter
functions. The reason for this was two-fold: to demonstrate common use cases of
higher-order functions and to show that the basic form of these functions is rather
simple to implement. The select-if isn’t lazy, for instance, but with all the knowl-
edge you’ve gained so far, you can implement one that is. With this background in
place, let’s explore a few other topics of interest of functional programs.

Partial application

In the last section you wrote several higher-order functions that accepted a function as
one argument and applied it to other arguments. Now we’re going to look at another
kind of higher-order function—those that create and return new functions. This is a
crucial aspect of functional programming, and in this section you’ll write functions
that return new functions of less arity than the ones they accept as an argument.
You’ll do this by “partially applying” the function. (Don’t worry; the meaning of this
will become clear shortly.)
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Adapting functions

Let’s imagine that you have a function that accepts a tax percentage (such as 8.0 or
9.75) and a retail price and returns the total price with tax using a threading macro:

(defn price-with-tax [tax-rate amount]
(->> (/ tax-rate 100)
(+ 1)
(* amount)))

Now you can find out what something truly costs, because you can calculate its price
including the sales tax, as follows:

(price-with-tax 9.5M 100)
;=> 109.500M

Notice that you use the BigDecimal type for money (specified by the M suffix): using
floating-point numbers for financial applications is asking for rounding errors! If you
had a list of prices that you wanted to convert into a list of tax-inclusive prices, you
could write the following function:

(defn with-california-taxes [prices]
(map # (price-with-tax 9.25M %) prices))

And you could then batch-calculate pricing with taxes:

(def prices [100 200 300 400 500])

;=> #'user/prices

(with-california-taxes prices)

;j=> (109.2500M 218.5000M 327.7500M 437.0000M 546.2500M)

Notice that in the definition of with-california-taxes, there’s an anonymous func-
tion that accepted a single argument (a price) and applied price-with-tax to 9.25
and the price. Creating this anonymous function is convenient; otherwise, you might
have had to define a separate function that you may never have used anywhere else,
such as this:

(defn price-with-ca-tax [pricel
(price-with-tax 9.25M price))

And if you had to handle New York, it would look like this:

(defn price-with-ny-tax [pricel
(price-with-tax 8.0M price))

If you had to handle any more, the duplication would certainly get to you. Luckily, a
functional language such as Clojure can make short work of it:

(defn price-calculator-for-tax [state-tax]
(fn [price]
(price-with-tax state-tax price)))
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This function accepts a tax rate, presumably for a given state, and then returns a
new function that accepts a single argument. When this new function is called with a
price, it returns the result of applying price-with-tax to the originally supplied tax
rate and the price. In this manner, the newly defined (and returned) function
behaves like a closure around the supplied tax rate. Now that you have this higher-
level function, you can remove the duplication you saw earlier by defining state-
specific functions as follows:

(def price-with-ca-tax (price-calculator-for-tax 9.25M))
(def price-with-ny-tax (price-calculator-for-tax 8.0M))

Figure 8.1 shows how this works.

Function generator

Figure 8.1 The tax-rate
initially passed into the
price-calculator-for-
tax function is captured by
the resulting function (such as
price-with-ca-tax). It's
Price then able to use that value

| With when it’s called with a price,
to return the correct price with
the tax applied to it.

Price with sales tax calculator

Notice again that you're creating new vars (and that you're directly using def here, not
defn) that are bound to the anonymous functions returned by the price-calculator-
for-tax function.

These new functions accept a single argument and are perfect for functions such
as with-california-taxes that accept a list of prices, and call map across them. A
single-argument function serves well in such a case, and you can use any of the previ-
ous functions for this purpose. This is a simple case where you started out with a func-
tion of a certain arity (in this case, price-with-tax accepts two arguments), and you
needed a new function that accepted a lesser number of arguments (in this case, a
single-argument function that could map across a sequence of prices).

This approach of taking a function of n arguments and creating a new function of &
arguments (where n > k) is a form of adaptation (you may be familiar with the adapter
pattern from OOP literature). You don’t need special ceremony to do this in functional
languages, thanks to first-class functions. Let’s see how Clojure makes this easy.
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PARTIAL APPLICATION
Let’s say you have a function of n arguments and you need to fix (n - k) arguments to
create a new function of k arguments. Here’s a function to illustrate this:

(defn of-n-args [a b ¢ d el
(str abcde))

Now, to fix, say, the first three arguments to 1, 2, and 3, you could do the following:

(defn of-k-args [d el
(of-n-args 1 2 3 d e))

You need to ensure that this function works as expected:

(of-k-args \a \b)
;j=> "123ab"

OkXkay, so that works. If you needed to create a function that fixed, say, two or four argu-
ments, you’d have to write similar code again. As you can imagine, if you had to do
this a lot, it would get rather repetitive and tedious.

