
Haralambos Marmanis
Dmitry Babenko

M A N N I N G

SAMPLE CHAPTER

by Haralambos Marmanis
and Dmitry Babenko

 Chapter 2

Algorithms of the
Intelligent Web

Copyright 2009 Manning Publications

v

brief contents
1 ■ What is the intelligent web? 1

2 ■ Searching 21

3 ■ Creating suggestions and recommendations 69

4 ■ Clustering: grouping things together 121

5 ■ Classification: placing things where they belong 164

6 ■ Combining classifiers 232

7 ■ Putting it all together: an intelligent news portal 278

Appendix A Introduction to BeanShell 317

B Web crawling 319

C Mathematical refresher 323

D Natural language processing 327

E Neural networks 330

21

Searching

Let’s say that you have a list of documents and you’re interested in reading about
those that are related to the phrase “Armageddon is near”—or perhaps something
less macabre. How would you implement a solution to that problem? A brute force,
and naïve, solution would be to read each document and keep only those in which
you can find the term “Armageddon is near.” You could even count how many
times you found each of the words in your search term within each of the docu-
ments and sort them according to that count in descending order. That exercise is
called information retrieval (IR) or simply searching. Searching isn’t new functional-
ity; nearly every application has some implementation of search, but intelligent
searching goes beyond plain old searching.

 Experimentation can convince you that the naïve IR solution is full of problems.
For example, as soon as you increase the number of documents, or their size, its per-
formance will become unacceptable for most purposes. Fortunately, there’s an enor-
mous amount of knowledge about IR and fairly sophisticated and robust libraries are

This chapter covers:
■ Searching with Lucene
■ Calculating the PageRank vector
■ Large-scale computing constraints

22 CHAPTER 2 Searching

available that offer scalability and high performance. The most successful IR library in
the Java programming language is Lucene, a project created by Doug Cutting almost 10
years ago. Lucene can help you solve the IR problem by indexing all your documents
and letting you search through them at lightning speeds! Lucene in Action by Otis
Gospodnetić and Erik Hatcher, published by Manning, is a must-read, especially if you
want to know how to index data and introduces search, sorting, filtering and highlight-
ing search results.

 State-of-the-art searching goes well beyond indexing. The fiercest competition
among search engine companies doesn’t involve the technology around indexing but
rather subjects such as link analysis, user click analysis, and natural-language process-
ing. These techniques strengthen the searching functionality, sometimes to the tune
of billions of dollars, as was the case with Google.

 In this chapter, we’ll summarize the features of the Lucene library and demon-
strate its use. We’ll present the PageRank algorithm, which has been the most suc-
cessful link analysis algorithm so far, and we’ll present a probabilistic technique for
conducting user click analysis. We’ll combine all these techniques to demonstrate
the improvement in the search results due to the synergies among them. The mate-
rial is presented in a successive manner, so you can learn as much as you want about
searching and come back to it later if you don’t have enough time now. Without fur-
ther ado, let’s collect a number of documents and search for various terms in them
by using Lucene.

2.1 Searching with Lucene
Searching with Lucene will be our baseline for the rest of the chapter. So, before we
embark on advanced intelligent algorithms, we need to learn the traditional IR steps.
On our journey, we’ll show you how to use Lucene to search a set of collected docu-
ments, we’ll present some of the inner workings of Lucene, and we’ll provide an over-
view of the basic stages for building a search engine.

 The data that you want to search could be in your database, on the internet, or on
any other network that’s accessible to your application. You can collect data from the
internet by using a crawler. A number of crawlers are freely available, but we’ll use a
crawler that we wrote for the purposes of this book. We’ll use a number of pages that
we collected on November 6, 2006, so we can modify them in a controlled fashion and
observe the effect of these changes in the results of the algorithms.

 These pages have been cleaned up and changed to form a tiny representation of
the internet. You can find these pages under the data/ch02/ directory. It’s important
to know the content of these documents, so that you can appreciate what the algo-
rithms do and understand how they work. Our 15 documents are (the choice of con-
tent was random):

23Searching with Lucene

■ Seven documents related to business news; three are related to Google’s expan-
sion into newspaper advertisement, another three discuss primarily about the
NVidia stock, and one about stock price and index movements.

■ Three documents related to Lance Armstrong’s attempt to run the marathon in
New York.

■ Four documents related to U.S. politics and, in particular, the congressional
elections (circa 2006).

■ Five documents related to world news; four about Ortega winning the elections
in Nicaragua and one about global warming.

Lucene can help us analyze, index, and search these and any other document that can
be converted into text, so it’s not limited to web pages. The class that we’ll use to
quickly read the stored web pages is called FetchAndProcessCrawler; this class can
also retrieve data from the internet. Its constructor takes three arguments:

■ The base directory for storing the retrieved data.
■ The depth of the link structure that should be traversed.
■ The maximum number of total documents that should be retrieved.

Listing 2.1 shows how you can use it from the BeanShell.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setDefaultUrls();

crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

oracle.search("armstrong",5);

The crawling and preprocessing stage should take only a few seconds, and when it fin-
ishes you should have a new directory under the base directory. In our example, the
base directory was C:/iWeb2/data/ch02. The new directory’s name will start with the
string crawl- and be followed by the numeric value of the crawl’s timestamp in milli-
seconds—for example, crawl-1200697910111.

 You can change the content of the documents, or add more documents, and rerun
the preprocessing and indexing of the files in order to observe the differences in your
search results. Figure 2.1 is a snapshot of executing the code from listing 2.1 in the
BeanShell, and it includes the results of the search for the term “armstrong.”

Listing 2.1 Reading, indexing, and searching the default list of web pages

Load files

Gather and
process content

Index content in directory

Search based on index just created

24 CHAPTER 2 Searching

Those are the high-level mechanics: load, index, search. It doesn’t get any simpler
than that! But how does it really work? What are the essential elements that partici-
pate in each stage?

2.1.1 Understanding the Lucene code

Let’s examine the sequence of events that allowed us to perform our search. The job
of the FetchAndProcessCrawler class is to retrieve the data and parse it. The result of
that processing is stored in the subdirectory called processed. Take a minute to look
in that folder. For every group of documents that are processed, there are four subdi-
rectories—fetched, knownurls, pagelinks, and processed. Note we’ve dissected the
web pages by separating metadata from the core content and by extracting the links
from one page to another—the so-called outlinks. The FetchAndProcessCrawler class
doesn’t use any code from the Lucene API.

bsh % FetchAndProcessCrawler c =

new FetchAndProcessCrawler("c:/iWeb2/data/ch02",5,200);

bsh % c.setDefaultUrls();

bsh % c.run();

There are no unprocessed urls.

--> 5.5Timer (s): [Crawler fetched data]

Timer (s): [Crawler processed data] --> 0.485

bsh %

bsh % LuceneIndexer lidx = new LuceneIndexer(c.getRootDir());

bsh % lidx.run();

Starting the indexing ... Indexing completed!

bsh % MySearcher oracle = new MySearcher(lidx.getLuceneDir());

bsh % oracle.search("armstrong",5);

Search results using Lucene index scores:

Query: armstrong

Document Title: Lance Armstrong meets goal in painful marathon

debut
-Document URL: file:/c:/iWeb2/data/ch02/sport 01.html -->

Relevance Score: 0.397706508636475

Document Title: New York 'tour' Lance's toughest

Document URL: file:/c:/iWeb2/data/ch02/sport-03.html -->

Relevance Score: 0.312822639942169

Document Title: New York City Marathon

-Document URL: file:/c:/iWeb2/data/ch02/sport-02.html ->

Relevance Score: 0.226110160350800

Figure 2.1 An example of retrieving, parsing, analyzing, indexing, and searching a set of web pages
with a few lines of code

25Searching with Lucene

 The next thing that we did was create an instance of the LuceneIndexer class and
call its run() method. This is where we use Lucene to index our processed content.
The Lucene index files will be stored in a separate directory called lucene-index. The
LuceneIndexer class is a convenience wrapper that helps us invoke the LuceneIndex-
Builder class from the Bean shell. The LuceneIndexBuilder class is where the
Lucene API is used. Figure 2.2 shows the complete UML diagram of the main classes
involved in retrieving and indexing the documents.

Listing 2.2 shows the entire code from the LuceneIndexBuilder class.

public class LuceneIndexBuilder implements CrawlDataProcessor {

 private File indexDir;

 public LuceneIndexBuilder(File indexDir) {

 this.indexDir = indexDir;

 try {
 IndexWriter indexWriter =

➥ new IndexWriter(indexDir, new StandardAnalyzer(), true);

 indexWriter.close();

Listing 2.2 The LuceneIndexBuilder creates a Lucene index

Figure 2.2 A UML diagram of the classes that we used to crawl, index, and search a set of web pages

Create Lucene index

26 CHAPTER 2 Searching

} catch(IOException ioX) {
 throw new RuntimeException("Error: ", ioX);
 }
 }
 public void run(CrawlData crawlData) {

 List<String> allGroups =
 crawlData.getProcessedDocsDB().getAllGroupIds();

 for(String groupId : allGroups) {
 buildLuceneIndex(groupId, crawlData.getProcessedDocsDB());
 }
 }

 private void buildLuceneIndex(String groupId,

➥ ProcessedDocsDB parsedDocsService) {

 try {

 List<String> docIdList =
parsedDocsService.getDocumentIds(groupId);

 IndexWriter indexWriter =

new IndexWriter(indexDir, new StandardAnalyzer(), false);

 for(String docId : docIdList) {

 indexDocument(indexWriter,

➥ parsedDocsService.loadDocument(docId));
 }

 indexWriter.close();

 } catch(IOException ioX) {
 throw new RuntimeException("Error: ", ioX);
 }
 }

 private void indexDocument(IndexWriter iw,

➥ ProcessedDocument parsedDoc) throws IOException {

 org.apache.lucene.document.Document doc =

➥ new org.apache.lucene.document.Document();

 doc.add(new Field("content", parsedDoc.getText(),

➥ Field.Store.NO, Field.Index.TOKENIZED));

 doc.add(new Field("url",

➥ parsedDoc.getDocumentURL().toExternalForm(),
➥ Field.Store.YES, Field.Index.NO));

 doc.add(new Field("docid", parsedDoc.getDocumentId(),

➥ Field.Store.YES, Field.Index.NO));

 doc.add(new Field("title", parsedDoc.getDocumentTitle(),

➥ Field.Store.YES, Field.Index.NO));

 doc.add(new Field("doctype", parsedDoc.getDocumentType(),

➥ Field.Store.YES,Field.Index.NO));
 iw.addDocument(doc);
 }
}

Get all document
groups

Get all documents
for group

Index all
documents

27Searching with Lucene

The IndexWriter class is what Lucene uses to create an index. It comes with a large
number of constructors, which you can peruse in the Javadocs. The specific construc-
tor that we use in our code takes three arguments:

■ The directory where we want to store the index.
■ The analyzer that we want to use—we’ll talk about analyzers later in this

section.
■ A Boolean variable that determines whether we need to override the existing

directory.

As you can see in listing 2.2, we iterate over the groups of documents that our crawler
has accumulated. The first group corresponds to the content of the initial URL list.
The second group contains the documents that we found while reading the content
of the initial URL list. The third group will contain the documents that are reachable
from the second group, and so on. Note that the structure of these directories
changes if you vary the parameter maxBatchSize of the BasicWebCrawler class. To
keep the described structure intact, make sure that the value of that parameter is set
to a sufficiently large number; for the purposes of this book, it’s set to 50.

 This directory structure will be useful when you use our crawler to retrieve a much
larger dataset from the internet. For the simple web page structure that we’ll use in
the book, you can see the effect of grouping if you add only a few URLs—by using the
addUrl method of the FetchAndProcessCrawler class—and let the crawler discover
the rest of the files.

 For each document within a group, we index its content. This takes place inside
the indexDocument method, which is shown at the bottom of listing 2.2. The Lucene
Document class encapsulates the documents that we’ve retrieved so that we can add
them in the index; that same class can be used to encapsulate not only web pages but
also emails, PDF files, and anything else that you can parse and transform into plain
text. Every instance of the Document class is a virtual document that represents a col-
lection of fields. Note that we’re using our dissection of the retrieved documents to
create various Field instances for each document:

■ The content field, which corresponds to the text representation of each docu-
ment, stripped of all the formatting tags and other annotations. You can find
these documents under the subdirectory processed/1/txt.

■ The url field represents the URL that was used to retrieve this document.
■ The docid field, which uniquely identifies each document.
■ The title field, which stores the title of each document.
■ The doctype field, which stores the document type of each document, such as

HTML or Microsoft Word.