You could improve things by writing a function that generalizes the idea, such as
(defn partially-applied [of-n-args & n-minus-k-args]

(fn [& k-args]
(apply of-n-args (concat n-minus-k-args k-args))))

Now, you could create any number of functions that fixed a particular set of argu-
ments of a particular function, for example:

(def of-2-args (partially-applied of-n-args \a \b \c))

;=> #'user/of-2-args

(def of-3-args (partially-applied of-n-args \a \b))
;=> #'user/of-3-args

And you can see if these work as expected:

(of-2-args 4 5)

;=> "abc45"
(of-3-args 3 4 5)
;=> "ab345"

The new function is called partially-applied because it returns a function that’s a par-

tially applied version of the function you passed into it. For example, of-3-args is a

partially applied version of of-n-args. This is such a common technique in functional

programming that Clojure comes with a function that does this, and it’s called partial.
It’s used the same way:

(def of-2-args (partial of-n-args \a \b \c))
;=> #'user/of-2-args

(def of-3-args (partial of-n-args \a \b))
;=> #'user/of-3-args
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And here it is in action:

(of-2-args 4 5)

;j=> "abc45"
(of-3-args 3 4 5)
;=> "ab345"

You now understand what it means to partially apply a function. Partial application is
an abstraction that comes out of having higher-order functions. Although the exam-
ples showed this technique where you needed to adapt a function of a given arity to a
function of a lower arity, there are other uses as well. You’ll see one such use in the
next section.

Defining functions

In this section, we’ll use the technique of partial application to define new functions.
Recall the select-1if function from the previous section:

(defn select-if [pred elements]
(compute-across #(if (pred %2) (conj %1 %2) %1) elements []))

Note that the compute-across function is passed an empty vector as the last argu-
ment. Here, you’ll write a modified version of select-if called select-into-if,
which will accept an initial container:

(defn select-into-if [container pred elements]
(compute-across #(if (pred %2) (conj %1 %2) %1) elements container))

Again, as you saw in the previous section, if you had a list of numbers such as
(def numbers [4 9 5 7 6 3 8])

then you could use the new function as follows:

(select-into-if [] #(< % 7) numbers)
;=> [4 5 6 3]

Similarly, you could also pass in an empty list instead of an empty vector, as shown
here:

(select-into-if () #(< % 7) numbers)
;=> (3 6 5 4)

Note that depending on whether you want to filter results up or down (in the same
order as the elements appear or in the reverse), you can use either the empty vector as
your container or the empty list. This ordering may be useful when you have a situa-
tion where the order matters, and you either want to preserve it or perhaps reverse it.
Now you’ll further abstract this idea of filtering results up or down as follows:

(def select-up (partial select-into-if []))
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This is a new function using partial. You fixed the first argument of the select-
into-if function to the empty vector. Similarly, you could define the concept of
selecting down a sequence of elements as follows:

(def select-down (partial select-into-if ()))

It’s time to test these two functions to ensure that they work:

(select-up #(< % 9) [5 3 9 6 8])
;j=> [5 3 6 8]

(select-down #(< % 9) [5 3 9 6 8])
;=> (8 6 3 5)

Obviously, there are specific implications that arise from using a vector versus a list,
and depending on the situation, these may be a convenient way to filter elements of
a sequence.

As you’ve seen, partial application of functions can be a useful tool. This section
showed two situations where this technique might come in handy. The first is to adapt
functions to a suitable arity by fixing one or more arguments of a given function. The
second is to define functions by partially applying a more general function to get spe-
cific functions that have one or more arguments fixed.

There’s a more general principle at work here, a principle that makes partial func-
tion application possible: lexical closures.

Closures

In this section, we’re going to explore the lexical closure, which is a central concept of
functional programming. How central it is can be seen from the fact that the name
Clojure itself is a play on the term closure. We’ll begin by reviewing what closures are
and what they close over. Then we’ll look at a couple of closure use cases in functional
programming. Specifically, we’ll look at how closures can be used to delay computa-
tion and how they can be used as objects (in the OO sense of the word). At the end,
we’ll create a little OO layer for Clojure to demonstrate that Clojure (and Lisps in gen-
eral) go beyond traditional ideas of OOP.

Free variables and closures

Before we jump into what closures are, let’s look at the concept of free variables. A
free variable is one that’s neither an argument nor a local variable. For instance, take
alook at adder in this code:

(defn adder [numl num2]
(let [x (+ numl num2)]
(fn [y]
(+ x ¥))))

x is a free variable: its value
will come from outside scope
of function that uses it.

Here, numl and num2 are arguments of the adder function and so they aren’t free vari-
ables. The let form creates a lexically scoped block of code, and within that block,
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numl and num2 are free variables. Further, the let form creates a locally named value
called x. Therefore, within the let block, x isn’t a free variable. Finally, an anonymous
function is created that accepts an argument called y. Within this anonymous func-
tion, y isn’t a free variable, but x is (because it’s neither an argument nor a local vari-
able within the function block).

Now that you understand what a free variable is, let’s examine this function a little
more. Consider the following code:

(def add-5 (adder 2 3))
;=> #'user/add-5

add-5 is a var that’s bound to the return value of the call to adder, which is the anony-
mous function returned by the adder function. The function object contains within it
a reference to x, which exists for only as long as the let block inside adder lives. Con-
sider that the following works as expected:

(add-5 10)
;=> 15

Given the fact that the life of a locally named value such as x lasts only until the enclos-
ing lexical block lasts, how can add-5 do its work? You might imagine that the x refer-
enced inside add-5 ceased to be the moment add-5 was created.

The reason this works, though, is that the anonymous function returned by adder
is a closure, in this case closing over the free variable x. The extent (life) of such
closed-over free variables is that of the closure itself. This is why add-5 is able to use
the value of x, and it adds 10 to 5 to return 15 in the example.

In summary, a free variable will have the value that variable has in its enclosing
scope at the moment that its own scope is created. Now let’s look at what closures can
do for your Clojure programs.

Delayed computation and closures

One aspect of closures is that they can be executed at any time, any number of
times, or not at all. This property of delayed execution can be useful. Consider the
following code:

(let [x 1
y 0]
(/ xvy))
ArithmeticException Divide by zero clojure.lang.Numbers.divide
(Numbers.java:156)

You know what this code will do: it will promptly throw a nice divide-by-zero excep-
tion. Let’s wrap the code with a try-catch block so as to control the situation
programmatically:
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(let [x 1
y 0]
(try
(/ xy)
(catch Exception e (println (.getMessage e)))))
Divide by zero
;=> nil

This pattern is common enough that you might want to extract it out into a higher-
order control structure:

(defn try-catch [the-try the-catch]
(try
(the-try)
(catch Exception e (the-catch e))))

Now that you have this, you could write

(let [x 1
y 0]
(try-catch #(/ x y)
# (println (.getMessage %))))

Notice here that you’re passing in an anonymous function that closes around x and y.
You could have written a macro to do this same thing, but this shows that you don’t
need macros for something like this, even though the macro solution would be nicer
(syntactically more convenient to use, resulting in code that’s easier to read).

When we compared macros to functions, we noted that Clojure evaluates function
arguments in an eager manner. This behavior is one of the reasons why macros have
an advantage, in that macros don’t evaluate arguments, allowing us as programmers
to be in control. Here, the try-catch function achieves the same intended effect by
accepting functions that will be evaluated later. To be specific, although your anony-
mous functions are created immediately (when you passed them in as arguments),
they’re only evaluated later (within the try-catch block). Further, because the free
variables x and y were enclosed within a closure correctly, the try-catch function was
able to work correctly.

You can imagine creating other control structures in a similar manner. In the next
section, you’ll see another interesting aspect of closures.

Closures and objects

In this section, we’re going to examine another benefit of the closure. As you've seen
over the past few paragraphs, a closure captures the bindings of any free variables visi-
ble at the point of creation. These bindings are then hidden from view to the rest of
the world, making the closure a candidate for private data. (Data hiding is somewhat
of an overrated concept, especially in a language such as Clojure. You’ll see more on
this in the next section.)
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For the moment, let’s continue exploring the captured bindings inside closures.
Imagine that you needed to handle users’ login information and email addresses in
your application. Consider the following function:

(defn new-user [login password emaill
(fn [al
(case a
:login login
:password password
:email email
nil)))

There’s nothing particularly new here; you saw such code in the previous section.
Here it is in action:

(def arjun (new-user "arjun" "secret" "arjun@zololabs.com"))
;=> #'user/arjun

(arjun :login)

;=> "arjun"

(arjun :password)

;=> "secret"

(arjun :email)

;=> "arjun@zololabs.com"

(arjun :name)

;=> nil

First, a new function object is created by calling the new-user function with "arjun",
"secret", and "arjune@currylogic.com" as arguments. Then, you were able to query
it for the login, password, and email address. arjun appears to behave something like
a map, or at least a data object of some kind. You can query the internal state of the
object using the keywords :1login, :password, and :email, as shown previously.

It’s also worth noting that this is the only way to access the internals of arjun. This
is a form of message passing: the keywords are messages that you're sending to a
receiver object, which in this case is the function object arjun. You can implement
fewer of these should you choose to. For instance, you might deem the password to be
a hidden detail. The modified function might look as follows:

(defn new-user [login password emaill]
(fn [al
(case a

:login login .
cemail email QJ Inner function can
:password-hash (hash password) access password.
nil)))

;=> #'user/new-user

(def arjun (new-user "arjun" "secret" "arjune@zololabs.com"))

;=> #'user/arjun

(arjun :password)

;=> nil

(arjun :password-hash) Enables information hiding; can use password
7=> 1614358358 without letting anyone else see it

Doesn’t ever return
password to callers
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Although the new-user function and the returned inner function can see password,
anyone using the returned inner function can only see the hash of the password.
Using a closure, you were able to hide information from callers of a function that’s
still visible to the function itself. Having come this far, we’ll take a short break to com-
pare functions such as arjun with objects from other languages.

DATA OR FUNCTION?

Already the line between what’s clearly a function and what might be construed to
be data in languages such as Java and Ruby should have started to blur. Is arjun a
function or is it a kind of data object? It certainly behaves similarly to a hash map,
where you can query the value associated with a particular key. In this case, you
wrote code to expose only those keys that you considered public information, while
hiding the private pieces. Because arjun is a closure, the free variables (the argu-
ments passed to new-user) are captured inside it and hang around until the closure
itself is alive. Technically, although arjun is a function, semantically it looks and
behaves like data.