The field content of every document is indexed but isn’t stored with the index files;
the other fields are stored with the index files but they aren’t indexed. The reason
being we want to be able to query against the content but we want to retrieve from the
index files the URL, the ID, and the title of each retrieved document.

28 CHAPTER 2 Searching

 This practice is common. You typically store a few pointers that allow you to iden-
tify what you’ve found in the index, but you don’t include the content inside the
index files unless you have good reasons for doing so (you may need part of the con-
tent immediately and the original source isn’t directly accessible). In that case, pay
attention to the size of the files that you’re creating during the indexing stage.

 We use the MySearcher class to search through our newly created index. Listing 2.3
shows all the code in that class. It requires a single argument to construct it—the direc-
tory where we stored the Lucene index—and then it allows us to search through the
search method, which uses two arguments:

■ A string that contains the query that we want to execute against the index
■ The maximum number of documents that we want to retrieve

public class MySearcher {

 private static final Logger log =

➥ Logger.getLogger(MySearcher.class);

 private String indexDir;

 public MySearcher(String indexDir) {
 this.indexDir = indexDir;
 }

 public SearchResult[] search(String query, int numberOfMatches) {

 SearchResult[] docResults = new SearchResult[0];
 IndexSearcher is = null;

 try {

 is = new IndexSearcher(FSDirectory.getDirectory(indexDir));

 } catch (IOException ioX) {
 log.error(ioX.getMessage());
 }

QueryParser qp = new QueryParser("content",
 new StandardAnalyzer());
 Query q = null;
 try {

 q = qp.parse(query);

 } catch (ParseException pX) {
 log.error(pX.getMessage());
 }

 Hits hits = null;
 try {

 hits = is.search(q);

 int n = Math.min(hits.length(), numberOfMatches);
 docResults = new SearchResult[n];

Listing 2.3 MySearcher: retrieving search results based on Lucene indexing

Open
Lucene
index

Create query
parser

Transform text query
into Lucene query

Search index

29Searching with Lucene

 for (int i = 0; i < n; i++) {

 docResults[i] = new SearchResult(hits.doc(i).get("docid"),
 hits.doc(i).get("doctype"),
 hits.doc(i).get("title"),
 hits.doc(i).get("url"),
 hits.score(i));

 // report the results
 System.out.println(docResults[i].print());
 }
 is.close();

 } catch (IOException ioX) {
 log.error(ioX.getMessage());
 }
 return docResults;
 }
}

Let’s review the steps in listing 2.3:

1 We use an instance of the Lucene IndexSearcher class to open our index for
searching.

2 We create an instance of the Lucene QueryParser class by providing the name
of the field that we query against and the analyzer that must be used for token-
izing the query text.

3 We use the parse method of the QueryParser to transform the human-readable
query into a Query instance that Lucene can understand.

4 We search the index and obtain the results in the form of a Lucene Hits object.
5 We loop over the first n results and collect them in the form of our own

SearchResult objects. Note that Lucene’s Hits object contains only references
to the underlying documents. We use these references to collect the required
fields; for example, the call hits.doc(i).get("url") will return the URL that
we stored in the index.

6 The relevance score for each retrieved document is recorded. This score is a num-
ber between 0 and 1.

Those elements constitute the mechanics of our specific implementation. Let’s take a
step back and view the bigger picture of conducting searches based on indexing. This
will help us understand the individual contributions of index-based search engines,
and will prepare us for a discussion about more advanced search features.

2.1.2 Understanding the basic stages of search

If we could travel back in time (let’s say to 1998), what would be the basic stages of
work we’d need to perform to build a search engine? These stages are the same today
as they were in 1998 but we’ve improved their effectiveness and computational perfor-
mance. Figure 2.3 depicts the basic stages in conventional searching:

Collect first
N search
results

Score for i-th
document

30 CHAPTER 2 Searching

■ Crawling
■ Parsing
■ Analyzing
■ Indexing
■ Searching

Crawling refers to the process of gathering
the documents on which we want to enable
the search functionality. It may not be nec-
essary if the documents exist or have been
collected already. Parsing is necessary for
transforming the documents (XML, HTML,
Word, PDF) into a common structure that
will represent the fields of indexing in a
purely textual form. For our examples,
we’re using the code from the NekoHTML
project. NekoHTML contains a simple
HTML parser that can scan HTML files and
“fix” many common mistakes that occur in
HTML documents, adding missing parent
elements, automatically closing elements
with optional end tags, and handling mismatched inline element tags. NekoHTML is
fairly robust and sufficiently fast, but if you’re crawling special sites, you may want to
write your own parser.

 If you plan to index PDF documents, you can use the code from the PDFBox project
(http://www.pdfbox.org/); it’s released under the BSD license and has plenty of docu-
mentation. PDFBox includes the class LucenePDFDocument, which can be used to obtain
a Lucene Document object immediately with a single line of code such as the following:

Document doc = LucenePDFDocument.convertDocument(File file)

Look at the Javadocs for additional information. Similar to PDF documents, there are
also parsers for Word documents. For example, the Apache POI project (http://
poi.apache.org/) provides APIs for manipulating file formats based on Microsoft’s
OLE 2 Compound Document format using pure Java. In addition, the TextMining
code, available at http://www.textmining.org/, provides a Java library for extracting
text from Microsoft Word 97, 2000, XP, and 2003 documents.

 The stage of analyzing the documents is very important. In listing 2.2 and listing
2.3, the Lucene class StandardAnalyzer was used in two crucial places in the code,
but we didn’t discuss it before now. As figure 2.3 indicates, our parsers will be used to
extract text from their respective documents, but before the textual content is
indexed, it’s processed by a Lucene analyzer. The work of an analyzer is crucial
because analyzers are responsible for tokenizing the text that’s to be indexed. This
means that they’ll keep some words from the text that they consider to be important

HTML
Parser

Lucene
Analyzer

PDF
Parser

Word
Parser

RTF
Parser

XML
Parser

Lucene
Index

Lucene
Analyzer

Lucene
Queries

User
Query

HTML PDF Word RTF XML

Crawler

Figure 2.3 An overview of searching for a set
of documents with different formats

31Searching with Lucene

while they ignore everything else. If you ignore something that’s of interest to you dur-
ing the analysis stage then you’ll never find it during your search, no matter how
sophisticated your indexing algorithm is.

 Of course, analyzers can’t select the appropriate fields for you. As an example, in
listing 2.2, we’ve explicitly defined the four fields that we’re interested in. The Stan-
dardAnalyzer will process the content field, which is the only field indexed. This
default analyzer is the most general purpose built-in analyzer for Lucene. It intelli-
gently tokenizes alphanumerics, acronyms, company names, email addresses, com-
puter host names, and even CJK (Chinese, Japanese, and Korean) characters, among
other things.

 The latest version of Lucene (2.3 at the time of this writing) uses a lexical ana-
lyzer that’s written in Java and called JFlex (http://jflex.de/). The Lucene Standard-
Tokenizer is a grammar-based tokenizer that’s constructed with JFlex, and it’s used in
the StandardAnalyzer. To convince you of the analyzer’s importance, replace the
StandardAnalyzer with the WhitespaceAnalyzer and observe the difference in the
resulting scores. Lucene analyzers provide a wealth of capabilities, such as the ability
to add synonyms, modify stop words (words that are explicitly removed from the text
before indexing), and deal with non-English languages. We’ll use Lucene analyzers
throughout the book, even in chapters that don’t deal with search. The general idea
of identifying the unique characteristics of a text description is crucial when we deal
with documents. Thus, analyzers become very relevant in areas such as the develop-
ment of spam filters, recommendations that are based on text, enterprise, or tax com-
pliance applications, and so on.

 The Lucene indexing stage is completely transparent to the end user but it’s also
powerful. In a single index, you can have Lucene Documents that correspond to dif-
ferent entities (such as emails, memos, legal documents) and therefore are charac-
terized by different fields. You can also remove or update Documents from an index.
Another interesting feature of Lucene’s indexing is boosting. Boosting allows you to
mark certain documents as more or less important than other documents. In the
method indexDocument described in the listing 2.2, you could add a statement such
as the following:

if (parsedDoc.getDocumentId().equals("g1-d14")) {
 doc.setBoost(2);
}

You can find this statement in the code, commented out and marked as “To Do.” If
you remove the comments, compile the code, and run again the script of listing 2.1,
you’ll notice that the last document is now first. Boosting has increased—in fact, it has
doubled—the score of every Field for this document. You can also boost individual
Fields in order to achieve more granular results from your boosting.

 Searching with Lucene can’t be easier. As you’ve seen, using our MySearcher wrap-
per, it’s a matter of two lines of code. Although we used a simple word in our example
of listing 2.1, Lucene provides sophisticated query expression parsing through the

32 CHAPTER 2 Searching

QueryParser class. Sometimes you may have to use different means for creating the
Lucene Query. To search for the term “nasdaq index” and allow for the possibility of
results that refer to “nasdaq composite index,” you’d use the class PhraseQuery. In
this case, the term “index” can be a term apart from the term “nasdaq”. The maxi-
mum number of terms that can separate “nasdaq” and “index” is set by a parameter
called slope. By setting the slope equal to 1, we can achieve the desired result. For this
and more powerful features of searching with Lucene, we encourage you to explore
the Lucene APIs and documentation.

2.2 Why search beyond indexing?
Now that we’ve showed you how to quickly index your documents with Lucene and
execute queries against those indices, you’re probably convinced that using Lucene is
easy and wonderful. You may wonder: “If Lucene is so sophisticated and efficient, why
bother with anything else?” In this section we’ll demonstrate why searching beyond
indexing is necessary. We mentioned the reasons in passing in chapter 1, but in this
section we’ll discuss the issue in more depth. Let’s add a new document to our list of
seeding URLs. Listing 2.4 is similar to listing 2.1, but it now includes a URL that con-
tains spam.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setDefaultUrls();

crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-01.html");

crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

oracle.search("armstrong",5);

Figure 2.4 shows the results of the search for “Armstrong.” You can see that the care-
fully crafted spam web page catapulted to first place in our ranking. You can create
three or more similar spam pages and add them to your URL list to convince yourself
that pretty soon the truly relevant content will be lost in a sea of spam pages!

 Unlike a set of documents in a database or on your hard drive, the content of the
Web isn’t regulated. Hence, the deliberate creation of deceptive web pages can render
traditional IR techniques practically useless. If search engines relied solely on tradi-
tional IR techniques then web surfing for learning or entertainment—our national
online sport—wouldn’t be possible. Enter a new brave world: link analysis! Link analy-
sis was the first (and a significant) contribution toward fast and accurate searching on
a set of documents that are linked to each other explicitly, such as internet web pages.

Listing 2.4 Reading, indexing, and searching web pages that contain spam

Add web page
with spam

Build Lucene
index Build

plain
search
engine

33Improving search results based on link analysis

It propelled Google from anonymity to world domination in that space and advanced
many other areas of research and development.

 Link analysis is a structural characteristic of the internet. Another characteristic of
the internet is user click analysis, which is behavioral. In short, user click analysis refers
to the recording of the user’s clicks as she navigates the search pages, and the subse-
quent processing of these recordings for the purpose of improving the ranking of the
results for this particular user. It’s based on the premise that if you search for a term
and find a page that’s relevant (based on your criteria) you’ll most likely click on that
page. Conversely, you wouldn’t click pages that are irrelevant to your search term and
your search intention. We emphasize the term because this is a deviation from tradi-
tional applications, where the response of the system was based on the user’s direct
input alone. If the application can detect your intentions then it has achieved a major
milestone toward intelligence, which is the ability to learn about the user without the
programmer entering the answer from a “back door.”

2.3 Improving search results based on link analysis
In our effort to search beyond indexing, we’ll present the link analysis algorithm that
makes Google special—PageRank. The PageRank algorithm was introduced in 1998, at
the seventh international World Wide Web conference (WWW98), by Sergey Brin and

bsh % oracle.search("armstrong",5);

Search results using Lucene index scores:

Query: armstrong

Document Title: Cheap medicine -- low interest loans

Document URL: file:/c:/iWeb2/data/ch02/spam-01.html --> Relevance

Score: 0.591894507408142

__

Document Title: Lance Armstrong meets goal in painful marathon

debut

Document URL: file:/c:/iWeb2/data/ch02/sport-01.html -->

Relevance Score: 0.370989531278610

__

Document Title: New York 'tour' Lance's toughest

Document URL: file:/c:/iWeb2/data/ch02/sport-03.html -->

Relevance Score: 0.291807949542999
__

Document Title: New York City Marathon

Document URL: file:/c:/iWeb2/data/ch02/sport-02.html -->

Relevance Score: 0.210920616984367

__

bsh %

Figure 2.4 A single deceptive web page significantly altered the ranking of the results for the query
“Armstrong.”

34 CHAPTER 2 Searching

Larry Page in a paper titled “The anatomy of a large-scale hypertextual Web search
engine.” Around the same time, Jon Kleinberg at IBM Almaden had discovered the
Hypertext Induced Topic Search (HITS) algorithm. Both algorithms are link analysis models,
although HITS didn’t have the degree of commercial success that PageRank did.

 In this section, we’ll introduce the basic concepts behind the PageRank algorithm
and the mechanics of calculating ranking values. We’ll also examine the so-called tele-
portation mechanism and the inner workings of the power method, which is at the heart of
the PageRank algorithm. Lastly, we’ll demonstrate the combination of index scores
and PageRank scores for improving our search results.

2.3.1 An introduction to PageRank

The key idea of PageRank is to consider hyper-
links from one page to another as recommen-
dations or endorsements. So, the more en-
dorsements a page has the higher its impor-
tance should be. In other words, if a web page
is pointed to by other, important pages, then
it’s also an important page. Hold on a second!
If you need to know what pages are important
in order to determine the important pages,
how does it work? Let’s take a specific example
and work out the details.

 Figure 2.5 shows the directed graph for all
our sample web pages that start with the pre-
fix biz. The titles of these articles and their file
names are given in table 2.1.

 If web page A has a link to web page B, there’s an arrow pointing from A to B. Based
on this figure, we’ll introduce the hyperlink matrix H and a row vector p (the PageRank
vector). Think of a matrix as nothing more than a table (a 2D array) and a vector as a

Table 2.1 The business news documents and their connection (see also figure 2.5)

Title File name Links to

Google Expands into Newspaper Ads biz-01.html biz-02, biz-03

Google’s Sales Pitch to Newspapers biz-02.html (No outlink; dangling node)

Google Sells Newspaper Ads biz-03.html biz-01, biz-02, biz-05

NVidia Now a Supplier for MP3 Players biz-04.html biz-05, biz-06

Nvidia Shares Up on PortalPlayer Buy biz-05.html biz-04, biz-06

Chips Snap: Nvidia, Altera Shares Jump biz-06.html biz-04

Economic Stimulus Plan Helps Stock Prices biz-07.html biz-02, biz-04

Biz-01 Biz-02

Biz-03 Biz-06Biz-04

Biz-07

Biz-05

Figure 2.5 A directed graph that
represents the linkage between the
“biz” web pages.

35Improving search results based on link analysis

single array in Java. Each row in the matrix H is constructed by counting the number of
all the outlinks from page Pi , say N(i) and assigning to column j the value 1/N(i) if
there’s an outlink from page Pi to page Pj, or assigning the value 0 otherwise. Thus, for
the graph in Figure 2.5, our H matrix would look like table 2.2.

A couple of things stand out:

■ There are a lot of zeros in that matrix—we call these matrices sparse. That’s not
a curse; it’s actually a good thing. It’s the result of the fact that a web page typi-
cally links to only a small number of other web pages—small with respect to the
total number of web pages on the internet. Sparse matrices are desirable
because their careful implementation can save a lot of storage space and com-
putational time.

■ All values in the matrix are less than or equal to 1. This turns out to be very
important. There’s a connection between the “random” surfer that Brin and
Page envisioned (see section 2.3.2) and the theory of transition probability
matrices, also known as Markov chain theory. That connection guarantees certain
desirable properties for the algorithm.

2.3.2 Calculating the PageRank vector

The PageRank algorithm calculates the vector p using the following iterative formula:

p (k+1) = p (k) * H

The values of p are the PageRank values for every page in the graph. You start with a
set of initial values such as p(0) = 1/n, where n is the number of pages in the graph,
and use the formula to obtain p(1), then p(2), and so on, until the difference between
two successive PageRank vectors is small enough; that arbitrary smallness is also
known as the convergence criterion or threshold. This iterative method is the power method
as applied to H. That, in a nutshell, is the PageRank algorithm.

 For technical reasons—the convergence of the iterations to a unique PageRank vec-
tor—the matrix H is replaced by another matrix, usually denoted by G (the Google
matrix), which has better mathematical properties. We won’t review the mathematical

Table 2.2 The H matrix for the business news pages and their connection (see also figure 2.5)

0 1/2 1/2 0 0 0 0

0 0 0 0 0 0 0

1/3 1/3 0 0 1/3 0 0

0 0 0 0 1/2 1/2 0

0 0 0 1/2 0 1/2 0

0 0 0 1 0 0 0

0 1/2 0 1/2 0 0 0

36 CHAPTER 2 Searching

details of the PageRank algorithm here, but let’s describe the rationale behind Page-
Rank and the problems that lead us to alter the matrix so that you have a better idea
of what’s going on.

 The PageRank algorithm begins by envisioning a user who “randomly” surfs the
Web. Our surfer can start from any given web page with outlinks. From there, by fol-
lowing one of the provided outlinks, he lands on another page. Then, he selects a new
outlink to follow, and so on. After several clicks and trips through the graph, the pro-
portion of time that our surfer spends on a given page is a measure of the relative
importance that the page has with respect to the other pages on the graph. If the surf-
ing is truly random—without an explicit bias—our surfer will visit pages that are
pointed to by other pages, thus rendering those pages more important. That’s all
good and straightforward, but there are two problems.

 The first problem is that on the internet there are some pages that don’t point to
any other pages; in our example, such a web page is biz-02 in figure 2.5. We call these
pages of the graph dangling nodes. These nodes are a problem because they trap our
surfer; without outlinks, there’s nowhere to go! They correspond to rows that have
value equal to zero for all their cells in the H matrix. To fix this problem, we introduce
a random jump, which means that once our surfer reaches a dangling node, he may go
to the address bar of his browser and type the URL of any one of the graph’s pages. In
terms of the H matrix, this corresponds to setting all the zeros (of a dangling node
row) equal to 1/n, where n is the number of pages in the graph. Technically, this cor-
rection of the H matrix is referred to as the stochasticity adjustment.

 The second problem is that sometimes our surfer may get bored, or interrupted,
and may jump to another page without following the linked structure of the web
pages; the equivalent of Star Trek’s teleportation beam. To account for these arbitrary
jumps, we introduce a new parameter that, in our code, we call alpha. This parameter
determines the amount of time that our surfer will surf by following the links versus
jumping arbitrarily from one page to another page; this parameter is sometimes
referred to as the damping factor. Technically, this correction of the H matrix is
referred to as the primitivity adjustment.

 In the code, you’ll find explicit annotations for these two problems. You don’t
need to worry about the mathematical details, but if you do, Google’s PageRank and
Beyond: The Science of Search Engine Rankings by Amy Langville and Carl Meyer is an
excellent reference. So, let’s get into action and get the H matrix by running some
code. Listing 2.5 shows how to load just the web pages that belong to the business
news and calculate the PageRank that corresponds to them.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz");
crawler.run();

Listing 2.5 Calculating the PageRank vector

Load business web pages

37Improving search results based on link analysis

PageRank pageRank = new PageRank(crawler.getCrawlData());

pageRank.setAlpha(0.8);

pageRank.setEpsilon(0.0001);

pageRank.build();

Figure 2.6 shows a screenshot of the results. The page with the lowest relevance is
biz-07.html; the most important page, according to PageRank, is biz-04.html. We’ve
calculated a measure of relevance for each page that doesn’t depend on the search
term! We’ve calculated the PageRank values for our network.

Build PageRank
instance

Find PageRank values

Iteration: 8, PageRank convergence error:

1.4462733376210263E-4

Index: 0 --> PageRank: 0.03944811976367004

Index: 1 --> PageRank: 0.09409188129468615

Index: 2 --> PageRank: 0.32404719855854225

Index: 3 --> PageRank: 0.24328037107628753

Index: 4 --> PageRank: 0.18555028886849476

Index: 5 --> PageRank: 0.05593157626783124

Index: 6 --> PageRank: 0.061816733771795335

 Iteration: 9, PageRank convergence error:

5.2102415715682415E-5

Index: 0 --> PageRank: 0.039443819850858625

Index: 1 --> PageRank: 0.09407831778282823

Index: 2 --> PageRank: 0.3240636997004271

Index: 3 --> PageRank: 0.24328782624042117

Index: 4 --> PageRank: 0.18555238603685822

Index: 5 --> PageRank: 0.0559269660757835

Index: 6 --> PageRank: 0.06181315844717868

______________ Calculation Results _______________

Page U RL: file:/c:/iWeb2/data/ch02/biz-04.html --> Rank:

0.324063699700427

Page URL: file:/c:/iWeb2/data/ch02/biz-06.html --> Rank:

0.243287826240421

Page URL: file:/c:/iWeb2/data/ch02/biz-05.html --> Rank:

0.185552386036858

Page URL: file:/c:/iWeb2/data/ch02/biz-02.html --> Rank:

0.094078317782828

Page URL: file:/c:/iWeb2/data/ch02/biz-03.html --> Rank:

0.061813158447179

Page URL: file:/c:/iWeb2/data/ch02/biz-01.html --> Rank:

0.055926966075784

Page URL: file:/c:/iWeb2/data/ch02/biz-07.html --> Rank:

0.039443819850859

__

Figure 2.6 The calculation of the PageRank vector for the small network of the business news web pages

38 CHAPTER 2 Searching

2.3.3 alpha: The effect of teleportation between web pages

Let’s vary the value of alpha from 0.8 to some other value between 0 and 1, in order
to observe the effect of the teleportation between web pages on the PageRank values.
As alpha approaches zero, the PageRank values for all pages tends to the value 1/7
(approximately equal to the decimal value 0.142857), which is exactly what you’d
expect because our surfer is choosing his next destination at random, not on the
basis of the links. On the other hand, as alpha approaches one, the PageRank values
will converge to the PageRank vector that corresponds to a surfer who closely follows
the links.

 Another effect you should observe as the value of alpha approaches one is the num-
ber of iterations, which are required for convergence, increases. In fact, for our small
web page network, we have table 2.3 (we keep the error tolerance equal to 10-10).

As you can see, the number of iterations grows rapidly as the value of alpha increases.
For seven web pages, the effect is practically insignificant, but for 8 billion pages
(roughly the number of pages that Google uses), a careful selection of alpha is cru-
cial. In essence, the selection of alpha is a trade-off between adherence to the struc-
ture of the Web and computational efficiency. The value that Google is allegedly using
for alpha is equal to 0.85. A value between 0.7 and 0.9 should provide you with a good
trade-off between effectiveness and efficiency in your application, depending on the
nature of your graph and user browsing habits.

 There are techniques that can accelerate the convergence of the power method as
well as methods that don’t rely on the power method at all, the so-called direct methods.
The latter are more appropriate for smaller networks (such as a typical intranet) and
high values of alpha (for example, 0.99). We’ll provide references at the end of this
chapter, if you’re interested in learning more about these methods.

2.3.4 Understanding the power method

Let’s examine the code that calculates the PageRank values in more detail. Listing 2.6
shows an excerpt of the code responsible for evaluating the matrix H based on the
link information; it’s from the class iweb2.ch2.ranking.PageRankMatrixH.

Alpha Number of iterations

0.50 13

0.60 15

0.75 19

0.85 23

0.95 29

0.99 32 Table 2.3 Effect of increasing alpha values on the
number of iterations for the biz set of web pages

39Improving search results based on link analysis

public void addLink(String pageUrl) {
 indexMapping.getIndex(pageUrl);
}

public void addLink(String fromPageUrl,

➥ String toPageUrl, double weight) {

 int i = indexMapping.getIndex(fromPageUrl);
 int j = indexMapping.getIndex(toPageUrl);

 try {

 matrix[i][j] = weight;

 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("fromPageUrl:" + fromPageUrl

➥ + ", toPageUrl: " + toPageUrl);
 }
 }

public void addLink(String fromPageUrl, String toPageUrl) {
 addLink(fromPageUrl, toPageUrl, 1);
 }

public void calculate() {

 for(int i = 0, n = matrix.length; i < n; i++) {

 double rowSum = 0;

 for(int j = 0, k = matrix.length; j < k; j++) {

 rowSum += matrix[i][j];
 }

 if(rowSum > 0) {

 for(int j = 0, k = matrix.length; j < k; j++) {

 if(matrix[i][j] > 0) {

 matrix[i][j] =

➥ (double)matrix[i][j] / (double) rowSum;
 }
 }
 } else {

 numberOfPagesWithNoLinks++;
 }
 }
}

/**
 * A dangling node corresponds to a web page that has no outlinks.
 * These nodes result in an H row that has all its values equal to 0.
 */
public int[] getDangling() {

 int n = getSize();
 int[] d = new int[n];

Listing 2.6 Evaluating the matrix H based on the links between web pages

Assign initial
values

B

C
Calculate substochastic
version of matrix

Handle dangling node entriesD

40 CHAPTER 2 Searching

 boolean foundOne = false;

 for (int i=0; i < n; i++) {

 for (int j=0; j < n; j++) {

 if (matrix[i][j] > 0) {

 foundOne = true;
 break;
 }
 }

 if (foundOne) {
 d[i] = 0;
 } else {
 d[i] = 1;
 }

 foundOne = false;
 }
 return d;
}

The addLink methods allow us to assign initial values to the matrix variable, based on
the links that exist between the pages.