Although data objects such as hash maps are fairly static (in that they do little more
than hold information), traditional objects also have behavior associated with them.
Let’s blur the line some more by adding behavior to your user objects. Here you’ll add
a way to see if a given password is the correct one. Consider this code:

(defn new-user [login password emaill
(fn [a & args]
(case a
:login login
:email email
:authenticate (= password (first args)))))

Now try it out:

(def adi (new-user "adi" "secret" "adie@currylogic.com"))
;=> #'user/adi

(adi :authenticate "blah")

;=> false

(adi :authenticate "secret")

;j=> true

Your little closure-based users can now authenticate themselves when asked to do so.
As mentioned earlier, this form of message passing resembles calling methods on
objects in languages such as Java and Ruby. The format for doing so could be written
like so:

(object message-name & arguments)

Objects in OOP are usually defined as entities that have state, behavior, and equality.
Most languages also allow them to be defined in a manner that allows inheritance of
functionality. So far, we’ve handled state (information such as login, password, and
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email) and behavior (such as :authenticate). Equality depends on the domain of
use of these objects, but you could conceivably create a generic form of equality
testing based on, say, a hash function. In the next section, we’ll consolidate the ideas
we talked about in this section and add inheritance and a nicer syntax to define
such objects.

An object system for Clojure

In the previous section, you created a function named new-user that behaves as a sort
of factory for new user objects. You could call new-user using the data elements thata
user comprises (login, password, and email address), and you’d get a new user
object. You could then query it for certain data or have it perform certain behaviors.
You made this possible by implementing a simple message passing scheme, with mes-
sages such as :login and :authenticate.

In this section, we’ll generalize the idea of creating objects that have certain data
and behavior into what traditional OO languages call classes. First, you’ll allow a sim-
ple class hierarchy, and you’ll let objects refer to themselves by providing a special
symbol, traditionally named this. Finally, you’ll wrap this functionality in a syntactic
skin to make it appear more familiar.

DEFINING CLASSES

We’ll start simple. You’ll create the ability to define classes that have no state or behav-
ior. You’ll lay the foundations of your object system starting with the ability to define a
class that’s empty. For instance, you’d like to be able to say

(defclass Person)

This would define a class that would behave as a blueprint for future instances of peo-
ple. You could then ask for the name of such a class:

(Person :name)
;=> "Person"

That would return the string "Person", which is the name of the class you’re defining.
Once you implement this, you can start adding more functionality to your little object
system. Consider the following implementation:

(defn new-class [class-name]
(fn [command & args]
(case command
:name (name class-name))))
(defmacro defclass [class-name]
" (def ~class-name (new-class '~class-name)))

So your little Person class is a function that closes over the class-name, passed in
along with a call to defclass. Again, remember that the notation '~class-name quotes
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the value of the class-name argument, so that it’s passed in as the argument to new-
class as a symbol itself.

Your classes support a single message right now, which is :name. When passed
:name, the Person function returns the string "Person". Try the following at the
REPL now:

(defclass Person)
;=> #'user/Person
(Person :name)
;j=> "Person"

Further, because you’re simply working with vars and functions, the following also

works:

(def some-class Person)
;=> #'user/some-class
(some-class :name)

;=> "Person"

This is to show that the name of the class isn’t associated with the var (in this case
Person) but with the class object itself. Now that you can define classes, we’ll make it
so you can instantiate them.
CREATING INSTANCES
Because your classes are closures, you can also implement instantiated classes as clo-
sures. You’ll create this with a function called new-object that will accept the class
that you’d like to instantiate. Here’s the implementation:
(defn new-object [klass]

(fn [command & args]

(case command
:class klass)))

Here it is in action:
(def cindy (new-object Person))

As you can tell, the only message you can send this new object is one that queries its
class. You can say

(new-object Person)
;=> #i<user$new object$fn 2259 user$new object$fn 2259@1fl06fec>

That isn’t terribly informative, because it’s returning the class as the function object.
You can instead further ask its name:

((cindy :class) :name)
;j=> "Person"
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You could add this functionality as a convenience message that an instantiated object
itself could handle:

(defn new-object [klass]
(fn [command & args]
(case command
:class klass
:class-name (klass :name))))

You can test this now, but you’ll need to create the object again, because you rede-
fined the class. Here it is:

(def cindy (new-object Person))
;=> #'user/cindy

(cindy :class-name)

j=> "Person"

Finally, you’re going to be instantiating classes a lot, so you can add a more convenient
way to do so. You’d like something like a new operator that’s common to several lan-
guages such as Java and Ruby. Luckily, you’ve already set up your class as a function
that can handle incoming messages, so you’ll add to the vocabulary with a :new mes-
sage. Here’s the new implementation of new-class:

(defn new-class [class-name]
(fn klass [command & args]
(case command
:name (name class-name)
:new (new-object klass))))

Notice that new-object accepts a class, and you need to refer to the class object from
within it. You were able to do this by giving the anonymous function a name (klass)
and then refer to it by that name in the :new clause. With this, creating new objects is
easier and more familiar (remember to evaluate the definition of Person again):

(defclass Person)

;=> #'user/Person

(def nancy (Person :new))
;=> #'user/nancy

(nancy :class-name)

;j=> "Person"

So here you are: you're able to define new classes as well as instantiate them.
Our next stop will be to allow your objects to maintain state.