The calculate method sums up the total number of weights across a row (outlinks)
and replaces the existing values with their weighted counterparts. Once that’s done, if
we add up all the entries in a row, the result should be equal to 1 for every nondan-
gling node. This is the substochastic version of the original matrix.

The dangling nodes are treated separately, since they have no outlinks. The get-
Dangling() method will evaluate what rows correspond to the dangling nodes and
will return the dangling vector.

Recall that we’ve separated the final matrix composition into three parts: the basic
link contribution, the dangling node contribution, and the teleportation contribu-
tion. Let’s see how we combine them to get the final matrix values that we’ll use for
the evaluation of the PageRank. Listing 2.7 shows the code that’s responsible for
assembling the various contributions and executing the power method. This code can
be found in the iweb2.ch2.ranking.Rank class.

public void findPageRank(double alpha, double epsilon) {

 // A counter for our iterations
 int k = 0;

 // auxiliary variable
 PageRankMatrixH matrixH = getH();

 // The H matrix has size nxn and the PageRank vector has size n
 int n = matrixH.getSize();

 //auxiliary variable – inverse of n
 double inv_n = (double)1/n;

Listing 2.7 Applying the power method for the calculation of PageRank

B

C

D

41Improving search results based on link analysis

 // This is the actual nxn matrix of double values
 double[][] H = matrixH.getMatrix();

 // A dummy variable that holds our error, arbitrarily set to a value of 1
 double error = 1;

 // This holds the values of the PageRank vector
 pR = new double[n];

 // PageRank copy from the previous iteration
 // The only reason that we need this is for evaluating the error
 double[] tmpPR = new double[n];

 // Set the initial values (ad hoc)
 for (int i=0; i < n; i++) {
 pR[i] = inv_n;
 }

 // Book Section 2.3 -- Altering the H matrix: Dangling nodes

 double[][] dNodes= getDanglingNodeMatrix();

 // Book Section 2.3 -- Altering the H matrix: Teleportation

 double tNodes=(1 - alpha) * inv_n;

 //Replace the H matrix with the G matrix
 for (int i=0; i < n; i++) {
 for (int j=0; j < n; j++) {

 H[i][j] = alpha*H[i][j] + dNodes[i][j] + tNodes;
 }
 }

 // Iterate until convergence!
 // If error is smaller than epsilon then we've found the PageRank values
 while (error >= epsilon) {

 // Make a copy of the PageRank vector before we update it
 for (int i=0; i < n; i++) {
 tmpPR[i] = pR[i];
 }

 double dummy =0;

 // Now we get the next point in the iteration
 for (int i=0; i < n; i++) {

 dummy =0;

 for (int j=0; j < n; j++) {

 dummy += pR[j]*H[j][i];
 }

 pR[i] = dummy;
 }

 // Get the error, so that we can check convergence
 error = norm(pR,tmpPR);

 //increase the value of the counter by one
 k++;

42 CHAPTER 2 Searching

 }

 // Report the final values
 System.out.println(

➥ "\n______________ Calculation Results _______________\n");
 for (int i=0; i < n; i++) {
 System.out.println("Page URL: "+

➥ matrixH.getIndexMapping().getValue(i)+" --> Rank: "+pR[i]);
 }
}

Given the importance of this method, we’ve gone to great lengths to make this as easy
to read as possible. We’ve removed some Javadoc associated with a to-do topic, but
otherwise this snippet is intact. So, we start by getting the values of the matrix H based
on the links and then initialize the PageRank vector. Subsequently, we obtain the dan-
gling node contribution and the teleportation contribution. Note that the dangling
nodes require a full 2D array, whereas our teleportation contribution requires only a
single double variable. Once we have all three components, we add them together.
This is the most efficient way to prepare the data for the power method, but instead of
full 2D arrays, you should use sparse matrices; we describe this enhancement in one of
the to-do topics at the end of the chapter.

 Once the new H matrix has been computed, we begin the power method—the
code inside the while loop. We know that we’ve attained the PageRank values if our
error is smaller than the arbitrarily small value epsilon. Of course, that makes you
wonder: What if I change epsilon? Will the PageRank values change? If so, what
should the value of epsilon be? Let’s take these questions one by one. First, let’s say
that the error is calculated as the absolute value of the term by term difference
between the new and the old PageRank vectors. Listing 2.8 shows the method norm,
from the iweb2.ch2.ranking.Rank class, which evaluates the error.

private double norm(double[] a, double[] b) {

 double norm = 0;

 int n = a.length;

 for (int i=0; i < n; i++) {
 norm += Math.abs(a[i]-b[i]);
 }

 return norm;
}

If you run the code a few times, or observe figure 2.6 closely, you’ll realize that the values
of the PageRank at the time of convergence change at the digit that corresponds to the
smallness of epsilon. So, the value of epsilon ought to be small enough to allow us to
separate all web pages according to the PageRank values. If we have 100 pages then a
value of epsilon equal to 0.001 should be sufficient. If we have the entire internet, about
1010 web pages, then we need a value of epsilon that is about 10-10 small.

Listing 2.8 Evaluation of the error between two consecutive PageRank vectors

43Improving search results based on link analysis

2.3.5 Combining the index scores and the PageRank scores

Now that we’ve showed you how to implement the PageRank algorithm, we’re ready to
show you how to combine the Lucene search scores with the relevance of the pages as
given by the PageRank algorithm. We’ll use the same seven web pages that refer to busi-
ness news, but this time we’ll introduce three spam pages (called spam-biz-0x.html,
where x stands for a numeral). The spam pages will fool the index-based search, but they
won’t fool PageRank.

 Let’s run this scenario and see what happens. Listing 2.9 shows you how to

■ Load the business web pages, as we did before.
■ Add the three spam pages, one for each subject.
■ Index all the pages.
■ Build the PageRank.
■ Compute a hybrid ranking score that incorporates both the index relevance

score (from Lucene) and the PageRank score.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz");

crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-01.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-02.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-03.html");
crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

PageRank pageRank = new PageRank(crawler.getCrawlData());
pageRank.setAlpha(0.99);
pageRank.setEpsilon(0.00000001);
pageRank.build();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

oracle.search("nvidia",5, pageRank);

The results of our search for “nvidia” are shown in figure 2.7. First, we print the result
set that’s based on Lucene alone, then we print the resorted results where we took
into account the PageRank values. As you can see, we have a talent for spamming! The
deceptive page comes first in our result set when we use Lucene alone. But when we
apply the hybrid ranking, the most relevant pages come up first. The spam page went
down in the abyss of irrelevance where it belongs! You’ve just written your first
Google-like search engine. Congratulations!

 The code that combines the two scores can be found in the class MySearcher
inside the overloaded method search that uses the PageRank class as an argument.

Listing 2.9 Combining the Lucene and PageRank scores for ranking web pages

Add spam
pages

Index all
pages

Build PageRank

Search using combined score

44 CHAPTER 2 Searching

The snippet of code in listing 2.10 is from that method and captures the combination
of the two scores.

bsh % oracle.search("nvidia",5,pr);

Search results using Lucene index scores:

Query: nvidia

Document Title: NVIDIA shares plummet into cheap medicine for

you!

Document URL: file:/c:/iWeb2/data/ch02/spam-biz-02.html -->

Relevance Score: 0.519243955612183

Document Title: Nvidia shares up on PortalPlayer buy

Document URL: file:/c:/iWeb2/data/ch02/biz 05.html

Relevance Score: 0.254376530647278

Document Title: NVidia Now a Supplier for MP3 Players

Document URL: file:/c:/iWeb2/data/ch02/biz 04.html -->

Relevance Score: 0.190782397985458

Document Title: Chips Snap: Nvidia, Altera Shares Jump

Document URL: file:/c:/iWeb2/data/ch02/biz 06.html -->

Relevance Score: 0.181735381484032

Document Title: Economic stimulus plan helps stock prices

Document URL: file:/c:/iWeb2/data/ch02/biz 07.html -->

Relevance Score: 0.084792181849480

Search results using combined Lucene scores and page rank scores:

Query: nvidia

Document URL: file:/c:/iWeb2/data/ch02/biz 04.html -->

Relevance Score: 0.087211910261991

Document URL: file:/c:/iWeb2/data/ch02/biz 06.html -->

Document URL: file:/c:/iWeb2/data/ch02/biz 05.html -->

Relevance Score: 0.062737066556678

Document URL: file:/c:/iWeb2/data/ch02/spam -biz- 02.html -->

Document URL: file:/c:/iWeb2/data/ch02/biz 07.html -->

Relevance Score: 0.000359708275446

__ __________________

-

-

-

-

-

-

-

-

-

Figure 2.7 Combining the Lucene scores and the PageRank scores allows you to eliminate spam.

45Improving search results based on user clicks

double m = 1 - (double) 1/pR.getH().getSize();

for (int i = 0; i < numberOfMatches; i++) {

 url = docResults[i].getUrl();

 double hScore =

➥ docResults[i].getScore() *Math.pow(pR.getPageRank(url),m);

 docResults[i].setScore(hScore);

 urlScores.put(hScore, url);
}

Now, a number of reasonable questions may come to your mind. Why did we intro-
duce the variable m? Why didn’t we take the average of the two scores? Why didn’t we
use a more complicated formula for combining the indexing score and the PageRank
score? These are good questions to ask, and the answers may surprise you. Apart from
the fact that our formula retains the value of the score between 0 and 1, our selections
have been arbitrary. We may as well have taken the product of the two scores in order
to combine them.

 The rationale for raising the PageRank value to power m is that the small number
of pages that we’ve indexed may cause the relevance score of indexing to be too high
for the spam pages, thus artificially diluting the effectiveness of the PageRank. As the
number of pages increases, the value of the scaled PageRank (the second term of the
hybrid score) tends to the original PageRank value, because m quickly becomes
approximately equal to 1. We believe that in small networks, such a power-law scaling
can help you increase the importance of the link structure over that of the index. This
formula should work well for small as well as large sets of documents. There’s a deep
mathematical connection between power laws and graphs similar to the internet, but
we won’t discuss it here (see Adamic et al.). The corollary is that when you deal with a
small number of pages, and if the search term appears in the document a large num-
ber of times (as it happens with spam pages), the index page score (the number that
Lucene returns as the score of a search result) will be close to 1; therefore a rescaling
is required to balance that effect.

2.4 Improving search results based on user clicks
In the previous section, we showed that link analysis allows us to take advantage of the
structural aspects of the internet. In this section, we’ll talk about a different way of
leveraging the nature of the internet: user clicks. As you know, every time a user exe-
cutes a query, he’ll either click one of the results or click the link that shows the next
page of results, if applicable. In the first case, the user has identified something of
interest and clicks the link either because that’s what he was looking for or because
the result is interesting and he wants to explore the related information, in order to
decide if it is indeed what he was looking for. In the second case, the best results
weren’t what the user wanted to see and he wants to look at the next page just in case
the search engine is worth a dime!

Listing 2.10 Combining the Lucene scores and the PageRank scores

Calculate scaling factor

Calculate
hybrid score

Create map between scores and URLs

46 CHAPTER 2 Searching

 Kidding aside, one reason why evaluating relevance is a difficult task is because rel-
evance is subjective. If you and I are looking results for the query “elections,” you may
be interested in the U.S. elections, while I may be interested in the UK elections, or
even in my own town’s elections. It’s impossible for a search engine to know the inten-
tion (or the context) of your search without further information. So, the most rele-
vant results for one person can be, and quite often are, different from the most
relevant results for another person, even though the query terms may be identical!

 We’re going to introduce user clicks as a way of improving the search results for
each user. This improvement is possible due to an algorithm that we’ll study in great
detail later in the book—the NaiveBayes classifier. We’ll demonstrate the combina-
tion of index scores, PageRank scores, and the scores from the user clicks for improv-
ing our search results.