OBJECTS AND STATE

In chapter 6 we explored Clojure’s support for managing state. In this section, you’ll
use one of those available mechanisms to allow objects in your object system to also
become stateful. You’ll use a ref so that your objects will be able to participate in coor-
dinated transactions. You’ll also expand the vocabulary of messages that your objects
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can understand by supporting :set! and :get. They’ll allow you to set and fetch val-
ues from your objects, respectively.
Consider the following updated definition of the new-object function:

(defn new-object [klass]
(let [state (ref {})]
(fn [command & args]
(case command
:class klass
:class-name (klass :name)

:set! (let [[k v] args]
(dosync (alter state assoc k v))
nil)

:get (let [[key] args]
(estate key))))))

So now the messages that you can pass to your objects include :class, :class-name,
:set!, and :get. Let’s see your new stateful objects in action:

(def nancy (Person :new))
;=> #'user/nancy

(nancy :get :name)

;=> "Nancy Warhol"

You can also update your objects using the same :set! message, as follows:

(nancy :set! :name "Nancy Drew")
;=> nil

(nancy :get :name)

;=> "Nancy Drew"

You’re coming along in the journey to create a simple object system. You now have the
infrastructure to define classes, instantiate them, and manage state. Our next stop will
be to add support for method definitions.

DEFINING METHODS
So far, we’ve dealt with the state side of objects. In this section, we’ll start working on
behavior by adding support for method definitions.

In keeping with languages such as Java and C++, you’d like to support a syntax that
lists the methods along with the class definition, like so:

(defclass Person
(method age []

(* 2 10))
(method greet [visitor]
(str "Hello there, " visitor)))

You’ve started with simple methods. The age method, for instance, doesn’t take any
arguments and returns the result of a simple computation. Similarly, the greet method
accepts a single argument and returns a simple computation involving it.
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Now that the expected syntax is laid out, you can go about the implementation.
First, you’ll work on defclass, to make the previous notation valid. Consider the fol-
lowing function, which operates on a single method definition s-expression:

(defn method-spec [sexpr]
(let [name (keyword (second sexpr))
body (next sexpr)]
[name (conj body 'fn)l))

This creates a vector containing the name of the method definition (as a keyword)
and another s-expression, which can later be evaluated to create an anonymous func-
tion. Here’s an example:

(method-spec ' (method age [] (* 2 10)))
;=> [:age (fn age [] (* 2 10))]

Because you’re going to specify more than one method inside the class definition, you’ll
need to call method-spec for each of them. The following method-specs function will
accept the complete specification of your class, pick out the method definitions by filter-
ing on the first symbol (it should be method), and then call method-spec on each:

(defn method-specs [sexprs]
(->> sexprs
(filter #(= 'method (first %)))
(mapcat method-spec)
(apply hash-map)))

The easiest way to see what’s going on is to examine a sample output:

(method-specs ' ((method age [] (* 2 10)
(method greet [visitor] (str "Hello there, " visitor))))
;=> {:age (fn age []1 (* 2 10)),
:greet (fn greet [visitor] (str "Hello there, " visitor))}

You now have a literal map that can be evaluated to return one containing keywords as
keys for each method definition and an associated anonymous function. This map
could then be passed to the new-class function for later use. Here’s the associated
revision of new-class:

(defn new-class [class-name methods]
(fn klass [command & args]
(case command
:name (name class-name)
:new (new-object klass))))

Now that all the supporting pieces are in place, you can make the final change to def -
class, which will allow you to accept method definitions:
(defmacro defclass [class-name & specs]

(let [fns (or (method-specs specs) {})]
" (def ~class-name (new-class '~class-name ~fns))))
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Now, your desired syntax from before will work:

(defclass Person

(method age [] (* 2 10))

(method greet [visitor] (str "Hello there, " visitor)))
;=> #'user/Person

So you’ve successfully made it possible to specify methods along with the class
definitions. Note that the definition of new-class doesn’t yet do anything with
methods. Now, all you have to do is extend your objects so that you can invoke these
methods.