2.4.1 A first look at user clicks

User clicks allow us to take as input the interaction of each user with the search
engine. Aristotle said, “We are what we repeatedly do,” and that’s the premise of user
clicks analysis: your interaction with the search engine defines your own areas of inter-
est and your own subjectivity. This is the first time that we describe an intelligent tech-
nique responsible for the personalization of a web application. Of course, a necessary
condition for this is that the search engine can identify which queries come from a
particular user. In other words, the user must be logged in to your application or must
have otherwise established a session with the application. It should be clear that our
approach for user-click analysis is applicable to every application that can record the
user’s clicks, and it’s not specific to search applications.

 Now, let’s assume that you’ve collected the clicks of the users as indicated in the
file user-clicks.csv, which you can find in the data/ch02 directory together with the
rest of the files that we’ve been using in this chapter. Our goal is to write code that can
help us leverage that information, much like the PageRank algorithm helped us to
leverage the information about our network. That is, we want to use this data to person-
alize the results of the search by appropriately modifying the ranking, depending on
who submits the query. The comma separated file contains values in three fields:

■ A string that identifies the user
■ A string that represents the search query
■ A string that contains the URL that the user has selected in the past, after

reviewing the results for that query

If you don’t know the user (no login/no session of any kind), you can use some
default value such as “anonymous”—of course, you should ensure that anonymous
isn’t actually a valid username in your application! If your data has some other format,
it’s okay. You shouldn’t have any problems adopting our code for your specific data. In
order to personalize our results, we need to know the user, her question, and her past
selections of links for that question. If you have that information available then you
should be ready to get in action!

47Improving search results based on user clicks

 You may notice that, in our data, for the same user and the same query there is
more than one entry. That’s normal and you should notice it in your data as well. The
number of times that a click appears in that file makes its URL a better or worse candi-
date for our search results. Typically, the same user will click a number of different
links for the same query because his interest at the time may be different or because
he may be looking for additional information on a topic. An interesting attribute that
you should consider is a timestamp. Time-related information can help you identify
temporal structure in your data. Some user clicks follow periodic patterns; some are
event-driven; others are completely random. A timestamp can help you identify the
patterns or the correlations with other events.

 First let’s see how we can obtain personalized results for our queries. Listing 2.11
shows our script, which is similar to listing 2.9, but this time we load the information
about the user clicks and we run the same query “google ads” twice, once for user
dmitry and once for user babis.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-01.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-02.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-03.html");
crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();
MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

PageRank pageRank = new PageRank(crawler.getCrawlData());
pageRank.setAlpha(0.9);
pageRank.setEpsilon(0.00000001);
pageRank.build();

UserClick aux = new UserClick();
UserClick[] clicks =aux.load("C:/iWeb2/data/ch02/user-clicks.csv");

TrainingSet tSet = new TrainingSet(clicks);

NaiveBayes naiveBayes = new NaiveBayes("Naïve Bayes", tSet);

naiveBayes.trainOnAttribute("UserName");
naiveBayes.trainOnAttribute("QueryTerm_1");
naiveBayes.trainOnAttribute("QueryTerm_2");

naiveBayes.train();

oracle.setUserLearner(naiveBayes);

UserQuery dmitryQuery = new UserQuery("dmitry","google ads");
oracle.search(dmitryQuery,5, pageRank);

UserQuery babisQuery = new UserQuery("babis","google ads");
oracle.search(babisQuery,5, pageRank);

Listing 2.11 Accounting for user clicks in the search results

Load user clicks

Create training set

Define
classifier

Select
attributes

Train classifier

48 CHAPTER 2 Searching

You’ve seen the first part of this script in listing 2.9. First, we load the pages that we
want to search. After that, we index them with Lucene and build the PageRank that
corresponds to their structure. The part that involves new code comes with the class
UserClick, which represents the click of a specific user on a particular URL. We also
defined the class TrainingSet, which holds all the user clicks. Of course, you may
wonder, what’s wrong with the array of UserClicks? Why can’t we just use these
objects? The answer lies in the following: in order to determine the links that are
more likely to be desirable for a particular user and query, we’re going to load the
user clicks onto a classifier—in particular, the NaiveBayes classifier.

2.4.2 Using the NaiveBayes classifier

We’ll address classification extensively in chapters 5 and 6, but we’ll describe funda-
mentals here for clarity. Classification relies on reference structures that divide the
space of all possible data points into a set of classes (also known as categories or con-
cepts) that are (usually) non-overlapping. We encounter classification on a daily basis.
From our everyday experience, we know that we can list food items according to a res-
taurant’s menu, for example salads, appetizers, specialties, pastas, seafood, and so on.
Similarly, the articles in a newspaper, or in a newsgroup on the internet, are classified
based on their subject—politics, sports, business, world, entertainment, and so on. In
short, we can say that classification algorithms allow us to automatically identify
objects as part of this or that class.

 In this section, we’ll use a probabilistic classifier that implements what’s known as the
naïve Bayes algorithm; our implementation is provided by the NaiveBayes class. Classifiers
are agnostic to UserClicks, they’re only concerned with Concepts, Instances, and
Attributes. Think of Concepts, Instances, and Attributes as the analogues of direc-
tories, files, and file attributes on your filesystem.

 A classifier’s job is to assign a Concept to an Instance; that’s all a classifier does. In
order to know what Concept should be assigned to a particular Instance, a classifier
reads a TrainingSet—a set of Instances that already have a Concept assigned to them.
Upon loading those Instances, the classifier trains itself, or learns, how to map a Concept
to an Instance based on the assignments in the TrainingSet. The way that each clas-
sifier trains depends on the classifier.

 Our intention is to use the NaiveBayes classifier as a means of obtaining a relevance
score for a particular URL based on the user and submitted query. The good thing about
the NaiveBayes classifier is that it provides something called the conditional probability of
X given Y—a probability that tells us how likely is it to observe event X provided that
we’ve already observed event Y. In particular, this classifier uses as input the following:

■ The probability of observing concept X, in general, also known as the prior
probability and denoted by p(X).

■ The probability of observing instance Y if we randomly select an instance from
concept X, also known as the likelihood and denoted by p(Y|X).

■ The probability of observing instance Y in general, also known as the evidence
and denoted by p(Y).

49Improving search results based on user clicks

The essential part of the classifier is the calculation of the probability that an observed
instance Y belongs in concept X, which is also known as the posterior probability and
denoted by p(X|Y). The calculation is performed based on the following formula
(known as Bayes theorem):

p(X|Y) = p(Y|X) p(X) / p(Y)

The NaiveBayes classifier can provide a measure of how likely it is that user A wants to
see URL X provided that she submitted query Q; in our case, Y = A + Q. In other words,
we won’t use the NaiveBayes classifier to classify anything. We’ll only use its capacity to
produce a measure of relevance, which exactly fits our purposes. Listing 2.12 shows the
relevant code from the class NaiveBayes; for a complete description, see section 5.3.

public class NaiveBayes implements Classifier {
 private String name;
 private TrainingSet tSet;

 private HashMap<Concept,Double> conceptPriors;

 protected Map<Concept,Map<Attribute, AttributeValue>> p;

 private ArrayList<String> attributeList;

 public double getProbability(Concept c, Instance i) {
 double cP=0;
 if (tSet.getConceptSet().contains(c)) {

 cP = (getProbability(i,c)*getProbability(c))/getProbability(i);
 } else {

 cP = 1/(tSet.getNumberOfConcepts()+1);
 }
 return cP;
 }

 public double getProbability(Instance i) {
 double cP=0;

 for (Concept c : getTset().getConceptSet()) {

 cP += getProbability(i,c)*getProbability(c);
 }
 return (cP == 0) ? (double)1/tSet.getSize() : cP;
 }

 public double getProbability(Concept c) {
 Double trInstanceCount = conceptPriors.get(c);
 if(trInstanceCount == null) {
 trInstanceCount = 0.0;
 }
 return trInstanceCount/tSet.getSize();
 }

 public double getProbability(Instance i, Concept c) {
 double cP=1;
 for (Attribute a : i.getAtrributes()) {

Listing 2.12 Evaluating the relevance of a URL with the NaiveBayes classifier

B
C

D

E

F

G

H

I

J

50 CHAPTER 2 Searching

 if (a != null && attributeList.contains(a.getName())) {

 Map<Attribute, AttributeValue> aMap = p.get(c);
 AttributeValue aV = aMap.get(a);
 if (aV == null) {
 cP *= ((double) 1 / (tSet.getSize()+1));
 } else {
 cP *= (double)(aV.getCount()/conceptPriors.get(c));
 }
 }
 }
 return (cP == 1) ? (double)1/tSet.getNumberOfConcepts() : cP;
 }
}

First, let’s examine the main points of the listing:

This is a name for this instance of the NaiveBayes classifier.

Every classifier needs a training set. The name of the classifier and its training set are
intentionally set during the Construction phase. Once you’ve created an instance of
the NaiveBayes classifier, you can’t set its TrainingSet, but you can always get the ref-
erence to it and add instances.

The conceptPriors map stores the counts for each of the concepts that we have in
our training set. We could’ve used it to store the prior probabilities, not just the counts.
But we want to reuse these counts, so in the name of computational efficiency, we
store the counts; the priors can be obtained by a simple division.

The variable p stores the conditional probabilities—the probability of observing con-
cept X given that we observed instance Y, or in the case of the user clicks, the probabil-
ity that a user A wants to see URL X provided that he submitted query Q.

This is the list of attributes that should be considered by the classifier for training. The
instances of a training set may have many attributes and it’s possible that only a few of
these attributes are relevant (see chapter 5), so we keep track of what attributes
should be used.

If we’ve encountered the concept in our training set, use the formula that we men-
tioned earlier and calculate the posterior probability.

It’s possible that we haven’t encountered a particular instance before, so the get-
Probability(i) method call wouldn’t be meaningful. In that case, we assign some-
thing reasonable as a posterior probability. Setting that value equal to one over the
number of all known concepts is reasonable, in the absence of information for assign-
ing higher probability to any one concept. We’ve also added unity to that number.
That’s an arbitrary modification, intended to lower the probability assigned to each
concept, especially for a small number of observed concepts. Think about why, and
under what conditions, this can be useful.

This method of the NaiveBayes class isn’t essential for the pure classification problem
because its value is the same for all concepts. In the context of this example, we
decided to keep it. Feel free to modify the code so that you get back only the numera-
tor of the Bayes theorem; what do your results look like?

1)

B

C

D

E

F

G

H

I

51Improving search results based on user clicks

The prior probability for a given concept c is evaluated based on the number of times
that we encountered this concept in the training set. Note that we arbitrarily assign
probability zero to unseen concepts. This can be good and bad. If you’re pretty confi-
dent that you have all related concepts in your training set then this ad hoc choice helps
you eliminate flukes in your data. In a more general case, where you might not have
seen a lot of concepts, you should replace the zero value with something more reason-
able—one over the total number of known concepts. What other choices do you think
are reasonable? Is it important to have a sharp estimate of that quantity? Regardless of
your answer, try to rationalize your decision and justify it as best as you can.

We arrive at the heart of the NaiveBayes class. The “naïve” part of the Bayes theorem
is the fact that we evaluate the likelihood of observing Instance i, as the product of
the probabilities of observing each of the attribute values. That assumption implies
that the attributes are statistically independent. We used quotes around the word naïve
because the naïve Bayes algorithm is very robust and widely applicable, even in prob-
lems where the attribute independence assumption is clearly violated. It can be shown
that the naïve Bayes algorithm is optimal in the exact opposite case—cases in which
there’s a completely deterministic dependency among the attributes (see Rish).

If you recall the script in listing 2.11, we’ve created a training set and an instance of
the classifier with that training set, and before we assign the classifier to the
MySearcher instance, we do the following two things:

■ We tell the classifier what attributes should be taken into account for training
purposes.

■ We tell the classifier to train itself on the set of user clicks that we just loaded
and for the attributes that we specified.

The attribute with label UserName corresponds to the user. The attributes
QueryTerm_1 and QueryTerm_2 correspond to the first and second term of the query,
respectively. These terms are obtained by using Lucene’s StandardAnalyzer class.
During training, we’re assigning probabilities based on the frequency of occurrence
for each instance. The important method, in our context, is getProbability(Con-
cept c, Instance i), which we’ll use to obtain the relevance of a particular URL (Con-
cept) when a specific user executes a specific query (Instance).

2.4.3 Combining Lucene indexing, PageRank, and user clicks

Armed with the probability of a user preferring a particular URL for a given query, we
can proceed and combine all three techniques to obtain our enhanced search results.
The relevant code is shown in listing 2.13.

public SearchResult[] search(UserQuery uQuery,

➥ int numberOfMatches, Rank pR) {

 SearchResult[] docResults =

➥ search(uQuery.getQuery(), numberOfMatches);

Listing 2.13 Lucene indexing, PageRank values, and user click probabilities

J

1)

Results based on index

52 CHAPTER 2 Searching

 String url;

 StringBuilder strB = new StringBuilder();

 int docN = docResults.length;

 if (docN > 0) {

 int loop = (docN<numberOfMatches) ? docN : numberOfMatches;

 for (int i = 0; i < loop; i++) {

 url = docResults[i].getUrl();

 UserClick uClick = new UserClick(uQuery,url);

 double indexScore = docResults[i].getScore();

 double pageRankScore = pR.getPageRank(url);

 BaseConcept bC = new BaseConcept(url);

 double userClickScore = learner.getProbability(bC, uClick);

 double hScore;

 if (userClickScore == 0) {

 hScore = indexScore * pageRankScore * EPSILON;

 } else {

 hScore = indexScore * pageRankScore * userClickScore;
 }

 docResults[i].setScore(hScore);

 strB.append("Document URL : ")

➥ .append(docResults[i].getUrl()).append(" --> ");
 strB.append("Relevance Score: ")

➥ .append(docResults[i].getScore()).append("\n");
 }
 }
 strB.append(PRETTY_LINE);
 System.out.println(strB.toString());

 return docResults;
}

Figure 2.8 shows the results for user dmitry. As you can see, due to the fact that dmitry
clicked several times on the page biz-03.html in the past, the relevance score for that
page is the highest. The second best hit is page biz-01.html, which is also in the user
clicks file. The spam page appears third, but that’s a side effect of the small number of
pages; we intentionally didn’t include our scaling m factor to demonstrate its impact
on the results.

 In figure 2.9, we execute the same query—“google ads”—but this time we do it as
user babis. We’ve reversed the order of dmitry’s clicks to create the clicks for the user
babis. The results show that the first hit is page biz-01.html; page biz-03.html is sec-
ond. Everything else is the same. The only difference in the result set comes from the
fact that the query was executed by different users, and that difference reflects exactly
what the application learned from the file user-clicks.csv.

Collect at most
numberOfMatches documents

Collect all user
click scores

Evaluate final
(hybrid) score

53Improving search results based on user clicks

bsh % UserQuery dQ = new UserQuery("dmitry", "google ads");

bsh % oracle.search(dQ,5,pr);

Search results using Lucene index scores:

Query: google ads

Document Title: Google Ads and the best drugs

Document URL: file:/c:/iWeb2/data/ch02/spam -biz-01.html -->

Relevance Score: 0.788674294948578

Document Title: Google Expands into Newspaper Ads

Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.382

Document Title: Google sells newspaper ads

Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.317

Document Title: Google's sales pitch to newspapers

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Relevance Score: 0.291

Document Title: Economic stimulus plan helps stock prices

Document URL: file:/c:/iWeb2/data/ch02/biz-07.html -->

Relevance Score: 0.031

Search results using combined Lucene scores, page rank scores and

user clicks:

Query: user=dmitry, query text=google ads

Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.0057

Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.0044

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 01.html -->

Relevance Score: 0.0040

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Relevance Score: 0.0012

Document URL: file:/c:/iWeb2/data/ch02/biz-07.html -->

Relevance Score: 0.0002
__

-

Figure 2.8 Combining Lucene, PageRank, and user clicks to produce high-relevance search results
for dmitry.

54 CHAPTER 2 Searching

bsh % UserQuery bQ = new UserQuery("babis", "google ads");

bsh % oracle.search(bQ,5,pr);

Search results using Lucene index scores:

Query: google ads

Document Title: Google Ads and the best drugs

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 01.html -->

Relevance Score: 0.788674294948578

Document Title: Google Expands into Newspaper Ads

Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.382

Documen t Title: Google sells newspaper ads

Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.317

Document Title: Google's sales pitch to newspapers

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Relevance Score: 0.291

Document Title: Economic stimulus plan helps stock prices

Document URL: file:/c:/iWeb2/data/ch02/biz-07.html -->

Relevance Score: 0.0314

Search results using combined Lucene scores, page rank scores

and user clicks:

Query: user=babis, query text=google ads

 Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.00616

 Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.00407

 Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 01.html -->

Relevance Score: 0.00393

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Re levance Score: 0.00117

-

-

Figure 2.9 Lucene, PageRank, and user clicks together produce high-relevance search results
for Babis.

55Ranking Word, PDF, and other documents without links

That’s great! We now have a powerful improvement over the pure index-based search
that accounts for the structure of the hyperlinked documents and the preferences of the
users based on their clicks. But a large number of applications must search among doc-
uments that aren’t explicitly linked to each other. Is there anything that we can do to
improve our search results in that case? Let’s examine exactly that case in what follows.

2.5 Ranking Word, PDF, and other documents
without links
Let’s say that you have hundreds of thousands of Word or PDF documents, or any
other type of document that you want to search through. At first, it may seem that
indexing is your only option and, at best, you may be able to do some user-click analy-
sis too. But we’ll show you that it’s possible to extend the same ideas of link analysis
that we applied to the Web. Hopefully, we’ll get you thinking and develop an even bet-
ter method. By the way, to the best of our knowledge, the technique that we describe
here has never been published before.

 To demonstrate that it’s possible to introduce ranking in documents without links,
we’ll take the HTML documents and create Word documents with identical content.
This willl allow us to compare our results with those in section 2.3 and identify any
similarities or differences in the two approaches. Parsing Word documents can be
done easily using the open source library TextMining; note that the name has changed
to tm-extractor. The license of this library starting with the 1.0 version is LGPL, which
makes it business friendly. You can obtain the source code from http://
code.google.com/p/text-mining/source/checkout. We’ve written a class called
MSWordDocumentParser that encapsulates the parsing of a Word document in that way.

2.5.1 An introduction to DocRank

In listing 2.14 we use the same classes to read the Word documents as we did to read
the HTML documents (the FetchAndProcessCrawler class) and we use Lucene to
index the content of these documents.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz-docs");

crawler.addDocSpam();
crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());
oracle.search("nvidia",5);

DocRank docRank = new DocRank(luceneIndexer.getLuceneDir(),7);

Listing 2.14 Ranking documents based on content

Load business
Word documents

Build Lucene
index Create

plain
search
engine

56 CHAPTER 2 Searching

docRank.setAlpha(0.9);
docRank.setEpsilon(0.00000001);
docRank.build();

oracle.search("nvidia",5, docRank);

Figure 2.10 shows that a search for “nvidia” returns as the highest ranked result the
undesirable spam-biz-02.doc file—a result similar to the case of the HTML documents.
Of course, in the case of Word, PDF, and other text documents, the chance of having
spam documents is fairly low, but you could have documents with unimportant repeti-
tions of terms in them.

 So far, everything has been the same as in listing 2.9. The new code is invoked by
the class DocRank. That class is responsible for creating a measure of relevance
between documents that’s equivalent to the relevance which PageRank assigns
between web pages. Unlike the PageRank class, it takes an additional argument whose
role we’ll explain later on. Similar to the previous sections, we want to have a matrix
that represents the importance of page Y based on page X. Our problem is that,
unlike with web pages, we don’t have an explicit linkage between our documents.
Those web links were only used to create a matrix whose values told us how important
page Y is according to page X. If we could find a way to assign a measure of impor-
tance for document Y according to document X we could use the same mathematical
theory that underpins the PageRank algorithm. Our code provides such a matrix.

Create DocRank
engine

bsh % oracle.search("nvidia", 5);

Search results using Lucene index scores:

Query: nvidia

Document Title: NVIDIA shares plummet into cheap medicine for

you!

Document URL: file:/c:/iWeb2/data/ch02/spam -biz- 02.doc -->

Relevance Score: 0.458221405744553

Document Title: Nvidia shares up on PortalPlayer buy

Document URL: file:/c:/iWeb2/data/ch02/biz-05.doc -->

Relevance Score: 0.324011474847794

Document Title: NVidia Now a Supplier for MP3 Players

Document URL: file:/c:/iWeb2/data/ch02/biz-04.doc -->

Relevance Score: 0.194406896829605

Document Title: Nov. 6, 2006, 2:38PM?Chips Snap: Nvidia, Altera

Shares Jump

Document URL: file:/c:/iWeb2/data/ch02/biz 06.doc -->

Relevance Score: 0.185187965631485

-

Figure 2.10 Index based searching for “nvidia” in the Word documents that contain business news
and spam

57Ranking Word, PDF, and other documents without links

2.5.2 The inner workings of DocRank

Our measure of importance is to a large degree arbitrary, and its viability depends cru-
cially on two properties that are related to the elements of our new H matrix. The ele-
ments of that matrix should be such that:

■ They are all positive numbers.
■ The sum of the values in any row is equal to 1.

Whether our measure will be successful depends on the kind of documents that we’re
processing. Listing 2.15 shows the code from class DocRankMatrixBuilder that builds
matrix H in the case of our Word documents.

public class DocRankMatrixBuilder implements CrawlDataProcessor {
 private final int TERMS_TO_KEEP = 3;

 private int termsToKeep=0;
 private String indexDir;
 private PageRankMatrixH matrixH;

 public void run() {
 try {
 IndexReader idxR =

➥ IndexReader.open(FSDirectory.getDirectory(indexDir));
 matrixH = buildMatrixH(idxR);
 }
 catch(Exception e) {
 throw new RuntimeException("Error: ", e);
 }
 }

 // Collects doc ids from the index for documents with matching doc type
 private List<Integer> getProcessedDocs(IndexReader idxR)
 throws IOException {
 List<Integer> docs = new ArrayList<Integer>();
 for(int i = 0, n = idxR.maxDoc(); i < n; i++) {
 if(idxR.isDeleted(i) == false) {
 Document doc = idxR.document(i);
 if(eligibleForDocRank(doc.get("doctype"))) {
 docs.add(i);
 }
 }
 }
 return docs;
 }

// Is the index entry eligible?

 private boolean eligibleForDocRank(String doctype) {
 return ProcessedDocument.DOCUMENT_TYPE_MSWORD

➥ .equalsIgnoreCase(doctype);
 }

 private PageRankMatrixH buildMatrixH(IndexReader idxR)

Listing 2.15 DocRankMatrixBuilder: Ranking text documents based on content

58 CHAPTER 2 Searching

 throws IOException {

 // consider only URLs with fetched and parsed content
 List<Integer> allDocs = getProcessedDocs(idxR);

 PageRankMatrixH docMatrix =

➥ new PageRankMatrixH(allDocs.size());

 for(int i = 0, n = allDocs.size(); i < n; i++) {

 for(int j = 0, k = allDocs.size(); j < k; j++) {

 double similarity = 0.0d;

 Document docX = idxR.document(i);
 String xURL= docX.get("url");

 if (i == j) {

 // Avoid shameless self-promotion ;-)
 docMatrix.addLink(xURL, xURL, similarity);

 } else {

 TermFreqVector x =

➥ idxR.getTermFreqVector(i, "content");
 TermFreqVector y =

➥ idxR.getTermFreqVector(j, "content");

 similarity = getImportance(x.getTerms(),

➥ x.getTermFrequencies(), y.getTerms(), y.getTermFrequencies());

 // add link from docX to docY
 Document docY = idxR.document(j);
 String yURL = docY.get("url");

 docMatrix.addLink(xURL, yURL, similarity);
 }
 }
 }
 docMatrix.calculate();

 return docMatrix;
 }

 // Calculates importance of document Y in the context of document X
 private double getImportance(String[] xTerms, int[] xTermFreq,
 String[] yTerms, int[] yTermFreq){

 // xTerms is an array of the most frequent terms for first document
 Map<String, Integer> xFreqMap =

➥ buildFreqMap(xTerms, xTermFreq);

 // yTerms is an array of the most frequent terms for second document
 Map<String, Integer> yFreqMap =

➥ buildFreqMap(yTerms, yTermFreq);

 // sharedTerms is the intersection of the two sets
 Set<String> sharedTerms =

➥ new HashSet<String>(xFreqMap.keySet());
 sharedTerms.retainAll(yFreqMap.keySet());

59Ranking Word, PDF, and other documents without links

 double sharedTermsSum = 0.0;

 // Note that this isn't symmetrical.
 // If you swap X with Y then you get a different value;
 // unless the frequencies are equal, of course!

 double xF, yF;
 for(String term : sharedTerms) {

 xF = xFreqMap.get(term).doubleValue();
 yF = yFreqMap.get(term).doubleValue();

 sharedTermsSum += Math.round(Math.tanh(yF/xF));
 }

 return sharedTermsSum;
 }

 private Map<String, Integer> buildFreqMap(String[] terms, int[] freq) {

int topNTermsToKeep = (termsToKeep == 0)? TERMS_TO_KEEP: termsToKeep;

Map<String, Integer> freqMap =

➥ TermFreqMapUtils.getTopNTermFreqMap(terms, freq, topNTermsToKeep);

 return freqMap;
 }
}

There are two essential ingredients in our solution. First, note that we use the Lucene
term vectors, which are pairs of terms and their frequencies. If you recall our discussion
about indexing documents with Lucene, we mentioned that the text of a document is
first parsed, then analyzed before it’s indexed. During the analysis phase, the text is
dissected into tokens (terms); the way that the text is tokenized depends on the ana-
lyzer that’s used. The beautiful thing with Lucene is that we can retrieve that informa-
tion later on and use it. In addition to the terms of the text, Lucene also provides us
with the number of times that each term appears in a document. That’s all we need
from Lucene: a set of terms and their frequency of occurrence in each document.