INVOKING METHODS

To be able to invoke a method on one of your objects, such as nancy, you’ll need some
way to look up the definition from the associated class. You’ll need to be able to query
the class of a given object for a particular method. Let’s add the :method message to
your classes, which would accept the name of the method you’re looking for. Consider
the following revision to the new-class function:

(defn new-class [class-name methods]
(fn klass [command & args]
(case command
:name (name class-name)
:new (new-object klass)
:method (let [[method-name] args]
(find-method method-name methods)))))

We haven’t defined find-method yet, so this code isn’t quite ready to be compiled. To
find a method from your previously created map of methods, you can do a simple
hash map lookup. Therefore, the implementation of £ind-method is simple:

(defn find-method [method-name instance-methods]
(instance-methods method-name))

With this addition, you can look up a method in a class, using the same keyword nota-
tion you’ve been using for all your other messages. Here’s an example:

(Person :method :age)
;=> #<user$age user$age@42443032>

Now that you can get a handle on the function object that represents a method,
you’re ready to call it. Indeed, you can call the previous function on the REPL, and it
will do what you laid out in the class definition:

((Person :method :age))
;=> 20

That works, but it’s far from pretty. You should be able to support the same familiar
interface of calling methods on objects that they belong to. Let’s expand the capability
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of the message-passing system you’ve built so far to handle such methods also. Here’s
an updated version of new-object that does this:

(defn new-object [klass]
(let [state (ref {})]
(fn [command & args]
(case command
:class klass
:class-name (klass :name)

:set! (let [[k v] args]
(dosync (alter state assoc k v))
nil)

:get (let [[key] args]
(estate key))
(if-let [method (klass :method command) ]
(apply method args)
(throw (RuntimeException.
(str "Unable to respond to " command))))))))

What’s added here is a default clause to case. If the message passed in isn’t one of
:class, :class-name, :set!, or :get, then you assume it’s a method call on the object.
You ask the class for the function by passing along the received command as the
method name, and if you get back a function, you execute it. Here it is in action:

(def shelly (Person :new))
;=> #'user/shelly

(shelly :age)

1=> 20

(shelly :greet "Nancy")
;=> "Hello there, Nancy"

Remember, for this to work, the definition of Person would need to be reevaluated
after these changes.

Once you're satisfied that your implementation does what you want so far, you’ll be
ready to move on to enabling objects to refer to themselves.

REFERRING TO THIS
So far, the method definitions have been simple. But there’s often a need for methods
within a class definition to call each other. Most programming languages that support
this feature do so via a special keyword (usually named this or self), which refers to
the object itself. Here you’ll support the same functionality by providing a special
name, which is also called this.

Once you’ve finished, you’d like to be able to say the following:

(defclass Person
(method age []1 (* 2 10))
(method about [diff]
(str "I was born about " (+ diff (this :age)) " years ago")))
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Notice how the about method calls the age method via the this construct. To imple-
ment this, you’ll first create a var named this, so that the class definitions continue to
work (without complaining about unresolved symbols):

(declare “:dynamic this)

This var will need a binding when any method executes so that its bound value refers
to the object itself. A simple binding form will do, as long as you have something to
bind to. You’ll employ the same trick you did when you named the anonymous class
function klass earlier, by naming the anonymous object function thiz. Here’s the
updated code for the new-object function:

(defn new-object [klass]
(let [state (ref {})]
(fn thiz [command & args]
(case command
:class klass
:class-name (klass :name)
:set! (let [[k v] argsl
(dosync (alter state assoc k v))
nil)
:get (let [[key] args] (estate key))
(let [method (klass :method command) ]
(if-not method
(throw (RuntimeException.
(str "Unable to respond to " command))))
(binding [this thiz]
(apply method args)))))))

And that’s all there is to it. Remember to evaluate the new, revised definition of new-
object (and Person), and then you can confirm that it works on the REPL:

(def shelly (Person :new))

;=> #'user/shelly

(shelly :about 2)

;=> "I was born about 22 years ago"

You’ve added almost all the features you wanted to when we started this section. The
last thing you’ll add is the ability of a class to inherit from another.

CLASS INHERITANCE

You’re about to add a final feature to your little object system. Traditional OOP lan-
guages such as Java and Ruby allow modeling of objects using inheritance so that
problems can be decomposed into hierarchies of functionality. The lower in a hierar-
chy you go, the more specific you get. For instance, Animal might be a parent class of
Dog. In this section, you’ll add the ability to do that.
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The first thing you’ll do is allow the class definition to specify the parent class.
Imagine that your syntax will look like this, with a choice of the word extends to sig-
nify the hierarchy:

(defclass Woman
(extends Person)
(method greet [v] (str "Hello, " v))
(method age [1 (* 2 9)))

Here, the new Woman class inherits from a previously defined Person class. The term
extends is used to signify this relationship, as is common to other OO languages.

Now that you have your notation, you need to implement it. The first step is to write
a function that can extract the parent class information from the class definition. Before
you can do so, you have to decide what to do if a parent class isn’t provided.