 The second ingredient of our solution is the choice of assigning importance to
each document. The method getImportance in listing 2.15 shows that, for each docu-
ment X, we calculate the importance of document Y by following two steps: (1) we
find the intersection between the most frequent terms of document X and the most
frequent terms of document Y and (2) for each term in the set of shared terms (inter-
section), we calculate the ratio of the number of times the term appears in document
Y (Y-frequency of occurrence) over the number of times the term appears in docu-
ment X (X-frequency of occurrence). The importance of document Y in the context
of document X is given as the sum of all these ratios and filtered by the hyperbolic tan-
gent function (Math.tanh) as well as the rounding function (Math.round). The end
result of these operations will be the entry in the H matrix for row X and column Y.

 We use the hyperbolic tangent function because we want to gauge whether a par-
ticular term between the two documents should be considered a good indicator for
assigning importance. We aren’t interested in the exact value; we’re interested only in

60 CHAPTER 2 Searching

keeping the importance factor within reasonable limits. The hyperbolic tangent takes
values between 0 and 1, so the final rounding will ensure that each term can either be
neglected or count for one unit of importance. That’s the rationale behind building
the formula by using these functions.

 Figure 2.11 shows that a search for “nvidia” returns the file biz-05.doc as the high-
est-ranked result; that’s a legitimate file (not spam) and related to nvidia! The spam

bsh % oracle.search("nvidia",5,dr);

Search results using Lucene index scores:

Query: nvidia

Document Title: NVIDIA shares plummet into cheap medicine for

you!

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 02.doc -->

Relevance Score: 0.4582

Document Title: Nvidia shares up on PortalPlayer buy

Document URL: file:/c:/iWeb2/data/ch02/biz-05.doc -->

Relevance Score: 0.3240

Document Title: NVidia Now a Supplier for MP3 Players

Document URL: file:/c:/iWeb2/data/ch02/biz-04.doc -->

Relevance Score: 0.1944

Document Title: Chips Snap: Nvidia, Altera Shares Jump

Document URL: file:/c:/iWeb2/data/ch02/biz-06.doc -->

Relevance Score: 0.1852

Search results using combined Lucene scores and page rank scores:

Query: nvidia

Document URL: file:/c:/iWeb2/data/ch02/biz-05.doc -->

Relevance Score: 0.03858

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 02.doc -->

Relevance Score: 0.03515

Document URL: file:/c:/iWeb2/data/ch02/biz-04.doc -->

Relevance Score: 0.02925

Document URL: file:/c:/iWeb2/data/ch02/biz- 06.doc -->

Relevance Score: 0.02233

-

-

-

Figure 2.11 Index and ranking based search for “nvidia” on the Word documents

61Large-scale implementation issues

page survived because the number of our documents is small, but we did get addi-
tional value. The Lucene index had the exact same information all along, but its met-
ric of relevance has been skewed by the ersatz news document. DocRank helped us to
increase the relevance of the biz-05.doc document, and in more realistic situations it
can help you identify the most pertinent documents in a collection. The DocRank val-
ues, like the PageRank values, need to be calculated only once, but can be reused for
all queries.

 There are other means of enhancing the search of plain documents, and we pro-
vide the related references at the end of this chapter. DocRank is a more powerful
algorithm when applied to data from a relational database. To see this, let’s say that we
have two tables—table A and table B—that are related to each other through table C;
this is a common case. For example, you may have a table that stores users, another
table that stores groups, and another that stores the relationship between users and
groups by relating the IDs of each entry. In effect, you have one graph that connects
the users based on their groups and another graph that connects the groups based on
their users. Every time you have a linked representation of entities, it’s worthwhile to
try the DocRank algorithm or a similar variant. Don’t be afraid to experiment! There’s
no single answer to this kind of problem, and sometimes the answer may surprise you.

2.6 Large-scale implementation issues
Everything that we’ve discussed so far can be used across the functional areas and the
various domains of web applications. But if you’re planning to process vast amounts of
data, and you have the computational resources to do it, you’re going to face issues
that fall largely into two categories. The first category is related to the mathematical
properties of the algorithms; the second is related to the software engineering aspects
of manipulating data on the scale of terabytes or even petabytes!

 The first symptom of large-scale computing constraints is the lack of addressable
memory. In other words, your data is so large that the data structures don’t fit in mem-
ory anymore; that would be particularly true for an interpreted language, like Java,
because even if you manage to fit the data, you’d probably have to worry about gar-
bage collection. In large-scale computing, there are two basic strategies for dealing
with that problem. The first is the construction of more efficient data structures, so
that the data does fit in memory; the second is the construction of efficient, distrib-
uted, I/O infrastructure for accessing and manipulating the data in situ. For very large
datasets, with sizes similar to what Google handles, you should implement both strate-
gies because you want to squeeze every bit of efficiency out of your system.

 In terms of representing data more efficiently, consider the structures that we used
for storing the H matrix. The part of the original link structure required a dou-
ble[n][n] and the part of the dangling node matrix required another double[n][n],
where n is the number of pages (or documents for DocRank). If you think about it,
that’s a huge waste of resources when n is very large, because most of these double val-
ues are zero. A more efficient way to store that information would be by means of an

62 CHAPTER 2 Searching

adjacency list. In Java, you can easily implement an adjacency list using a Hashtable
that will contain HashSets. So, the definition of the variable matrix in the class Page-
RankMatrixH would look as follows:

Hashtable<Integer, HashSet<Integer,Double>> matrix;

One of the exercises that we propose is to rewrite our algorithmic implementation
using these efficient structures. You could even compress the data in the adjacency list
by reference encoding or other techniques (see Boldi and Vigna). Reference encoding
relies on the similarity of web pages and sacrifices simplicity of implementation for
memory efficiency.

 Another implementation aspect for large-scale searching is the accuracy that you’re
going to have for the PageRank values (or any other implementation of the Rank base
class). To differentiate between values of the PageRank for any two web pages among
N, you’ll need a minimum of 1/N accuracy in your numerical calculation. So, if you
deal with N = 1000 pages then even 10-4 accuracy should suffice. If you want to get the
rankings of billions of pages, the accuracy should be on the order of 10-10 for the Page-
Rank values.

 Consider a situation where the dangling nodes make up a large portion of your
fetched web pages. This could happen if you want to build a dedicated search engine
for a central site such as the Apache set of projects, or something less ambitious such as
the Jakarta project alone. Brin and Page realized that handling a large number of
nodes that are, in essence, artificial—because their entries in the H matrix don’t reflect
the link structure of the web but rather help the matrix to conform with certain nice
mathematical properties—isn’t going to be very efficient. They suggested you could
remove the dangling nodes during the computation of the PageRank, and add them
back after the values of the remaining PageRanks have converged sufficiently.

 We don’t know, of course, the actual implementation of the Google search
engine—such secrets are closely guarded—but we can say with certainty that an equi-
table treatment of all pages will require inclusion of the dangling nodes from the
beginning to the end of the calculation of PageRank. In an effort to be both fair and
efficient, we can use methods that rely on the symmetric reordering of the H matrix.
These techniques appear to converge at the same rate as the original PageRank algo-
rithm while acting on a smaller problem, which means that you can have significant
gains in computational time; for more details see Google’s PageRank and Beyond: The Sci-
ence of Search Engine Rankings.

 Implicit in all discussions with respect to large-scale computations of search are con-
cerns about memory and speed. One speed factor is the number of iterations for the
power method, which as we’ve seen depends on the value of alpha as well as the number
of the linked pages. Unfortunately, in practitioner’s books similar to ours, we found
statements asserting that the initial value of the PageRank vector doesn’t matter and that
you could set all the values equal to 1. Strictly speaking, that’s not true and it can have
dramatic implications when you work with large datasets whose composition changes
periodically. The closer the initial vector is to the unique PageRank values, the fewer the

63Large-scale implementation issues

number of iterations required. A number of techniques, known collectively as approxi-
mate aggregation techniques, to compute the PageRank vector of a smaller matrix in order
to generate an estimate of the true updated distribution of the PageRank vector. That
estimate, in turn, will be used as the initial vector for the final computation. The math-
ematical underpinnings of these methods won’t be covered in this book. For more infor-
mation on these techniques, see the references at the end of this chapter.

 While we’re discussing acceleration techniques for the computation of the Page-
Rank vector, we should mention the Aitken extrapolation, a quadratic extrapolation
technique by Kamvar et al., as well as more advanced techniques such as the applica-
tion of spectral methods (such as Chebyshev polynomial spectral methods). These
techniques aim at obtaining a better approximation of the PageRank vector between
iterations. They may be applicable in the calculation of your ranking, and it may be
desirable to implement them; see the references for more details.

 With regard to the software aspects of an implementation for large-scale computa-
tions, we should mention Hadoop (http://hadoop.apache.org/). Hadoop is a full-
blown, top-level project of the Apache Software Foundation and it offers an open
source software platform that’s scalable, economical, efficient, and reliable. Hadoop
implements MapReduce (see Dean and Ghemawat), by using its own distributed file-
system (HDFS). MapReduce divides applications into many small blocks of work. HDFS
creates multiple copies of data blocks for reliability, and places them on computational
nodes around a computational cluster (see figure 2.12). MapReduce can then process
the data where it’s located. Hadoop has been demonstrated on clusters with 2,000
nodes. The current design target for the Hadoop platform is 10,000 node clusters.

 The ability to handle large datasets is certainly of great importance in real-world
production systems. We gave you a glimpse of the issues that can arise and pointed you
to some appropriate projects and the relevant literature on that subject. When you
design a search engine, you need to consider not just your ability to scale and handle
a larger volume of data, but the quality of your search results. At the end of the day,
your users want your results to be fast and accurate. So, let’s see a few quantitative ways
of measuring whether what we have is what we want.

Figure 2.12
The MapReduce
implementation
of Hadoop using
a distributed file
system

64 CHAPTER 2 Searching

2.7 Is what you got what you want? Precision and recall
Google and Yahoo! spend a considerable amount of time studying the quality of their
search engines. Similar to the process of validation and verification (QA) of software
systems, search quality is crucial to the success of a search engine. If you submit a
query to a search engine, you may or may not find what you want. There are various
metrics that quantify the degree of success for a search engine. The two most common
metrics—precision and recall—are easy to implement and understand qualitatively.

 Figure 2.13 shows the possibilities of results from a typical query. That is, provided
a set of documents, a subset of these documents will be relevant to your query and
another subset will be retrieved. Clearly the goal is to retrieve all the relevant docu-
ments, but that’s rarely the case. So, our atten-
tion turns quickly to the intersection between
these two sets, as indicated in figure 2.13.

 In information retrieval, precision is the
ratio of the number of relevant documents
that are retrieved (RR) divided by the total
number of retrieved documents (Rd)—preci-
sion = RR/Rd. In figure 2.13, precision would
be about 1/5 or 0.2. That’s measured with the
“eye norm”; it’s not exact, we’re engineers
after all! On the other hand, recall is the ratio
of the number of relevant documents that are
retrieved divided by the total number of rele-
vant documents (Rt)—recall = RR/Rt.

 Qualitatively, these two measures answer different questions. Precision answers, “To
what extent do I get what I want?” Recall answers, “Does what I got include everything
that I can get?” Clearly it’s easier to find precision than it is to find recall, because find-
ing recall implies that we already know the set of all relevant documents for a given
query. In reality, that’s hardly ever the case. We plot these two measures together so that
we can assess to what extent the good results blend with bad results. If what I get is the
truth, the whole truth, and nothing but the truth, then the precision and recall values
for my queries will both be close to one.