Again, you’ll look at other languages for the answer. Your class hierarchies will all
be singly rooted, and the top-level class (highest parent class) will be OBJECT. We’ll
define this shortly. For now, you’re ready to write parent-class-spec, the function
that will parse the specification of the parent class from a given class definition:

(defn parent-class-spec [sexprs]
(let [extends-spec (filter #(= 'extends (first %)) sexprs)
extends (first extends-spec)]
(if (empty? extends)
'OBJECT
(last extends))))

To confirm that this works, try it at the REPL. You’ll pass it the specification part of a
class definition:

(parent-class-spec ' ((extends Person)
(method age []1 (* 2 9))))
;=> Person

Now that you have the parent class, you’ll pass it to the new-class function. You
don’t want to pass a symbol as the parent class but rather the var named by that sym-
bol. For instance, the value returned by the call to parent-class-spec is a Clojure
symbol. If you have a symbol, you can find the var named by the symbol using the
var special form:

(var map)
;=> #'clojure.core/map

There’s a reader macro for the var special form, #' (the hash followed by a tick). With
this information in hand, you can make the needed modification to defclass:

(defmacro defclass [class-name & specs]
(let [parent-class (parent-class-spec specs)
fns (or (method-specs specs) {})]
“ (def ~class-name (new-class '~class-name #'~parent-class ~fns))))
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Note that you're now passing an extra parameter (the parent class) to the new-class
function, so you’ll have to change that to accommodate it:

(defn new-class [class-name parent methods]
(fn klass [command & args]
(case command

:name (name class-name)

:parent parent

:new (new-object klass)

:method (let [[method-name] args]

(find-method method-name methods)))))

There’s one more thing to handle before you can use your new defclass. You’re look-
ing up the parent class using the var special form, so you’ll need OBJECT to resolve to
something. It’s now time to define it:

(def OBJECT (new-class :0BJECT nil {}))

With these changes, the definition of the Woman class from earlier in this section
should work. Check this on the REPL as follows:

(defclass Person

(method age [] (* 2 10))
(method about [diff]
(str "I was born about " (+ diff (this :age)) " years ago")))

;=> #'user/Person

This is your parent class; now you’ll inherit from it to create the Woman class:

(defclass Woman
(extends Person)
(method greet [v] (str "Hello, " v))
(method age [1 (* 2 9)))

;=> #'user/Woman

You’ve only half-finished the job you started out to do. Although you can specify the
parent class in your calls to defclass, method calls on your objects won’t work right
with respect to parent classes.

The following illustrates the problem:

(def donna (Woman :new))

;=> #'user/donna

(donna :greet "Shelly")

;=> "Hello, Shelly"

(donna :age)

1=> 18

(donna :about 3)

RuntimeException Unable to respond to :about wuser/new-object/thiz--2733
(NO_SOURCE_PATH:1:1)

To fix this last error, you’ll have to improve the method lookup to find the method in
the parent class. Indeed, you’ll have to search up the hierarchy of classes (parent of
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the parent of the parent ...) until you hit OBJECT. You’ll implement this new method
lookup by modifying the find-method function as follows:

(defn find-method [method-name klass]
(or ((klass :methods) method-name)
(if-not (= #'OBJECT klass)
(find-method method-name (klass :parent)))))

For this to work, you’ll need to have the classes handle another message, namely
:methods. Also, the classes will use this new version of find-method to perform a
method lookup. Here’s the updated code:

(defn new-class [class-name parent methods]
(fn klass [command & args]
(case command
:name (name class-name)
:parent parent
:new (new-object klass)
:methods methods
:method (let [[method-name] args]
(find-method method-name klass)))))

With this final change, your object system will work as planned. Figure 8.2 shows the
conceptual model of the class system you’ve built.

— OBJECT
-
Methods
Parent -
Class object
I:Class Figure 8.2 The minimal object system you’ve
built implements a major portion of features that
are supported by most common 00 systems.
State . . .
Everything ultimately derives from a common

entity called OBJECT. Instances look up the

class they derive from and look up methods
there. Methods can also be looked up in the
chain of hierarchy.

Instance object
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Here’s the call to the :about method that wasn’t working a few paragraphs back:

(donna :about 3)
;=> "I was born about 21 years ago"

Again, remember to reevaluate everything after the last change, including the defini-
tions of Person, Woman, and donna itself. Notice that the :about method is being called
from the parent class Person. Further notice that the body of the :about method calls
:age on the this reference, which is defined in both Person and Woman. Your object
system correctly calls the one on donna, because you overrode the definition in the
Woman class.

You’ve completed what you set out to do. You’ve written a simple object system that
does most of what other languages provide. You can define classes, inherit from oth-
ers, create instances, and call methods that follow the inheritance hierarchy. Objects
can even refer to themselves using the this keyword. The following listing shows the
complete code.

(declare “:dynamic this)
(declare find-method)
(defn new-object [klass]
(let [state (ref {})]
(fn thiz [command & args]
(case command
:class klass
:class-name (klass :name)

:set! (let [[k v] args]
(dosync (alter state assoc k v))
nil)