 During the evaluation of the algorithms and
tweaks involved in tuning a search engine, you
should employ plots of these two quantities for rep-
resentative queries that span the range of questions
that your users are trying to answer. Figure 2.14
shows a typical plot of these quantities. For each
query, we enter a point that corresponds to the pre-
cision and recall values of that query. If you execute
many queries and plot these points, you’ll get a line
that looks like the one shown in figure 2.14. Be

Retrieved Relevant

All documents

Figure 2.13 This diagram shows the set of
relevant documents and the set of retrieved
documents; their intersection is used to define
the search metrics precision and recall.

Figure 2.14 A typical precision/
recall plot for a search engine

65Summary

aware that interpolating the values, if you have a small number of queries, may not be
a good idea. It would be better to leave the values as points without connecting them.

 Good precision-recall points are located in the upper-right corner of the graph
because we want to have high precision and high recall. These plots can help you
establish, objectively, the need for a particular tweak in an algorithm or the superiority
of one approach versus another. It could help you convince your ever-skeptical upper
management team to use the algorithms of this book! You can practice by using the
three approaches that we presented in this chapter (search with Lucene; Lucene and
PageRank; Lucene, PageRank, and user clicks). You can apply them on the dataset
that we provided you or another dataset that you can create yourself, and you can cre-
ate a precision/recall plot that includes the results of 10–20 queries.

 In section 5.5, we’ll discuss many aspects of credibility that can be evaluated for a
particular algorithm and how to compare two algorithms. We’ll also talk about the way
that the validation experiments must be carried out in order to enhance the confi-
dence that we have in our results. Precision and recall are the tip of the iceberg when
we consider the quality of our search results. We’ll postpone a more detailed analysis
of credibility until after we cover all the basic intelligent algorithms that we want to
present. This approach will allow us to use a general framework for assessing the qual-
ity of intelligence.

2.8 Summary
Since early 2000, a lot of online news article have proclaimed: “Search is king!” This
kind of statement could’ve been insightful, and perhaps prophetic, in the last millen-
nium, but it’s a globally accepted truth today. If you don’t believe us, Google it!

 This chapter has shown that intelligently answering user queries on content-rich
material that’s spread across the globe deserves attention and effort beyond indexing.
We’ve demonstrated a searching strategy that starts with building on traditional infor-
mation retrieval techniques provided by the Lucene library. We talked about collect-
ing content from the Web (web crawling) and provided our own crawler
implementation. We used a number of document parsers such as NekoHTML and the
TextMining library (tm-extractor), and passed the content to the Lucene analyzers.
The standard Lucene analyzers are powerful and flexible, and should be adequate for
most purposes. If they’re not suitable for you, we’ve discussed a number of potential
extensions and modifications that are possible. We also hinted at the power of the
Lucene querying framework and its own extensibility and flexibility.

 More importantly, we’ve described in great detail the most celebrated link analysis
algorithm—PageRank. We provided a full implementation that doesn’t have any
dependencies and adopts the formulation of the G(oogle) matrix that’s amenable to
the large-scale implementation of sparse matrices. We also provided hints that’ll allow
you to complete this step and feel the pride of that great accomplishment yourself!
We’ve touched upon a number of intricacies of that algorithm and explained its key
characteristics, such as the teleportation component and the power method, in detail.

66 CHAPTER 2 Searching

 We also presented user-click analysis, which introduced you to intelligent probabi-
listic techniques such as our NaiveBayes classifier implementation. We’ve provided
wrapper classes that expose all the important steps involved, but we’ve also analyzed
the code under the hood to a great extent. This kind of technique allows us to learn
the preferences of a user toward a particular site or topic, and it can be greatly
enhanced and extended to include additional features.

 Since one size doesn’t fit all, we’ve provided material that’ll help you deal with doc-
uments that aren’t web pages, by employing a new algorithm that we called DocRank.
This algorithm has shown some promise, but more importantly it demonstrates that
the underlying mathematical theory of PageRank can be readily extended and studied
in other contexts by careful modifications. Lastly, we talked about some of the chal-
lenges that may arise in dealing with very large networks, and we provided a simple yet
robust way of qualifying your search results and add credibility to your search engine.

 The statement “search is king” might be true, but recommendation systems also
have royal blood! The next chapter covers exclusively the creation of suggestions and
recommendations. Adding both to your application can make a big difference in the
user experience of your application. But before you move on, make sure that you read
the To do items for search, if you haven’t done so already. They’re full of interesting
and valuable information.

2.9 To do
The last section of every chapter in the rest of this book will contain a number of to-do
items that will guide you in the exploration of various topics. Whenever appropriate,
our code has been annotated with “TODO” tags that you should be able to view in the
Eclipse IDE in the Tasks panel. By clicking on any of the tasks, the task link will show
the portion of the code associated with it. If you don’t use Eclipse then simply search
the code for the term “TODO”.

 Some of these to-do items aim at providing greater depth on a topic that’s been
covered in the main chapter, while others present a starting point for exploration on
topics that are peripheral to what we’ve already discussed. The completion of these
tasks will provide you with greater depth and breadth on intelligent algorithms. We
highly encourage you to peruse them.

 With that in mind, here is our to do list for chapter 2.

1 Build your own web search engine. Use the crawler of your choice and crawl your
favorite site, such as http://jakarta.apache.org/, then use our crawler to pro-
cess the retrieved data, build an index for it, and search through its pages.

How do the results vary if you add PageRank to them?
How about user clicks?
You could write your own small web search engine by applying the material

of this chapter. Try it and let us know!

2 Experiment with boosting. Uncomment the code between lines 83 to 85 in the
class LuceneIndexBuilder and see how the results of the Lucene ranking

67To do

change. Depending on your application, you can devise a unique strategy of
boosting your documents that depends on factors that are specific to the
domain of your application.

3 Scaling the PageRank values. In our example of a combined Lucene (index)
and PageRank (ranking) search, we use a scaling factor that boosted the value
of the PageRank. Our choice of function for the exponent had only one param-
eter—m = (1 – 1/n), where n is the size of the H matrix—and its behavior was
such that for large networks our scaling factor is approaching the value 1, while
for small networks the value is between 0 and 1. In reality, you get zero only in
the degenerate case where you have a single page, but that’s not a very interest-
ing network anyway!

Experiment with such scaling factors and observe the impact on the rank-
ings. You may want to change that value to a higher power of n—another valid
formula would be m = (1 – 1 / Math.pow(n,k)), because as k takes on values
greater than 1, the PageRank value approaches its calculated value faster.

4 Altering the G matrix: Dangling nodes. We’ve assigned a value of 1/n to all the
nodes for each entry in a dangling node row. In the absence of additional infor-
mation about the browsing habits of our users, or under the assumption that
there’s a sufficient number of users that covers all browsing habits, that’s a rea-
sonable assignment. But what if we make different kind of assumptions that are
equally reasonable would the whole mechanism work?

Let’s assume that a user encounters a dangling node. Upon arriving at the
dangling node, it seems natural to assume that the user is more likely to select a
search engine as his next destination, or a website similar to the dangling node,
rather than a website that’s dissimilar to the content of the dangling node. That
kind of assumption would result in an adjustment of the dangling node values:
higher values for search engines and similar content pages, and lower values for
everybody else. How does that change affect the PageRank values? How about
the results of the queries? Did your precision recall graph change in that case?

5 Altering the G matrix: Teleportation. In our original implementation, the telepor-
tation contribution has been assigned in an egalitarian manner—all pages are
assigned a contribution equal to (1-alpha)/n, where n is the number of the
pages. But the potential of that component is enormous. If chosen appropri-
ately, it can create an online bourgeois, and if it’s chosen at a user level, it can
target the preferences of each user much like the technique of user clicks
allowed us to do. The latter reason is why the teleportation contribution is also
known as the personalization vector.

Try to modify it so that certain pages get more weight than others. Does it
work? Are your PageRank values higher for these pages? What issues do you see
with such an implementation? If we assume that we assign a personalization vec-
tor to each user, what does this imply in terms of computational effort? Is it
worth it? Is it feasible? The papers by Haveliwala, Jeh & Widom, and Richardson

68 CHAPTER 2 Searching

& Domingos are related to this and can provide you with more information and
insight on this important topic.

6 Combining different scores. In section 2.4.3, we showed one way to combine the
three different scores, in order to provide the final ranking for the results of a
particular query. That’s not the only way. This is a case where you can devise a
balancing of these three terms in a way that best fits your needs. Here’s an idea:
introduce weighing terms for each of the three scores and experiment with dif-
ferent allocations of weight to each one of them.

Provided that you consider a fixed network of pages or documents, how do
the results change based on different values of these weight coefficients? Plot 20
precision/recall values that correspond to 20 different queries, and do that for
three different weight combinations, for example (0.6, 0.2, 0.2), (0.2, 0.6, 0.2),
(0.2, 0.2, 0.6). What do you see? How do these points compare to the equal
weight distribution (1,1,1)? Can you come up with different formulas for bal-
ancing the various contributions?

2.10 References
 Adamic, L.A., R.M. Lukose, A.R. Puniyani, and B.A. Huberman. “Search in power-law net-

works.” Physical Review E, vol. 64, 046135. 2001.
 Boldi, P., and S. Vigna. “The WebGraph Framework I: Compression Techniques.” WWW 2004,

New York.
 Dean, J. and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters.” Sixth

Symposium on Operating System Design and Implementation, San Francisco, CA, 2004. http://
labs.google.com/papers/mapreduce-osdi04.pdf.

 Haveliwala, T.H. “Topic-sensitive PageRank: A context-sensitive ranking algorithm for web
search.” IEEE transactions on Knowledge and Data Engineering, 15 (4): 784. 2004. http://
www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank-tkde.pdf.

 Jeh, G. and J. Widom. “Scaling personalized web search.” Technical report, Stanford University,
2002. http://infolab.stanford.edu/~glenj/spws.pdf.

 Kamvar, S.D., T.H. Haveliwala, Christopher D. Manning, and Gene H. Golub. Extrapolation
Methods for Accelerating PageRank Computations. WWW 2003. http://www.
kamvar.org/code/paper-server.php?filename=extrapolation.pdf.

 Langville, A.N. and C.D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine Rank-
ings. Princeton University Press, 2006.

 Richardson, M. and P. Domingos. The intelligent surfer: Probabilistic combination of link and
content information in PageRank. Advances in Neural Information Processing Systems,
14:1441, 2002. http://research.microsoft.com/users/mattri/papers/nips2002/
qd-pagerank.pdf.

 Rish, I. An empirical study of the naïve Bayes classifier.” IBM Research Report, RC22230 (W0111-
014), 2001. http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf.

ISBN 13: 978-1-933988-66-5
ISBN 10: 1-933988-66-5

9 7 8 1 9 3 3 9 8 8 6 6 5

99445

A
n algorithm is a sequence of steps that solves a problem.
Algorithms of the Intelligent Web provides exactly that—
explicit, clearly organized patterns to implement valuable

web application features like recommendation engines, smart
searching, content organizers, and much more. With these
techniques you’ll capture vital raw information about your users
and profi tably transform it into action.

Algorithms of the Intelligent Web is a handbook for web devel-
opers who want to exploit relationships in user data that can’t be
discovered manually. Th e book presents crystal-clear explanations
of techniques you can apply immediately. It is based on the authors’
practical experience as web developers and their deep expertise
in the science of machine learning. With a wealth of detailed,
Java-based examples this book shows you how to build applications
that behave intelligently and learn from your users’ actions.

What’s Inside
Create recommendations like Netfl ix or Amazon
Implement Google’s PageRank algorithm
Discover matches on social-networking sites
Organize your news group discussions
Select topics of interest from shared bookmarks
Filter spam and categorize emails based on content

Dr. Haralambos (Babis) Marmanis is a pioneer in the adoption of
machine learning techniques for industrial solutions, and also a
world expert in supply management. Dmitry Babenko has
designed applications and infrastructure for banking, insurance,
supply-chain management, and business intelligence companies.

For online access to the authors, code samples, and a free ebook for owners
of this book, go to www.manning.com/AlgorithmsoftheIntelligentWeb

$44.99 / Can $56.99 [INCLUDING eBOOK]

Algorithms of the Intelligent Web

JAVA/WEB

Haralambos Marmanis Dmitry Babenko

“Unequivocally outstanding—
 this is the best technical book
 I have read all year.”
 —Robert Hanson
 Quality Technology Services

“You don’t need a PhD to build
 an intelligent website—pick up
 this book instead.”
 —Ajay Bhandari, FoodieBytes.com

“Very useful ... will bring
 you up to speed quickly.”
 —Sumit Pal, LeapFrogrx

“Excellent ... a perfect blend of
 theory and practice.”
 —Carlton Gibson
 Noumenal Soft ware

“Unlock the future of the web
 by analyzing what we know
 today!”
 —Eric Swanson, AAA

M A N N I N G

123

SEE INSERT