:get (let [[key] args]
(estate key))
(let [method (klass :method command) ]
(if-not method
(throw (RuntimeException.
(str "Unable to respond to " command))))
(binding [this thiz]
(apply method args)))))))
(defn new-class [class-name parent methods]
(fn klass [command & args]
(case command
:name (name class-name)
:parent parent
:new (new-object klass)
:methods methods
:method (let [[method-name] args]
(find-method method-name klass)))))
(def OBJECT (new-class :OBJECT nil {}))
(defn find-method [method-name klass]
(or ((klass :methods) method-name)
(if-not (= #'OBJECT klass)
(find-method method-name (klass :parent)))))
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(defn method-spec [sexpr]
(let [name (keyword (second sexpr))
body (next sexpr)]
[name (conj body 'fn)]))
(defn method-specs [sexprs]
(->> sexprs
(filter #(= 'method (first %)))
(mapcat method-spec)
(apply hash-map)))
(defn parent-class-spec [sexprs]
(let [extends-spec (filter #(= 'extends (first %)) sexprs)
extends (first extends-spec)]
(if (empty? extends)
'OBJECT
(last extends))))
(defmacro defclass [class-name & specs]
(let [parent-class (parent-class-spec specs)
fns (or (method-specs specs) {})]
“ (def ~class-name (new-class '~class-name #'~parent-class ~fns))))

So that’s it, clocking in at a little over 50 lines of code. We haven’t added several fea-
tures that are provided by more robust object systems, but you can certainly do so.
For instance, this function doesn’t perform a lot of error checking. You should
extend this code to add syntactic checks to see if the made-up syntax is being used
correctly, for instance.

The key to this implementation is the lexical closure. It’s up to you to take a stand
on the old debate: Are objects a poor man’s closures, or is it the other way around?
More than anything else, though, it’s important to remember this: although this
example showed some of the power of functional programming (and that traditional
OOFP features aren’t particularly special), in most cases, such artificial constructs are
unnecessary in languages such as Clojure. We’ll talk about why this is next.

DATA ABSTRACTION
We mentioned that constructs such as the object system aren’t particularly useful in a
language such as Clojure. There are two reasons for this.

The first relates to abstraction. Despite popular belief, you don’t need objects to
create data abstraction. There’s a real alternative in Clojure in its core data structures:
each implementation of the sequence abstraction (the hash map, the vector, and so
on) is a suitable candidate to represent data in an application. Given that these are
immutable and therefore thread safe, there’s no strict need for procedural abstrac-
tions that wrap their mutation. Further, when you need to make a new abstraction of
your own that existing types might want to participate in, you can use Clojure’s proto-
col feature introduced in the next chapter.

The second reason is a bit more subjective. Alan Perlis once said that it’s better to
have 100 functions that operate on a single data structure instead of 10 functions that
operate on 10 data structures.! Having a common data structure (in Clojure’s case,

! “Epigrams on Programming,” SIGPLAN Notices 17(9), September 1982. Archived at http://goo.gl/6PtaEm.
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the sequence abstraction) allows for more code reuse, because code that works on
sequences can be used no matter what specific data it contains. An example is the
large sequence library, which works no matter what the specific implementation is.

Using the let-overlambda technique shown previously has its value, as you saw in
the earlier part of the chapter. But creating an object system like the one created in
the second half raises a barrier of inoperability with other libraries that don’t know
about it. In conclusion, although the object system serves to illustrate the use of clo-
sures and some traditional OOP concepts, using the builtin core data structures is a
much better choice in your own programs.

FINAL NOTES

It’s worth recalling that the implementation of this little object system was done
using functions. Fewer than half of the total lines of code were for manipulating
the functions, and the rest were to make the syntax look a certain way. The macro
defclass and the supporting functions (parent-class-spec, method-specs, and
method-spec) account for over half the code. This syntactic layer sports an arbi-
trarily chosen syntax. The semantics of the object system wouldn’t change if you
decided to use a different syntax. The syntax isn’t important (in this case certainly,
and also in general); instead, it’s the underlying mechanisms and features that make
a piece of code useful. Having said that, a nice syntax certainly helps! The first rea-
son is that it makes for convenient, intuitive use. The second is that you can write
error checkers that analyze the code as data and give meaningful errors that are eas-
ier to understand and correct. You could certainly do more at the syntactic level to
make this library easier to use.

Similarly, there are many features that you could add at a semantic level. For
instance, there’s no reason for a class hierarchy to be static. Instead of it being cast
in stone when defclass is called, you could add messages that support modifying
the hierarchy at runtime. As an example, your classes could respond to :set-class!
and :set-parent!. Adding such features might be an interesting exercise for a
spare afternoon.

Summary

This chapter was about functional programming, the understanding of which is cru-
cial to programming in Clojure. If you're coming from an imperative background,
this transition can take some effort. But the results are sweet, because functional code
is more expressive, more reusable, and usually shorter.

We started out by having you create your own implementations of map, reduce, and
filter—the workhorses of functional programming languages. Thinking recursively
and in terms of lazy sequences is another important skill that will have a big impact on
your Clojure programs.

We then looked at the technique of using partial function application to create
specialized functions. To understand how partial application works, we explored
lexical closures, another fundamental tool in the functional programmer’s tool belt.
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CHAPTER 8 More on functional programming

Once we presented a basic explanation of them, you gathered everything from this
chapter (and from the ones so far!) to create your own little object system. This exer-
cise was meant to demonstrate the power of closures and to also shed light on the fact
that functional programming transcends traditional OOP.

Next we’ll look at Clojure’s protocols, which allow you to add function implemen-
tations specific to a particular object type.
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